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ABSTRACT
ELASTICITY THEORIES FOR CATIONIC LIPID AND DNA COMPLEXES
Corey S. O’Hern

Tom Lubensky

DNA and certain species of cationic and neutral lipids self-assemble into lamellar
complexes when mixed in water. X-ray scattering experiments have determined that
these complexes are highly organized with DNA molecules located in the galleries be-
tween lipid bilayers. Within each gallery, DNA molecules form a two-dimensional (2D)
smectic lattice. We model the lipid and DNA complexes as three-dimensional stacks
of weakly-coupled 2D smectic lattices and study the phase diagram of this model
as a function of temperature. The various phases are distinguished by the strength
of the translational and orientational correlations between neighboring smectic lat-
tices. For example, it is possible for a columnar phase to form at low temperature
with long-range translational correlations between smectic lattices. In the columnar
phase, the DNA molecules form a 2D crystal lattice in the plane perpendicular to
their column axes, and there is a nonzero shear modulus for sliding neighboring lat-
tices relative to each other. As temperature is increased, thermal fluctuations may
induce a second-order phase transition to the sliding columnar phase. This phase is
characterized by strong in-plane smectic correlations, a vanishing shear modulus for

sliding lattices across each other, and a nonvanishing orientational rigidity for rotat-
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ing lattices relative to each other. Thus, neighboring lattices are able to slide but
not rotate relative to each other without energy cost. We calculate several important
structural properties of the sliding columnar phase, for instance, the sliding columnar
density-density correlation and structure functions. The sliding columnar correlation
function is unique in that in-plane correlations are weaker than any power-law and
decay with separation r as exp[— In? r]. We also calculate the energy cost for edge
dislocations in the sliding columnar phase and show that, at the longest lengthscales,
a dislocation unbinding transition from the columnar to the nematic lamellar phase
precludes the columnar to sliding columnar phase transition. However, if further-
neighbor orientational interactions between smectic lattices are permitted, there is a

temperature range where the sliding columnar phase is thermodynamically stable.
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Chapter 1

Introduction

1.1 Components of Cationic Lipid and DNA Complexes

Cationic lipid (CL) and DNA complexes are composed of linear DNA molecules and
both cationic and neutral lipid molecules. DNA consists of a sequence of base pairs
or nucleotides that are stacked in a helical fashion and connected to one another
by two sugar-phosphate backbones. This sequence of base pairs carries the genetic
information for each organism. For the experiments discussed in this thesis, the
density of DNA is small enough that the helical nature of DNA is not important.
Recent experiments on the complexes have used DNA extracted from the A-phage
virus with a contour length Ipxa &~ 16um[26, 28, 29]. At long lengthscales, DNA can
be thought of as a long, semi-flexible polymer with a persistence length &, = 500A. In
solution, polymers make a random walk with step size ,, and thus the mean-square
head-to-tail displacement is much smaller than the contour length. The phosphate

groups along the backbones are negatively charged with one charge per 1.7A. Since



DNA is highly charged, many positive counterions are confined to a small region near
the DNA molecule. This counterion confinement, termed Manning condensation,
reduces the effective charge density of DNA in solution by a factor of 0.24. (See [25]
for general references on Manning condensation.)

CL-DNA complexes are also composed of lipid molecules. Lipids are amphiphilic
molecules with one or several hydrophobic hydrocarbon tails and a water soluble
head. The amphiphilic nature of the lipids causes them to form bilayer structures in
water which shield the tails from the water. Lipid bilayers are made by superimposing
two lipid layers tail to tail. In this configuration, the tails are buried and the heads
are exposed to water. The shape of the bilayer structure depends on the packing
configuration of the tails. For instance, spherical liposomes form when the tails adopt
a wedge shape and take up much more lateral area than the heads. The cationic and
neutral lipids used in the above experiments form spherical liposomes with diameter

approximately 700A when mixed in water.

1.2 Motivation

The structural properties of CL-DNA complexes have received attention recently
from both the biochemistry and physics communities. Much of the interest from
the biochemistry community stems from the fact that CL-DNA complexes are now

used in gene therapies against genetic diseases such as cystic fibrosis[7, 8]. CL-DNA



complexes are non-viral vectors that transport DNA into the cell nucleus. They are
often preferred over viral vectors because the complexes do not invoke an unwanted
immune response. Researchers are now able to build positively charged liposomes
which envelope the DNA and transport it across the negatively charged outer cell
wall and nuclear membrane. Once it crosses the nuclear membrane, the extra-cellular
DNA can replace defective or missing genes. Two technical barriers confronting gene
therapy are transporting extra-cellular DNA to the nucleus and coaxing the cell into
expressing the therapeutic DNA sequence. These barriers are formidable and gene
expression rates are low. The hope is that researchers will eventually be able to
design CL-DNA complexes with material properties that lead to the highest rate of
gene expression.

The physics community is interested in understanding the structure of CL-DNA
complexes because they are new soft materials composed of both polymers and lipid
bilayers. The structural properties and phase behavior of systems composed of either
polymers or lipid bilayers have been studied extensively in the past[17, 27], how-
ever, relatively little is known about mixtures of the two. Researchers have recently
performed X-ray scattering and light microscopy experiments to probe the internal
structure of CL-DNA complexes from micron to Angstrom length scales[26, 28, 29].
They found that DNA and lipids self-assemble into micron-sized aggregates with lo-

cal liquid-crystalline order. The focus of this thesis is first to enumerate the possible



equilibrium phases for CL-DNA complexes and then to determine the structural prop-
erties of each phase. The equilibrium phases will possess varying degrees of positional
and orientational order with the most ordered phases occurring at low temperature

and more disordered occurring at high temperatures.

1.3 X-ray Scattering Experiments

Researchers have determined from optical microscopy that DNA and cationic li-
posomes form micron-sized liquid-crystalline spherulites when they are mixed in
water[26, 28, 29]. They surmised that both DNA and lipid were located within
the spherulites by alternating the fluorescent labeling modes (YOYO Blue labeled
DNA and Texas Red labeled cationic liposomes). Large spherulites of DNA and lipid
form when both DNA and cationic liposomes release their counter-ions to solution,
and the negatively charged DNA molecules condense on the cationic liposomes. The
counter-ion release results in a large reduction in the free energy due to the increase
in entropy of the counterions. The formation of the spherulites was studied as a func-
tion of the mass ratio of lipid to DNA, L/D, where L is the total mass of the lipid
including both cationic and neutral species and D is the total mass of DNA. Near
the isoelectric point, where the total charge of the DNA is equal to the total charge
of the lipid, the spherulites are charge neutral and form chain-like structures due to

Van der Waals attractions. Away from the isoelectric point, the complexes are highly



charged and thus repel each other.

The Angstrom-scale local structure of the complexes was probed using small-
angle X-ray scattering. Scattering experiments measure the structure function I(q),
which is the Fourier transform of the density-density correlation function. If the
spherulites possess periodic positional order, I(q) will be peaked at wavenumbers
equal to reciprocal lattice vectors. The structure functions from three-dimensional
crystals and columnar liquid-crystal phases possess delta-function Bragg peaks since
thermal fluctuations do not destroy long-range positional order. However, the dis-
placement fluctuations in one- and two-dimensional crystals diverge with system size,
and, as a result, peaks in I(q) decay much more slowly with q. For instance, quasi-
Bragg peaks for a 1D crystal existing in three spatial dimensions (or a 3D smectic
liquid-crystal) decay as a power-law[1].

The X-ray scattering experiments were performed by groups at the University of
California, Santa Barbara (UCSB)|[26, 28, 29] and the Munich Technical University[3,
33]. Both groups mixed cationic liposomes with linear DNA in pure water, measured
the scattering function at the isoelectric point, and tuned the mass ratio of neutral
to cationic lipid v = mg/m, to change the structural parameters of the complexes.
Since

L _my+mg  my

D= = B (14, (1.1)

where m_ is the mass of DNA, v and L/D can be varied without moving away



from the isoelectric point, m, /m_ = const. However, the two groups used different
cationic and neutral lipid species and performed the experiments in different temper-
ature regimes. For instance, the UCSB group studied the high-temperature regime
where the complexes are less ordered, and the Munich group studied a wide range
of temperatures including the low-temperature regime where the complexes are more

ordered because thermal fluctuations and topological defects are suppressed.

1.3.1 High-Temperature Regime

We first discuss the X-ray scattering experiments performed at room temperature by
the UCSB group. These researchers used liposomes composed of cationic DOTAP
(dioleoyl-trimethylammonium-propane) and neutral DOPC (dioleoyl-

phosphatidylcholine). The cationic liposomes had a charge density o = e/ 100A2% and
a bilayer thickness of 8,, ~ 40A. Their main result is summarized in Fig. 1.1 obtained
from Ref. [28], which shows four structure functions with L/D decreasing from top
to bottom. Two types of peaks are found in each I(g): one type is narrow and oc-
curs at qoo, = 27n/a, where n is an integer and a ~ 65A is the lamellar spacing;
the second type is broad, has fewer reflections, and its primary reflection occurs at
go = qpna = 27/d, where d is the spacing between DNA molecules. The lamellar
peaks are quasi-Bragg peaks corresponding to 3D smectic ordering of the lipid bilay-

ers. However, the lineshape of these peaks differs significantly from the standard 3D
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Figure 1.2: Schematic representation of CL-DNA complexes. Parallel strands of DNA
form 2D smectic lattices with lattice spacing d in galleries between lipid bilayers with

spacing a. Charged and neutral lipid heads are, respectively, shaded and unshaded.
DNA strands are aligned parallel to the x axis and the y axis is normal to the lipid

planes.

smectic Caillé form[1] because the bending rigidity of the lipid bilayers is anisotropic,
i.e. the bending rigidity is greater along the direction of the DNA molecules[28]. The
broad DNA peaks imply that there are divergent positional fluctuations and that the
DNA molecules are confined to two dimensions.

The X-ray scattering results suggest the following picture for the internal struc-
ture of DNA-lipid complexes. The lipids form bilayer membranes that stack in the
lamellar structure shown in Fig. 1.2. In the galleries between lipid bilayers, parallel
DNA strands are arranged on one-dimensional lattices with spacing d. The lamellar
spacing a is the sum of the membrane thickness §,, and a water gap J,, between two

neighboring bilayers. 4,, ~ 40A was determined from X-ray scattering in the absence



of DNA. Thus, the water gap 6,, = 25A is large enough to accommodate a single DNA
molecule with 2rpy4 = 20A and a hydration layer. The peaks in I (¢) corresponding
to the lamellar spacing are relatively insensitive to changes in the mass ratio of neu-
tral to cationic lipid v. However, the DNA spacing increases (go decreases) linearly
with v in the range 25A< d < 60A. d scaling with v is consistent with the constraint
of charge neutrality of the complex, i.e. DNA molecules spread out as cationic lipids
become more dilute.

The UCSB group first attempted to fit the structure function to a collection of
decoupled 2D smectics. The DNA strands within each gallery form a 2D smectic
liquid-crystal with periodic positional order along the z-direction and fluid-like order
in the z-direction. The harmonic free energy for a collection of 2D smectics with

vanishing correlations in the y-direction is
1
F= 33 [ dr [Ba@.uz) + Ka(@2u)?]. (1.2)

where B, is the compression modulus,

TE,

Ky, = —F
27 94

(1.3)

is the bending modulus, and u?(r) is the z-displacement of the molecule in gallery
n with in-plane position r = (z,2) . A term proportional to (9,u™)? is missing from
Eq. 1.2 because a constant J,u’ corresponds to a uniform tilt of the 2D smectic

layers, and uniform rotations do not cost energy. Note that this free energy does not
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couple fluctuations of the bilayers to z-displacements of the DNA columns and does
not couple z-displacements of DNA columns in different galleries.
From Eq. 1.2, one can calculate the density-density correlation function in real
space
S(r) = exp [igo(ud(r) — ud(0))] (1.4)
and then Fourier transform to find the structure function. In the harmonic approxima-
tion, S(r) = exp[—g¢3gu(r)], where the position fluctuations g, (r) = 5((ud(r)—u2(0))%)

are calculated from equipartition. We find

d’q 1 — cos|[q- 1]
W) = T 1.
lr) (@) Bag? + Kaa} =
T |l

2—_327'(')\

AMz|] 2V Az 2,/A|z|

where A = {/K,/By. Note that in two dimensions, mean-square displacement fluc-
tuations diverge as a power-law with system size, and thus the correlation function

is short-ranged. To see this explicitly, set z = 0 in the above equation. In this case,

S(z,0) = exp[—x/&] with & = AByd?/7?T. Also, when z = 0 5(0, 2) = exp[—y/2/&,]

Byd? \’

Correlations are stronger in the z-direction due to the periodic positional order.

with

The prepared samples were not single crystals and consisted of many subdomains

with randomly oriented smectic layer normals. Thus, a powder-average over the angle



11

¢ in the zz plane was necessary. The 2D powder-averaged structure function for this

model is given by

1 d ; 5 2,272
Ig) = o [ do [ dPrS()eanodre i, (1.7)

= or -7
where L is the average size of a subdomain and q = (g,,¢,). The Gaussian factor,
exp[—r?72/L?], provides a finite-size correction that disfavors subdomains with size
greater than L. The fitting parameters d, L, and By were then used to fit Eq. 1.7 to
the DNA peak. However, Eq. 1.7 did not fit the data. When the theoretical curves
were forced to match the data on the left side of the peak, the fitting functions were
significantly larger than the data on the right side of the peak.

To obtain a better fit, interactions between 2D smectic lattices were required.
Thus, they introduced exponentially decaying positional correlations between 2D
smectic lattices in neighboring galleries. In addition, a cylindrical form factor was
used to account for the finite radius of DNA. With the previous three fitting param-
eters and &, the correlation length in the y-direction, a reasonable fit was obtained.
They found that L ~ 1000A, and the domain size did not vary systematically with
d. In addition, B, was in the range 107! to 10-27'/A?, decreased with increasing d,
and obeyed the relation

(1.8)

The O(1) proportionality factor is obtained by fitting to the X-ray scattering data.

This expression for the compression modulus was derived previously in Ref. [28]
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and includes both the electrostatic repulsion of the DNA rods and the pressure
of condensed counterions. p a~ 4.4A is an effective radius for the DNA strands,
lg = /eI’ ~ TA is the Bjerrum length, and € ~ 80 is the dielectric constant of
water. Thus, both the DNA bending and compression moduli can be obtained from
X-ray scattering experiments on DNA-lipid complexes.

The correlation length perpendicular to lipid bilayers, &,, increased with d in
the range 10 to 60A but was always less than the lamellar spacing @ = 65A. This
implies that positional correlations between DNA molecules in neighboring galleries
are extremely weak. Thus, a model with strong orientational and weak positional
correlations between 2D smectic lattices in neighboring galleries may also yield a
better fit compared to the one obtained using the decoupled model. A model with
strong orientational and weak positional correlations will be discussed extensively
in Ch. 3. Positional correlations between DNA molecules in neighboring galleries
increase as the temperature decreases. At sufficiently low temperatures, a columnar
phase forms in which there is a nonzero shear modulus that prevents one lattice of
DNA molecules from shifting relative to neighboring lattices. In fact, a phase with
centered rectangular symmetry in the yz plane was found in the low-temperature
experiments on CL-DNA complexes performed by the Munich group, and these are

described below.
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1.3.2 Low-Temperature Regime

The Munich group studied mixtures of calf thymus DNA and cationic liposomes in
pure water in the temperature range 15 to 55°C[3]. The cationic liposomes were
composed of neutral DMPC and cationic DMTAP. The Munich group replaced the
dioleoyl with dimyristoyl lipids; the dimyristoyl lipids undergo a chain order-disorder
transition from the L¢ to the LG phase as temperature is increased[33]. They found
that DNA and cationic liposomes self-assembled into liquid-crystalline aggregates
throughout the temperature range. To investigate the internal structure of the com-
plexes, they measured the small- and wide-angle X-ray scattering intensity at the
isoelectric point of the complexes as a function of temperature and the mass ra-
tio of neutral to cationic lipid. They obtained the spacing between DNA molecules
from small-angle scattering. From the wide-angle scattering, they obtained the much
smaller spacing between lipid molecules. Representative structure functions for the
low- and high-temperature regimes are shown in Fig. 1.3. The structure function at
55°C reproduces the results from the UCSB experiments. Lamellar peaks occur at
doon = 27n/a and a single, diffuse DNA peak occurs at gy = 27/d. Thus, they con-
firmed that DNA strands are found in the galleries between lipid bilayers and within
each gallery the DNA strands are situated on a one-dimensional lattice with spacing
d. At high temperatures, neighboring lattices are positionally decoupled, and a model

composed of weakly-coupled 2D smectics fits the scattering function.
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Figure 1.3: The small- and wide-angle X-ray scattering intensities from the CL-DNA
complexes studied in Ref. [3]. The top and bottom curves show the X-ray scattering
intensities at 15°C and 55°C respectively. The sharp quasi-Bragg peaks indicate the
well-defined lamellar structure. The arrows highlight the much broader peaks from the
intercalated DNA strands. The low-temperature scattering intensity possesses several
DNA peaks while the high-temperature scattering intensity possesses a single, broad
DNA peak. The wide-angle scattering shows that the L phase with strong positional
correlations between lipid molecules in each layer forms at low-temperature, whereas
the L¢, phase with much weaker positional correlations forms at high-temperature.
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The low-temperature (15°C) small-angle scattering intensity from the intercalated
DNA strands differs from the high-temperature scattering intensity. Multiple DNA

peaks occur, and they are not positioned at integer multiples of gy. Instead, the peaks

= (1) < (£) 19

where h and £ are integers and h + k is even. In Fig. 1.3, the ¢; 1, ¢1 3, and ¢; 5 peaks

can be indexed to

are present. These peaks imply that the DNA molecules are located on average on
a centered rectangular lattice in the yz plane with lattice vectors a; = ay + d/22
and ap = —ay + d/22. (See Fig. 1.2.) The DNA spacing d changed with v, while
the lamellar spacing ¢ ~ 73A remained constant. The low-temperature wide-angle
scan showed that short-range positional order in the lipid bilayers accompanied the
formation of the phase with centered rectangular symmetry. The wide-angle peak
yields [ = 4A for the average in-plane separation between lipid molecules.

The phase with centered rectangular symmetry can be distinguished from a phase
with rectangular symmetry and lattice constants a and d in the y- and z-directions
since the structure function from the latter would possess a (1,0) peak. Electro-
static interactions favor the centered rectangular arrangement since it maximizes the
separation between DNA strands in adjacent galleries.

Relative displacement fluctuations between two DNA strands in neighboring gal-

leries increase with temperature and cause the centered rectangular peaks to become
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weak and diffuse. At high temperatures, it may be possible for the positions of
strands in neighboring galleries to become completely uncorrelated. If the positions
of strands in neighboring layers are uncorrelated, the centered rectangular peaks in
the structure function are smeared in the g,-direction, and instead maximum intensity
occurs at q = hqyz. However, at intermediate temperatures where there are nonva-
nishing positional correlations between strands in neighboring galleries, one would
expect centered rectangular peaks in the structure function at qp; with h + k even.
More work must be done to determine whether the lowest order DNA reflection in
the high-temperature X-ray scattering data[28, 29] is located at ¢; or ¢i 1. At the
largest DNA separations, the (1,0) and (1,1) peak positions differ by 10 per cent.

Only three DNA peaks (g1,1, ¢1,3, and ¢ 5) are discernible in the low-temperature
structure function in Fig. 1.3. However, in a true columnar phase, one expects many
Bragg reflections. One possible cause for the small number of reflections is the DNA
form factor which decays rapidly with g, x7pna. Thus, peaks with £ > 5 are sup-
pressed. Also, visible peaks have k > h because 2a > d, and thus peaks with large h
are extinguished before those with large k.

Short-ranged positional order in the yz plane also leads to the broadening of the

low-temperature peaks. Thus, Artzner, et al. assumed that the correlation function

S(r,y) = (exp(igo[us(r, y) — u.(0)])) = exp[—h*(y/&, + 2/£.)] (1.10)

decayed exponentially in both the y- and z-directions. In the above expression, &,
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and &, are the in-plane and out-of-plane correlation lengths, and u,(r,y) is the con-
tinuum version of u%/%(r). They further assumed that the correlation function does
not depend on the index k since the peak widths were independent of k. With these
assumptions, the Fourier transform of the correlation function becomes a product of
two Lorentzians. They then powder-averaged the single-crystal result and found that
the structure function I(g) is a sum of Lorentzians with widths that depend on h?
and the correlation lengths. &,, &,, and a were then used as fitting parameters to fit
I(q) to the scattering data. They found that &, ~ 250A was an order of magnitude
smaller than £,, and thus positional correlations are stronger in the z-direction. Fur-
ther analysis is required to determine whether the low-temperature X-ray scattering
data is evidence for a nematic lamellar phase or the new sliding columnar phase dis-
cussed in Ch. 3. (See Sec. 3.5.2 for a calculation of the structure function from the

sliding columnar phase.)

1.4 Phase Diagram

In this section, a possible phase diagram for CL-DNA complexes as a function of
temperature is discussed. We will focus on lamellar phases where DNA molecules
are located in galleries between lipid bilayers. We assume that fluctuations of the
lipid bilayers are small, and thus the bilayers confine DNA molecules to well-defined,

equally-spaced planes. The various lamellar phases are distinguished by the strength
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of the correlations that exist between DNA strands in neighboring galleries. For
instance, in a columnar phase DNA strands form a 2D lattice in the yz plane, and
the positions of DNA in neighboring galleries are strongly correlated. As temperature
increases, thermal fluctuations destroy the positional correlations between DNA in
neighboring galleries, and the decoupled 2D smectic phase is the theoretical limit in
which no correlations exist.

As discussed in Sec. 1.3.1, the high-temperature scattering intensity from CL-
DNA complexes did not fit the decoupled 2D smectic model. In order to obtain a
reasonable fit, weak correlations between DNA strands in neighboring galleries were
required. In addition, the low-temperature scattering intensity in Fig. 1.3 did not
display Bragg peaks that are expected for a true columnar phase. Instead, the ¢ i,
¢1,3, and ¢; 5 peaks were smeared in the g,- and g,-directions. This diffuse scattering
indicates that DNA displacement fluctuations are large, and positional correlations
between DNA strands in neighboring galleries are weak. The X-ray scattering data
from both high- and low-temperature regimes suggest that there is an intermediate
phase in CL-DNA complexes with weak positional correlations between neighboring
2D smectic lattices. One possibility is the sliding columnar phase with weak positional
but strong orientational correlations between neighboring 2D smectic lattices. The
weak positional correlations allow lattices to shift relative to each other without energy

cost. The possible phases for CL-DNA complexes with 2D smectic order in the zz
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plane are listed below.

1. Columnar Phase: In this low-temperature phase, the positions of DNA strands

in neighboring 2D smectic lattices are strongly correlated, and DNA are situated
on a 2D crystal lattice in the yz plane. This phase has a nonzero shear modulus,
and thus DNA strands in adjacent galleries cannot shift relative to each other

without an energy cost.

2. Sliding Columnar Phase: This intermediate phase is characterized by strong

orientational but weak positional correlations between neighboring 2D smectic
lattices. The orientational coupling is sufficiently strong that DNA in different
galleries point on average in the same direction. This phase differs from the
columnar phase in that it does not have long-range 2D crystalline order in the
yz plane, and its shear modulus for sliding 2D smectic lattices relative to each

other is zero.

3. Decoupled 2D Smectic Phase: In this phase there are no correlations between

2D smectic lattices in different galleries. In Sec. 2.3, we find that this phase

does not exist at the longest lengthscales.

Less ordered phases occur when topological defects melt the 2D smectic lattices
and destroy the in-plane positional order along z. After the 2D smectic lattices melt,

DNA strands in each layer form a nematic phase with in-plane orientational order.



20

Even in the nematic phase, however, there are short-range positional correlations and
diffuse peaks occur in the structure function at the reciprocal lattice vectors qp .
If the nematic directions in neighboring layers are strongly correlated, a nematic
lamellar phase forms with true long-range orientational order. In contrast, a sliding
nematic lamellar phase forms when there are only weak orientational correlations
between layers, and nematic directions vary from layer to layer. The properties of

the various nematic phases are summarized below.

1. Nematic Lamellar Phase: In this phase, the nematic directions in each gallery
are strongly correlated, and the system displays true three-dimensional long-

range nematic order.

2. Sliding Nematic Lamellar Phase: Each layer has in-plane nematic order, how-

ever, the nematic directions in neighboring layers are only weakly correlated

and can rotate relative to one another without energy cost.

3. Isotropic Lamellar Phase: In this phase, in-plane orientational order is de-

stroyed, DNA strands within a gallery no longer point on average along a com-

mon direction, and each layer behaves as an isotropic fluid.

Note that the phase sequence nematic lamellar — sliding nematic lamellar is anal-
ogous to the phase sequence columnar — sliding columnar. The former sequence

proceeds from coupled to decoupled in-plane orientations and the later proceeds from
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coupled to decoupled in-plane positions. Properties of the sliding nematic lamellar
phase, in particular the stability of the phase in the presence of vortex excitations,

are discussed in Ref. [22].

1.5 Survey of Thesis

The bulk of the thesis will focus on deriving the elasticity theory and determining the
structural properties of the new sliding columnar (SC) phase of matter. Ch. 2 begins
by proposing a model for CL-DNA lipid complexes; the model is a stack of interacting
2D smectics. In Sec. 2.3, we couple the positions and orientations of nearest-neighbor
2D smectic lattices and show that the sliding columnar phase, not the decoupled 2D
smectic phase, exists at the longest lengthscales. Then in Ch. 3, we determine the
behavior of the sliding columnar phase in the presence of thermal fluctuations. For
instance, in Sec. 3.2 we find that the mean-square displacements in the SC phase
display unusual quasi-two-dimensional behavior and diverge as In? L, where L is the
characteristic system size in the zz plane. The SC displacement fluctuations are not
as large as 2D smectic displacement fluctuations that diverge as a power-law with
system size, however, thermal fluctuations still destroy true long-range positional
order. The behavior of the displacement fluctuations implies that the correlation
function decays as S(r,0) ~ exp[—In?7], where r is the in-plane separation. In

Sec. 3.3, we investigate the second-order transition from the columnar to the sliding
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columnar phase. We show that there is a decoupling transition temperature, 7},
above which the positional coupling between 2D smectic lattices is irrelevant and the
sliding columnar phase is stable and below which the positional coupling is relevant
and the columnar phase is stable.

In Ch. 4, we derive the nonlinear elasticity for the sliding columnar phase. The ro-
tationally invariant theory for the sliding columnar phase contains anharmonic terms
that lead to renormalizations of the SC elastic constants similar to the Grinstein-
Pelcovits renormalization of the elastic constants in smectic liquid-crystals[11]. We
calculate these renormalizations at the critical dimension d = 3 and find that the elas-
tic constants scale logarithmically with wavenumber ¢ at long wavelengths. We use
dimensional regularization rather than a hard-cutoff renormalization scheme because
ambiguities arise in the one-loop integrals with a finite cutoff as shown in App. E.

Topological defects in the sliding columnar phase are discussed in Ch. 5. The en-
ergy of an isolated edge dislocation and pairs of dislocations in different layers in the
sliding columnar phase scales logarithmically with system size as shown in Sec. 5.2.
Thus, the sliding columnar phase will Kosterlitz-Thouless melt to a nematic lamellar
phase above an in-plane dislocation unbinding temperature Txr. Above Tk, edge
dislocations within each layer renormalize the compression modulus B to zero and
destroy the smectic order in the xz plane. Hence, the necessary condition for the

existence of a stable sliding columnar phase is Ty < Tx7. In Sec. 5.4, we show that
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T; > Tkt for the sliding columnar model with orientational interactions between only
nearest-neighbor lattices. Thus, the sliding columnar phase with nearest-neighbor in-
teractions is unstable to the proliferation of edge dislocations, and the phase sequence
proceeds from the columnar phase to the nematic lamellar phase as temperature is
increased. However, we will show in a forthcoming publication [23] that if orienta-
tional interactions between further-neighbor lattices are included, 7; can be tuned
below Txr. When Tt > Ty, there is a temperature window Ty < T' < Tgr in which
the sliding columnar phase is the thermodynamically stable phase, and the phase
sequence proceeds from the columnar phase to the sliding columnar phase and then
to the nematic lamellar phase as temperature is increased.

We conclude in Ch. 6 by estimating several crossover lengths. The density-density
correlation function S(r) for a three-dimensional stack of 2D smectic lattices dis-
plays different functional forms depending on the magnitude of the in-plane sepa-
ration r. The crossover lengths delineate the different regions and determine where
the crossovers from harmonic 2D smectic behavior to nonlinear 2D smectic behavior
and 3D sliding columnar behavior occur. Knowing these characteristic lengthscales
is important in determining whether sliding columnar behavior occurs in CL-DNA

complexes.



Chapter 2

Theoretical Model of Cationic Lipid and DNA Complexes

2.1 Interacting 2D Smectics

The X-ray scattering experiments on CL-DNA complexes discussed in Ch. 1 showed
that DNA and cationic liposomes form a stacked lamellar structure with alternating
layers of DNA and lipid bilayers. We therefore first consider a model in which idealized
DNA columns are confined to galleries between lipid bilayers in a perfect lamellar
structure without dislocations or other defects. The lipid bilayers are parallel to the
xz plane, and the DNA columns are aligned on average parallel to the z-axis as shown
in Fig. 2.1. In addition, within each gallery the DNA strands form a 2D smectic lattice
with spacing d = 27/qy. We assume initially that the lipid bilayers are perfectly
flat and do not fluctuate. In this case, the long-wavelength properties of the DNA
lattice in gallery n are described by the displacements u”(r) along the z-direction,
where r = (z, z) is a position in the xzz plane. The Hamiltonian for the complex is

then a sum of independent elastic energies for each gallery and terms coupling the

24
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Figure 2.1: Picture of the idealized lamellar structure found in CL-DNA complexes.
DNA columns are sandwiched between planar lipid bilayer sheets. The bilayer planes
are stacked in the y-direction with spacing a. The DNA columns are oriented in the
x direction, and, within each layer, the columns are separated by d.

displacements and angles in neighboring galleries: H = H® + 3, (H® + H?) with

Hel
%9

%u

n

where 6" ~ 0,u?} and

= 33 [y + ke, 21)
= —V"/d2r cos[2(8" — 6™,

= —V“‘/dQT cos[qo(u” — u™™)],

z

uz, = 0:uf — [(0zuf)” + (0:u7)?]/2 (2.2)

Rz

is the nonlinear strain for the 2D smectic lattice in gallery n. By and K, are, respec-

tively, the 2D compression and bending moduli. The coupling of displacements in

nearest-neighbor galleries arises from electrostatic repulsions between DNA strands,
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and thus the 2D shear modulus in the yz plane is proportional to A?/d, where ) is the
linear charge density of DNA. In addition, electrostatic repulsions favor a centered
rectangular lattice in the yz plane with strands in a given layer shifted by d/2 along z
relative to those in neighboring layers. This arrangement is favored since it maximizes
the separation between DNA strands in adjacent layers. The origin of the orienta-
tional coupling is steric interactions, i.e. strands can fluctuate more freely if they are
aligned and 0" ~ #"*!. Since the DNA strands are invariant under " — " + , the
orientational interaction is a function of 2(™ — " *1).

The particular equilibrium phase that is favored depends on the relative values of
By, Ky, V¥, and V?. At low temperatures, where thermal fluctuations and topological
defects are suppressed, the positional coupling V,, and the compression modulus Bs
are large and DNA strands are situated on a 2D lattice in the yz plane. Note that
long-range positional order in 2D insures that the DNA strands also possess long-
range orientational order. As temperature is increased, both thermal fluctuations and
topological defects increase positional disorder. For instance, thermal fluctuations can
reduce the positional coupling V,, to zero above a critical decoupling temperature 7}
while leaving By and V? nonzero. This positionally decoupled phase is termed the
sliding columnar phase because neighboring 2D smectic lattices can shift relative to
one another without energy cost. However, since V? is finite, there is an energy cost for

rotating one lattice of columns relative to neighboring lattices. Topological defects



27

also increase positional disorder. At temperatures above the in-plane dislocation
unbinding temperature Tx7, edge dislocations cause By — 0, and melt the 2D smectic
lattices. V" is also zero since there is no periodic positional order along z. However,
K, is nonzero and a nematic lamellar phase forms when the in-plane nematic order
is strongly correlated from layer to layer.

We begin the investigation into the phase behavior of the Hamiltonian in Eq. 2.1
by assuming that V¢ and V* are small. The expectation values of the positional
and orientational energies with respect to the decoupled 2D smectic Hamiltonian are
then calculated. The interaction energies are irrelevant and can be ignored if their
expectation values scale to zero in the limit of infinite system size. The interaction
energies are relevant and cannot be ignored if their expectation values scale to infin-
ity in the limit of infinite system size. Before we determine whether the positional
and orientational energies are relevant or irrelevant, the fluctuation behavior of 2D

smectics should be reviewed.

2.2 Review of 2D Smectic Fluctuations

At lengthscales less than the nonlinear lengths

3/2 l2
I, = d1,=2= 2.3
TvVB, ) (2:3)

with A = /Kj3/Bs, 2D smectic fluctuations are described by the linearized elas-

tic Hamiltonian with the nonlinear strain replaced by the linear strain 0,u7[9]. At
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lengthscales longer than [, and [,, the nonlinear terms in the rotationally invariant
strain (Eq. 2.2) are comparable to the linear term and lead to renormalized bending
and compression moduli K>(q) and Bs(q) that respectively diverge and vanish at
small wavenumber gq. Note that the nonlinear lengths [, and [/, decrease with increas-
ing temperature, and thus nonlinearities become important at high temperatures.
In both the harmonic and nonlinear regimes, the Fourier transformed displacement

correlation function in each gallery can be expressed as

T T

Gla)= By(a)? + K>(a)gt B,

126,"Q(a@/3), (2.4)

where ¢, , = ¢;,,0;, and

@, "Q(q:/Ty) ~ (2.5)

c];"/“ G, = 0.

The scaling form of the correlation function implies that Ks(gs,q, = 0) ~ ¢, **" and
By(gz = 0,q,) ~ ¢;2t"/#. In the harmonic regime where g, ,l,, > 1, Ky(q) = K,
and By(q) = B, are constants, and the scaling exponents are n = 4 and g = 2. In
the anharmonic regime g, ./, , < 1, the scaling exponents n and p can be calculated
exactly by mapping the 2D smectic model with thermal fluctuations onto the KPZ
model in 1+ 1 dimensions [9]. The exponents in the anharmonic regime are n = 7/2
and p = 3/2.

The mean-square displacement fluctuations diverge in both regimes with lengths
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L, and L, of the sample in the zz plane:

()= [ biGla) = VL2 PL ), (2:6)

where u, = u”, 2a = 7 —1— g = 1 in both regimes, zm = Ly /1o fV(0) =
const., and f{V)(w) ~ w?*/* as w — oo. This implies that the Debye-Waller factor
(expligou,])*> = exp[—¢3(u?)] = 0 in the limit of infinite system size, and there is
no long-range positional order at any finite temperature in a 2D smectic, even when
there are no dislocations.

Since the mean-square displacement fluctuations diverge as a power-law with sys-

tem size, the displacement correlation function

gu’ (x) = %([uz(r) —w(0)) = N[z £ ([21/ |z ) (2.7)

diverges algebraically with in-plane separation r. In Eq. 2.7, ¥ = z/l,, Z = z/l,, and
the scaling behavior of f{?)(w) is similar to that of f{!(w).
However, fluctuations in § = J,u, are nondivergent due to an additional factor of

¢2 in the numerator of Eq. 2.6:

)= [ ot ot = (1) sk 28)

where A, = 27/b, b ~ 4A is the spacing between DNA nucleotides, A, = 27/d,
/~\I,z = Agls, and f5(0) = const. and fy(w) ~ w?®/# for large w. Finite angular
fluctuations imply that (cos §) = exp[—(#?)/2] is nonzero, and thus there is long-range

orientational order in 2D smectics[31].
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2.3 Relevance of the Translational and Orientational Couplings

The coupling energies HY and H® are irrelevant if they tend to zero at large L, and L,
and relevant if they diverge with L, and L,. The expectation value of the positional

coupling with respect to the decoupled state with V* = V% =0 is
(Hp) = —V"LyL(cos[qo(u; — ui™)]) = V"L, L, exp[~qp(u)]  (2.9)
= —VUL,L, exp[—g@2N*L* f{V(L,/IM)]. (2.10)
The positional coupling tends to zero exponentially for both the harmonic and non-

linear 2D smectic elasticities, and thus is irrelevant. However, the expectation value

of the orientational coupling

(H®Y = —=VOL,L,{cos[2(6" — ")) = =V L, L, exp [—4 (?)2 fo(A, /AR (2.11)

diverges with L, and L, since the angular fluctuations are finite. If edge dislocations
are allowed in the 2D smectic lattices, {cos[2(" —#"T1)]) decays algebraically at large
L, and L,[31], and (H?) may be relevant or irrelevant. If we ignore dislocations
for the moment, the angular coupling is relevant, and the decoupled 2D smectic
Hamiltonian will flow to a new long-wavelength Hamiltonian with angular but not

positional coupling between neighboring layers.



Chapter 3

Sliding Columnar Phase

In the previous chapter, we showed that the decoupled 2D smectic Hamiltonian flowed
to a new Hamiltonian with relevant orientational but irrelevant translational couplings
between neighboring 2D smectic lattices at the longest lengthscales. This Hamilto-
nian describes a new phase of matter called the sliding columnar (SC) phase in which
neighboring 2D smectic lattices are able to shift relative to each other without energy
cost. The goal of this chapter is to study the behavior of the sliding columnar phase
in the presence of thermal fluctuations. We will determine whether the translational
coupling between 2D smectic lattices is relevant or irrelevant with respect to the new
sliding columnar Hamiltonian that includes strong orientational interactions between
neighboring lattices. We show that when dislocations are ignored, there is a tem-
perature range where the translational coupling is again irrelevant, and the sliding
columnar phase is the stable equilibrium phase. We also find that the SC correlation

function has unusual spatial dependence; it decays as exp|— In? r] for in-plane separa-
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tions and as exp[—y/&,] for out-of-plane separations[24]. Dislocations and the possi-
bility of a melting transition from the sliding columnar phase to a high-temperature

nematic lamellar phase will be examined in Ch. 5.

3.1 Hamiltonian

The SC phase is characterized by strong orientational but irrelevant positional correla-
tions between nearest-neighbor 2D smectic lattices. The SC Hamiltonian is obtained

from Eq. 2.1 by assuming that V* < V? and then expanding cos[2(6" — §"1)] about

om = gnti:

Hse = Za/dzr [B(u?z)2 + K(02u™)* + %[%(u? — "] (3.1)

2

The first two terms in Eq. 3.1 are the compression and bending energies for each 2D
smectic lattice with B = By/a, K = Ks/a, and u,, is the nonlinear strain defined
in Eq. 2.2. The third term, with a rotation modulus K, = 4V%., gives the energy
cost for rotating a given 2D smectic lattice relative to nearest-neighbor lattices. Note
that the self-consistent field solution K, = V%(cos(26"))? = V%aexp[—4((0")?)],
where the angle fluctuations are given by Eq. 2.8, differs only by a multiplicative
constant. The continuum version of this model is obtained by taking y = na and
u? — utt = adyu,[20, 21].

The sliding columnar Hamiltonian is invariant under transformations of the form

uy (r) = uz(r) + fo, (3.2)
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where f, is a function only of the layer index n. Since there are no terms in the

n+1

n+1)2 | shifting neighboring lattices relative to

SC Hamiltonian proportional to (u? —u
one another by an arbitrary amount does not cost energy. This symmetry permits
additional terms in Eq. 3.1 proportional to K,,[0,(u? — u?™)]* and K,.(9,0,u”)?.
The K, term measures the energy cost associated with variation in the DNA lattice
spacing from layer to layer, and the K,, term measures the energy cost associated
with the variation in the orientation with strand number of DNA strands within a
layer. These terms are, however, subdominant to the compression energy B(u?,)? and
we will ignore them in what follows. (In other words, the K,, and K,, terms have
two more z-derivatives than the compression energy.) Nevertheless, it is important to

keep the K,, and K, terms when discussing the Kosterlitz-Thouless transitions from

the sliding columnar phase to the columnar phase and the nematic lamellar phase.

3.2 Displacement Fluctuations

Two important lengthscales can be obtained from Eq. 3.1 by comparing the orien-
tational interaction energy with the 2D smectic compression and bending energies.

The lengthscales
=" and = 2 (3.3)

with p, = \/K,/K and A\ = \/ K /B, separate two-dimensional from three-dimensional

behavior. At lengthscales within a gallery less than z* and z*, the 2D compression
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and bending energies are large compared to the orientational interaction, and the
DNA lattices behave like independent 2D smectics with displacement fluctuations
and correlation function given in Egs. 2.6 and 2.7 respectively. On the other hand, at
lengthscales greater than x* and z*, the orienational interaction is significant, and 3D
sliding behavior occurs. Note that if [, , < 2%, 2%, the system proceeds from harmonic
to nonlinear 2D smectic behavior and then to 3D sliding behavior as a function of
increasing lengthscale. If on the other hand I, , > z*, 2*, the system proceeds from
harmonic 2D smectic to 3D sliding behavior as a function of increasing lengthscale,
and nonlinear 2D smectic behavior is not seen.

In the SC harmonic regime, u,, can be replaced by 0,u,, and the Fourier trans-

formed SC Hamiltonian takes the form

v/a dgy n 2 2 2
M=y [ G [ o B+ Ko+ Kdiptan)] (@ G4

where p(u) = 2(1 — cos[u]) /u?,

— /a y ’ L1 i(qL-r+g )
n _q —q A ‘r+qyna
U’z (I‘) / Ja ( )26 U,Z(Q), (35)

and q; = (¢z, ¢,). The g, -integrals have ultraviolet cutoffs A, = 2r/d and A, = 27 /b,
where b is the spacing between DNA nucleotides. The displacement fluctuations,
correlation functions, and dislocation energies will in general depend on the ultraviolet
cutoffs. In forthcoming calculations, we set A, , — oo when the calculated quantities

have well-defined limits. Otherwise, the dependence on A, , is displayed.
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The displacement fluctuations in the sliding columnar phase are obtained by in-
tegrating the SC propagator

T
"~ Bg? + K¢t + Kyq2¢2p(gya)

G(a) (3.6)

over all g-space. Since the SC phase has positional order in only one spatial dimension,
the displacement fluctuations diverge with system size L. {((u”)?) in the SC phase
behaves quasi-two-dimensionally and diverges as In? L. Thus, SC fluctuations are less
divergent than 2D smectic fluctuations that scale as a power-law with system size but

more divergent than true 2D fluctuations that scale logarithmically with system size.

We find that the displacement fluctuations

¢ (A 2 %1n2 [CYsz/Z*] when L, — oo, Ly ~ L,
) (3.7)

()= (o
In? [8L,/z*] when L, — 00, L, ~ L,
are anisotropic and depend on the relative sizes of L, and L,. In the above expression,
a, is a number, L, > 2*, L, > x*, and terms that do not diverge with system size
have been dropped. The calculation of the fluctuations in the limit L, — oo and
L, ~ L, is detailed in Appendix A.

In contrast, the mean-square angular fluctuations ((#")?) are finite. This implies

that the sliding columnar phase possesses three-dimensional long-range orientational

order, and thus DNA strands in each layer point on average in the same direction.
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3.3 Relevance of the Translational Coupling

In this section, we determine whether the translational coupling H" is relevant or
irrelevant with respect to the sliding columnar Hamiltonian. In Chap. 2, we found
that the mean-square displacement ((u? — u%)?) = 2(u?) taken with respect to the
decoupled 2D smectic Hamiltonian diverged as a power-law with system size, and thus
the translational coupling was irrelevant at all temperatures. However, in this section
we show that the strong orientational couplings present in the sliding columnar phase
n 0

— u%)?). Instead of diverging

mollify the divergent mean-square displacements ((u? )

as a power-law, they diverge logarithmically with system size, and hence there is a
temperature range in which the translational coupling is relevant.
To calculate the expectation value of the translational coupling, we must first

evaluate the position correlation function

1 de d*q. 1 — eilaLrtgyna)
gu r’na = — ’U,Z r — / / 38
(r,na) = S([uz(r) (2m)? Be? + Kq} + Ky2¢2p(qya)’ (38)

The position correlation function can be decomposed into a term ¢{"(0,na) that
diverges with system size L, and a term ¢{?(r, na) that does not diverge with system

size:

g(r,na) = g7 (0, na) + g (r, na). (3.9)

The divergent term is isolated by adding and subtracting cos(g,na) in the numerator
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of Eq. 3.8. We find (with A, — o0)

d3q 1 — cos(gyna)
(0,na) = T/ Y
(0 ma) (27)® Bq; + Kq; + Kyq3q;p(gy0)
T

= ————5,(0)1In [Ay (w) %]

272, /BK,

where A, depends on w = Ayz* with A,(c0) = e®*# the constants o and 3 are given

, (3.10)

by
Ldt [ Sy(t)
= — -1 3.11
“ /otlSn(O) ] (3.11)
% dt S, (t)
= — 12
5= T o (3.12)
and
/cilzw??g (3.13)
t + U
The nondivergent contribution to g,(r,na),
d3q 1 — cos(gyx)e'=*
(2 :T/——— z 3.14
9y (I‘,na) (27’(’)3 COS(QynCL) qu T Kq% + qugqu(q:ya)’ ( )

contains all of the r dependence. When only in-plane separations are considered, n =
0, ¢{V(0,0) vanishes, and g,(r,0) = ¢ (r,0). In summary, the position correlation
function g,(r,na) diverges logarithmically with system size L, unless n = 0, i.e.
unless the u,’s are in the same layer.

The weak In L, divergence of the position correlation function when n # 0 enables
the translational coupling to become relevant below a critical decoupling temperature.

This result is obtained by calculating the expectation value of the translation coupling

(H") = /d r{cos[qo(u” — u?)]) = /d rexp[—q59.(0, a)] (3.15)
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with respect to the sliding columnar Hamiltonian in Eq. 3.1. Thus, the translational
coupling scales as

(H*y = =verrn0, (3.16)

where

@T AT

n(1) = W&(O) = &/TK!, (3.17)

and 2 — n(1) = 0 defines the critical decoupling temperature

&, /BK,
Ty=—Y % (3.18)

2

When T < Ty, the translational coupling scales as system size to a positive power
and is relevant. In this case, the system becomes a columnar phase at the longest
lengthscales with a nonzero shear modulus for shifting neighboring lattices relative to
each other and long-range positional order in the yz plane. In contrast, the system
flows to the sliding columnar phase at the longest lengthscales when 7" > T,;. In this
temperature range, the translational coupling scales as system size to a negative power
and is irrelevant. There is no energy cost for shifting neighboring lattices relative to
each other, and thus the sliding columnar phase is positionally disordered in the yz

plane.

3.4 Density-Density Correlation Function

In this section, we calculate the sliding columnar density-density correlation function

S(r,na) = (exp(igo[u} (r) — u3(0)])) (3.19)
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between two DNA strands with in-plane separation r and out-of-plane separation
y = na. This correlation function is relevant to recent experiments on CL-DNA
complexes because its Fourier transform is proportional to the X-ray scattering in-
tensity measured in Refs. [3, 26, 28, 29]. In the harmonic regime, Eq. 3.19 becomes
S(r,na) = exp[—qag.(r,na)], and thus g,(r,na) determines the spatial dependence

of the density-density correlation function.

3.4.1 In-plane Separations

We now discuss the novel behavior of the in-plane position and density-density corre-
lation functions, g,(r,0) and S(r,0) = S(r). gu(r,0) cannot be written in closed form
for general in-plane separations r, however, it has been calculated in the limits z = 0
and z > z* and x = 0 and z > z* in Appendix B. The results of the calculation are

summarized below[10, 24]:

2 . .
« A\ | In"[8e’z/x*|+C,  if 2=0
(.0 =5 (] (3.20)
? 1In*[32e72/2*|+ C, if z =0,
where v & 0.577 is Euler’s constant and C, and C, are constants that depend on
Ay and A, but have well-defined A,;, — oo limits. C, and C, are evaluated in

Appendix B in the A, , — oo limit. S(r) along the special directions (z,0) and (0, 2)

is obtained by exponentiating Eq. 3.20. Both S(z,0) and S(0, z) display the exotic
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exp[— In® r] behavior for large separations.

Swe—a ln2[867z/$*]’ > .’E*,
S(x,0) = (3.21)

9 9D
e 909 (wﬂo)’ AR ./1:*,

where S, = e~ is a constant and

a= % (3)2 (3.22)

is a dimensionless number. In the other direction,

S,e 3mB2e2/27] s o
S(0,2) = o

9 9p
e 909 (O,z)’ z << Z*,

where S, = ¢79%* is a constant. g2P(r) is the 2D smectic position correlation function
defined in Eq. 2.7.

Thus, at the longest lengthscales, the sliding columnar density-density correla-
tion function displays new spatial dependence. Table 3.1 lists the z-dependence of
the correlation function S(r) for three phases in the CL-DNA phase diagram: the
nematic lamellar phase, sliding columnar phase, and columnar phase. The amount
of positional order increases from the top to the bottom of the table. The nematic
lamellar phase has only short-range positional order in the zz plane, and thus S(0, 2)
decays exponentially. In contrast, the columnar phase possesses long-range positional
order in the yz plane, and S(0, z) is constant. S(0, z) for the sliding columnar phase

—alnz

decays as exp[—aIn®z] = z where « is a constant, and thus it decays faster than

any power-law. The sliding columnar phase possesses more positional order than the
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Table 3.1: The scaling behavior of the density-density correlation function S(0, z) for
phases with varying degrees of positional order. Positional order increases from top
to bottom.

Phase S(0, z)

Nematic Lamellar e

.« 7. _ 2
Sliding Columnar e~@!»"2
Power-Law F A

Columnar const.

nematic lamellar phase but less positional order than the columnar phase. Also, as
pointed out in Table 3.1, the SC phase is more disordered than a quasi-long-range

ordered 2D crystal in the xz plane which has correlations that decay as a power-law.

3.4.2 Out-of-plane Separations

We will now investigate the out-of-plane behavior of S(r,na). It was shown previ-
ously in Eq. 3.10 that g,(r,na) diverges logarithmically with system size when V" is

irrelevant. The logarithmic divergence implies that

S(r,na) = S(r)ono (3.24)

’

in the limit of infinite system size, and thus the positions of columns in neighboring

lattices are completely decoupled. However, even though V* is irrelevant, it is nonzero
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for large but finite systems. When V* is nonzero, we will show that there are short-
range positional correlations between lattices. To study these short-range correlations,

we add weak positional couplings between columns in nearest-neighbor lattices,
He= VY / d2r cos[go(u® — u™)), (3.25)
n

to the sliding columnar Hamiltonian in Eq. 3.1. When V*/T <« 1, H" is a small

perturbation to H;p = Hse + H", and

(e, na) = [ [ Dule—Heot/ T gitoluz @)=ud(O)] (=R /T gigolu? (r)—u(0)l) (3.26)
T [l | DupeHeot/T B (e=H/T) '

is calculated perturbatively in powers of V*/T. In Eq. 3.26, Dul" is the functional
integration measure for the displacement in layer m and the averages in the second
equality are taken with respect to the sliding columnar Hamiltonian in Eq. 3.1. The

_'Hu/T>

normalization factor (e has nonzero contributions even in the limit of infinite

system size, but they are independent of n. Expanding e "/ in the numerator and

neglecting the normalization factor yields

S(r,na) = Zl

r

(;/—;)p/d% RGO mz (3.27)
((expligoAu,(r1, m;r1,m1 + 1)] + exp[—igoAu,(r1, mi;r1,mq + 1)]) X
... X (expligoAuy(ry, mp; rp, my + 1)] + exp[—igoAu,(r,, my; rpm, + 1)])
x expligoAu,(r,n;0,0)]),

where differences in displacements are defined by

Au,(ry,m;re, p) = ult(r) — ub(rs). (3.28)
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We must therefore calculate the expectation value of complex exponentials whose
arguments are a series of displacement differences. Since g,(r; — ro,m — p) =
s([Au,(r1,m;re,p)]?) diverges logarithmically with system size unless m = p, all
differences must be taken between two displacements in the same layer in order to
obtain a nonzero S(r,na). This implies that at least one of the terms in the sums
over my, my, ... m, must be proportional to e~*°%: and €i%? to match the “external”
factor of eiq"[“?(r)_ug(o)], while the remaining “internal” complex exponential factors
must have as arguments differences between two displacements in the same layer.

—H*/T satisfy this condition. We neglect

Only terms with p > n in the expansion of e
the higher-order contributions and set p = n. There are n! ways of generating terms

. _ n ; 0 . .
proportional to e*%%: and e'®%: with nonzero “internal” factors, and thus

S(r,na) = (V—T> /d27"1 P e T rn)/2) (3.29)
where
(I)(rl’ REERY 3 I‘) = qg([Aug(O’ 1‘1) + Aui(rla 1'2) +--t Aug(rn’ I')]2> (330)

is the mean-square of sums of differences between displacements in the same layer
and Aul'(ry, 1) = Au,(r, m;re, m).
To determine the true n-dependence of S(r,na), we must also determine how the

integral in Eq. 3.29 scales with n. When K, is finite, the cross terms

Q= qS(AuT(rm, 1) AU (T, Trg1)) (3.31)



44

in Eq. 3.30 are nonzero, and determining the scaling of the correlation function with n
is difficult. The out-of-plane correlation function with nonzero K, will be calculated
in detail in a forthcoming publication[24]. However, when K, = 0, all of the cross
terms vanish, only the direct terms ®,,,, contribute, and

S(r,na) = (%)n / d’ry ... d°r,S(=11)S(r; —13)...S(r, — 1) (3.32)

has a simple form. An algebraic expression for S (q.,na) can be obtained by repeat-

edly applying the convolution theorem:

u

S(qu,na) = /d%e’iqrrS(r,na) = (V >n§"+1(qL), (3.33)

2T
where S(q.) = S(q.,0). We then Fourier transform Eq. 3.33 back into real space

and find

Ve " d2q—]— iqyr_(n nS|
S(I‘, TLCL) = (ﬁ) /We aL 6( 11 S(ql). (334)

This integral can be evaluated in the limit of large n using the method of steepest

descent.

1
S(0,na) ~ —e /8 (3.35)
na

decays exponentially with a correlation length

& =a <1n lV’?ﬁT( 0)D1 : (3.36)

Thus, the out-of-plane correlation function in the limit K, = 0 has short-range posi-

tional correlations. Note that correlation length is divergent for 7' < V*S(0)/2. This
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signals the onset of long-range positional order in the yz plane and the existence of
the columnar phase. The out-of-plane correlation function with nonzero K, and V"
also decays exponentially, but with a larger correlation length &, due to the strong

orientational correlations|24].

3.5 Structure Functions

We will now calculate the structure function 7(q) for CL-DNA complexes as a function
of temperature. Below the critical decoupling temperature Ty, the positional coupling
between lattices in neighboring galleries is relevant and diverges with system size.
At the longest lengthscales and in the absence of dislocations, the system forms a
columnar phase with DNA columns situated on a 2D crystal lattice in the yz plane.
(Electrostatic interactions between DNA favor centered rectangular symmetry in the
yz plane.) The columnar phase possesses a nonzero shear modulus for shifting lattices
relative to each other which prevents positional fluctuations from diverging in the limit
of infinite system size. As a result, the structure function for 7' < T} possesses Bragg
peaks at reciprocal lattice vectors of a centered rectangular lattice.

Above the decoupling temperature, the positional coupling between lattices in
neighboring galleries is irrelevant and scales to zero with increasing system size. At the
longest lengthscales, the system forms a sliding columnar phase with weak positional

but strong orientational correlations between lattices. The sliding columnar phase
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has a vanishing shear modulus which allows positional fluctuations to diverge with
system size. Thus, the Debye-Waller factor vanishes in the limit of infinite system size.
Since the Debye-Waller factor is zero, the sliding columnar structure function does
not possess Bragg peaks. However, as 7" — T, and positional correlations between
neighboring lattices increase, the structure function develops maxima at reciprocal
lattice vectors corresponding to the centered rectangular lattice. These peaks are
much weaker and broader than delta-function Bragg peaks. At high temperatures
T > Ty, thermal fluctuations may extinguish the centered rectangular peaks, but
leave diffuse maxima at q = ngoz. The number of detectable reflections is limited by
the DNA form factor. These maxima reflect the 2D smectic order within each gallery.

Scattering experiments measure the structure function
I(q) = /d3xd3x'e_iq'(x_xl)5(x, x'), (3.37)
which is the Fourier transform of the density-density correlation function

S(x,x') = (p(x)p(x)). (3.38)

p(x) is the DNA density at position x = (r,na). The structure factor S(q) = V~1I(q)
is proportional to the structure function and can be decomposed into the sum of two

terms:

S(a) =V {p(a)* + Spp(a), (3.39)
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where
1 3 .93 1 —iq-(x—x ! '
Sppla) = 3> [ dad’a’e T [5(x,x) = (p(x)) (p(x))]. (3.40)

The first term in Eq. 3.39 scales with volume V' and will produce Bragg peaks at
reciprocal lattice vectors of the 2D columnar lattice if the positional fluctuations are
finite. The second term, however, does not scale with volume since its integrand
decays to zero for large |x — x'|. In the sliding columnar phase, the first term is
nonzero only when q = 0 since divergent position fluctuations remove the Bragg
peaks at nonzero q. The q # 0 dependence in the sliding columnar structure factor
is generated by the second term in Eq. 3.39.

In the columnar phase, DNA are situated on a centered rectangular lattice with
positions

d
Ry, = (nd +g UT(T)> 2+ [ma + uy (v)]3, (3.41)

where u” = (u;”, u?") are fluctuations in the y- and z-displacements in layer m. (See
Fig. 2.1.) Note that equilibrium positions of columns in a given layer are shifted by
d/2 in the z-direction with respect to the previous layer. We also assume that R,
gives the positions of DNA columns in the sliding columnar phase for temperatures
near Ty. The DNA density in both the columnar and sliding columnar phases can be

written as a sum of density waves for each layer m:

plx) = Y 5" (x). (3.42)
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Since the density in each layer is periodic in z, each p™(x) can be expanded as a
Fourier series
P ) = 3¢ (x), (3.43)
h
where h is an integer and

—thgo[md/2+uT (r)] ~

pr(x)=e Pr(y —ma — uy'(r)). (3.44)

P’ includes phase factors for fluctuations in the z-displacement and for the staggered

positions of DNA columns. Also, the Fourier coefficients

_ A fdp
pn(y) == [ ZLe®v fronn(\/(hao)? + p2) (3.45)
dJ 27
contain a form factor
fDNA(CI) = J1 (qTDNA)a (3-46)
4dTDNA

which accounts for the finite thickness of DNA. ) is the mass per unit length of DNA

and J; is a Bessel function.

3.5.1 Scattering from the Columnar Phase

To calculate the dominant contribution to the structure factor in the columnar phase,

we only need to calculate the first term in Eq. 3.39. We obtain

A’ _ 2
S(q) =V <_> 5%,0 Z 5q,z,hq05qy,7rk/ae We ‘fDNA( (hCIo)2 + Q§)| ) (347)

ad h+k=even

where Wg = ((G-u™)?) and G = hqoZ + ¢,J. The Debye-Waller factor e=""e for the

columnar phase is a finite number that depends on h and k. Therefore, the structure
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factor possesses delta-function peaks proportional to the volume of the sample. These

Bragg peaks occur at the reciprocal lattice vectors

h, k.

of a centered rectangular lattice with lattice constants 2a¢ and d in the y- and z-
directions. In the previous expression h + k is constrained to be an even integer. The
peak intensities decrease with increasing g since both the Debye-Waller factor and

form factor decay with increasing wavenumber.

3.5.2 Scattering from the Sliding Columnar Phase

The low-temperature structure functions shown in Fig. 1.3 possess several maxima at
¢ =qi1, 13, and ¢ 5. However, these maxima are weak and diffuse which indicates
that neighboring lattices are able to shift relative to each other. This suggests that
the scattering data were taken at temperatures above 7, in the sliding columnar
phase. Near 7;, DNA columns are located on average on a centered rectangular
lattice with positions given in Eq. 3.41. When 7" > Tj, the positional couplings
between columns in neighboring galleries vanish, and DNA are no longer situated on
a centered rectangular lattice.

Position fluctuations in the sliding columnar phase diverge with system size, and
thus the average density (p(x)) vanishes when G # 0. We must therefore calculate

the Fourier transform of S(x,x’) to obtain the g-dependence of the structure factor.
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The structure factor in principle has many contributions

S(a) =>_ Su(a). (3.49)

However, terms with large h will be suppressed by the DNA form factor. Also, terms
with h = 0 correspond to the lamellar peaks and do not arise from correlations
between DNA. The lowest order DNA peaks have h = +1. Therefore, the terms with
|h| > 1 are dropped and we obtain in the limit K, =0

S@ =~ S0 = (5) S foualy@+HEF@+ ..., (350)

where )
1— (Vug(AQJ_)>
oT

= = 3
1 — YeSaay) S(TAC“) cos(gya £ ) + (7‘/ 52(?“))

F(q) = (3.51)

and Aq, = q1 F qo2- In the calculation of the sliding columnar structure factor,
we have neglected fluctuations in the lipid bilayers. Neglecting these fluctuations is
justified since the lamellar peaks in the X-ray scattering experiments of Refs. [3, 28]
are not broadened. The sliding columnar structure factor does not possess Bragg
peaks and is not proportional to the volume of the sample. When the positional
coupling V* is nonzero, maxima in S(q) occur at the centered rectangular positions
q = Qg+1,k, where k is an odd integer. In contrast, when 7" > Tj, the positional
coupling V" is zero and the centered rectangular peaks vanish. When V* = 0, only
the form factor fpna determines the g, dependence of the structure factor, and the

maximum value of |fpna(y/q8 +¢2)|* occurs at g, = 0. In the high-temperature
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regime, there is a maximum in S(q) at ¢ = ¢o. The shape of the high-temperature

maximum will depend on the values of the characteristic lengthscales * and z*.



Chapter 4

Nonlinear Elasticity of the Sliding Columnar (SC) Phase

4.1 Introduction

This chapter will investigate the nonlinear elasticity of the sliding columnar (SC)
phase. Its principal purpose is to show that the nonlinear strains lead to a Grinstein-
Pelcovits renormalization of the elastic constants [11] and not, as one could imagine,
to the destruction of the sliding columnar phase itself. The lipid bilayers, which we
take to be aligned on average parallel to the xz plane as shown in Fig. 2.1, fluctuate
like bilayers in any lamellar phase. To understand correlations and fluctuations of
the DNA smectic lattices, it is convenient to consider first a model in which the
lipid bilayers are rigid planes with no fluctuations in the y-direction. In this case,
displacements of the DNA lattices, which are aligned on average along the z-direction,
are restricted to the z-direction.

The rotationally invariant Hamiltonian in units of kg7 for this system is

M= % [ [Be2, + Ky (0.0, + K(@2u.)] (4.1)

92
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where B, K,, and K are the compression, rotation, and bending moduli divided by

kT, u,(x) with x = (r,y) and y = na is the continuum version of u?(r), and
1 2 2
Uy, = Oy, — 3 [(Bwuz) + (0,u,) ] (4.2)

is the nonlinear Eulerian strain appropriate for the sliding columnar phase. Note that

‘H is invariant under
u(x) = u(x) + f(y). (4.3)

It is this fact that ensures that nonlinearities do not destroy the sliding columnar
phase.

The rotationally invariant strain u,, introduces anharmonic terms into the Hamil-
tonian that lead to a Grinstein-Pelcovits renormalization of B, K,, and K. The

renormalized moduli scale logarithmically with ¢ at long wavelengths:

K, (q) ~ K"2(q) ~ B-3(q) ~ [m (g)] " (1.4)

where p is a large momentum cutoff. A complete model for the sliding columnar
phase allows both lipid bilayers and smectic lattices to fluctuate. This model also
exhibits Grinstein-Pelcovits renormalization of the elastic constants. Table 4.1 lists
the exponents describing singularities in the elastic constants for both the 3D smectic
and sliding columnar phases.

The evaluation of the above renormalization presented some unexpected difficul-

ties. The continuum Hamiltonian in (4.1) is formally invariant under arbitrary global
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Table 4.1: Comparison of the logarithmic scaling exponents for the elastic moduli of
the 3D smectic and sliding columnar phases. At long wavelengths the elastic moduli
for both phases scale as In®[1/¢] with « given below.

Phase B K K,

3D smectic -4/5 2/5 -

sliding columnar —-3/4 1/2 1/4

rotations. However, the introduction of a hard cutoff breaks this rotational invari-
ance just as the introduction of a similar cutoff breaks gauge invariance in gauge
Hamiltonians[16]. Nevertheless, hard-cutoff renormalization group (RG) procedures
can with care be applied successfully to Hamiltonians with gauge [12] or rotation
symmetries[18]. Indeed, the original Grinstein-Pelcovits calculation of the logarith-
mic renormalization of the smectic-A elastic constants used a hard-cutoff[11]. When
we applied the popular momentum-shell hard-cutoff RG procedure [32] to the non-
linearities in the sliding columnar phase, we encountered ambiguities that we were
unable to resolve. We found that the values of the one-loop diagrams depended
on whether the external momentum was added to the top or the bottom part of
the internal loop. Similar difficulties are not encountered in the Grinstein-Pelcovits
calculation. To eliminate these ambiguities, we switched to the dimensional regular-

ization procedure which explicitly preserves rotational invariance because the cutoffs
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are infinite[2].

The remainder of this chapter will be organized as follows: we first rederive the
results of Grinstein and Pelcovits in Sec. 4.2 using dimensional regularization. Then
in Sec. 4.3, we calculate the renormalization of the sliding columnar elastic constants
of the simplified theory using the same scheme. In Sec. 4.4 we relax the constraint of
rigid membranes and show that the membrane fluctuations do not modify the scaling
behavior of the elastic moduli of the rigid theory. In Appendices C and D, we evaluate
the one-loop diagrams for the 3D smectic and simplified sliding columnar theories.
In Appendix E we show that ambiguities arise when a finite cutoff is implemented to

calculate the loop diagrams of the sliding columnar theory.

4.2 Renormalization Group (RG) Analysis of the 3D Smectic

The rotationally invariant elasticity theory for a smectic liquid crystal contains non-
linear terms that renormalize the elastic constants of the harmonic theory for all
dimensions below three. Grinstein and Pelcovits calculated the corrections to the
elastic constants of a 3D smectic using an RG analysis with a finite wavenumber
cutoff(11]. They found that the corrections to both the compression and bending
moduli are logarithmic in the wavenumber ¢ with the former scaling to zero and the
latter scaling to infinity at long wavelengths. Application of a hard-cutoff RG proce-

dure to the sliding columnar phase leads to ambiguities with no obvious resolution.
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(See Appendix E.) We, therefore, employ a dimensional regularization procedure
that sends the cutoff to infinity and thereby preserves rotational invariance. In this
section we rederive the Grinstein-Pelcovits results for a 3D smectic using dimensional
regularization. This establishes the language needed to calculate the renormalization

in the sliding columnar phase.

4.2.1 Rotationally Invariant Theory

A smectic in d dimensions is characterized by a mass-density wave with period P =
27 /qo along one dimension and by fluid-like order in the other d — 1 dimensions. The
phase of the mass density wave at point x = (x,, 2) is go(z — u(x)). In units of kT,

the elastic Hamiltonian for a smectic is
1
H= / 4 [ By, + Kan(V20)?] (4.5)

where V| is the gradient operator in the d — 1 subspace spanned by x, and Bgy,
and Ky, are, respectively, the compression and bending moduli divided by kg7T'. The
nonlinear Eulerian strain u,, = 0,u— (1/2)(Vwu)? is invariant with respect to uniform,
rigid rotations of the smectic layers. Below we will drop the (0,u)? term in u,, since
its inclusion leads to nonlinear terms that are irrelevant in the RG sense with respect

to the two quadratic terms in (4.5). Therefore, we will take

1
Uy, R Oyu — E(VLU)Q. (4.6)
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Strictly speaking we should include a term linear in u,, whose coefficient is chosen to
make (u,,) = 0. The inclusion of and proper treatment of this term does not modify
our RG equations, and we will ignore it here and in our treatment of the sliding

columnar phase.

4.2.2 Engineering Dimensions

To implement our RG procedure it is convenient to rescale parameters so that Bgy, is
replaced by unity and the nonlinear form of u,, is preserved. To this end, we scale u

and x as follows:
v=DL,u, z=1L,Z, and x; =X. (4.7)
Note that x; does not rescale. Under these rescalings we obtain
(a1 ~\2
Uy, = Ly, L, <6gu — §LuLz(VI“) ) i (4.8)

We require u,, = Au,, where @,, = 0;u—(1/ 2)(V1ﬂ)2 is the rescaled nonlinear strain
with the same form as (4.6). This yields L, = L;* and A = L2. The coefficient of

%2, in the rescaled Hamiltonian is set to one with the choice
L, = B3 (4.9)

The rescaled theory then becomes

_ Ll o L ig2aye
U= [ai [u +—(V32) (4.10)
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with
Bl/3

: 411
K. (4.11)

w

For the remainder of Sec. 4.2 we will use the Hamiltonian in (4.10) but drop the tilde
on the scaled variables.

We determine the dimensions of the scaled variables using the engineering dimen-
sions of By, and Kg,. The dimension d4 determines how A scales with length L:
[A] = L%. From the respective dimensions dg,, = —d and dg,, = 2 — d of By,
and Ky, we obtain [L,] = [L;!] = L%3. Using these we find the following for the

dimensions of the scaled variables and the parameter w:

W] = [L£]=L€/3, [;;]:[Liz]:wd/?), (4.12)

u

L—d/3
[2d

@] = L, and [w] = l ] _

where € = 3—d. Using these definitions one can easily verify that both terms in (4.10)

2¢/3 where [pu] = L™', and it is, therefore, a relevant

are dimensionless. [w] scales as y
variable below d = 3. The dimensions of the coefficients of the (9,u)3, (0,u)?(V Lu)?,
and (0,u)* terms are 2d/3, 2d/3, and 4d/3 respectively. These nonlinear terms are
irrelevant and will be ignored in what follows.

The engineering dimensions in (4.12) imply that there is an invariance of H under

the transformation y — pb and

u(xy, z) = b™u' (%', '), (4.13)
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where x|, = b7'x, and 2/ = b=(F43) 4 e
Hlu, w, p] = H[u', wb*/3, ub]. (4.14)

This in turn implies a scaling form for the position correlation function G(x,,z) =

(u(x,z)u(0,0)) and its Fourier transform G(q). We find
G(x1,zw) =G, 2, wb*/?), (4.15)
and from this we obtain the vertex function I'(q) = G~'(q),
T(a1, g, w) = b~ VIT (b 1, b g, wh*?). (4.16)
When d = 3 this reduces to the scaling form

qu_,qz,w :q4r 1,q_z;w ) 4.17
e

which the harmonic vertex function I' = ¢2 + w ™ 'q} satisfies.

4.2.3 RG Procedure

To calculate renormalized quantities, we seek a multiplicative procedure that yields
a renormalized Hamiltonian with the same form as the original Hamiltonian, 7.e., a
Hamiltonian that is a function of a renormalized nonlinear strain with the same form
as (4.6). To preserve the form of the strains, it is necessary to rescale fields and
lengths simultaneously. The rescaling that produced (4.10) shows that the form of

U,, 1s preserved if the rescaling coefficients of u and z are inverses of each other. We,
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therefore, introduce a renormalization constant Z and a renormalized displacement
u' such that

u(x) = 2134 (x) = 23 (x ., 2'/32). (4.18)

This implies that u,,(x) = 2%3u/_(x'). We also introduce a unitless renormalized

coupling constant g and renormalization constant Z, via
w¥? = gu‘2,2'?, (4.19)

where p is an arbitrary wavenumber scale. The renormalized Hamiltonian then be-

comes
1 _ 2

H = / d%a’ [Z(u;z)Q +(gue2,) " (V) ] . (4.20)

We now follow standard procedures to evaluate Z(g) and Z,(g)[2]. The renormalized

Hamiltonian in (4.20) determines the vertex function

T@) = ¢+ (n) el +(2-1)g (4.21)
+ (gu) (2,7 ~1) ¢l + 3(a)
to one-loop order, where ¥(q) is the one-loop diagrammatic contribution to I'(q).

We next impose the following conditions on the vertex function to enforce the correct

scaling behavior:

dr’

10 =1 (4.22)
92 lg.=p>,q. =0

dr o

e = (gu)™*"*. (4.23)
91 lg.=p2,q,=0
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In Appendix C we show that the diagrammatic contributions are the following:

d%(q) g
= — (4.24)
dq; 2==p?,41 =0 16me
d>(q e g
d(4) = (gu) o (4.25)
91 g.=p2,g,=0 me

Using the conditions on the vertex function we obtain the relations for the renormal-
ization constants in terms of the one-loop diagrammatic corrections. The following

relations are correct to lowest order in e:

Z =1 4.26

+ 167me ( )

Z, = 1+ (4.27)
g 64me’ ’

Callan-Symanzik Equation

The renormalized vertex function I'.(q) satisfies a Callan-Symanzik (CS) equation
under a change of length scale . We obtain the renormalized elastic moduli from the
solution to this equation. The original theory in (4.10) did not depend on the length
scale . We can therefore write the bare vertex function I' in terms of the renormalized
vertex function I', and find the differential equation obeyed by I',.. Since the variables

u and z scale as u'(x) = Z'/3u(x') and 2’ = Z/32, the vertex function must scale as
L(dr, g, w) = Z7°T (a1, 27, 9, 1), (4.28)

The CS equation is determined by the condition pdI'/dy = 0. Since the renormal-

ized vertex function can have explicit as well as implicit y dependence through the
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functions Z and g, the CS equation for I', has three terms:

[u% - @ (1 v ai) 4 ﬁ(g)gg] r, =0, (4.29)

where
Blg) = ”Z_Z’ (4.30)
ne) = Blg)2L22) (431)

dg ’
and ¢,0/0q, = ¢,0/0q, with ¢, = Z~'/3¢,. This equation can be integrated to yield

an equation for I', as a function of the length scale p.

1 gt 1 g
L (A1, ¢ 9, 1) = exp lg/o ndl’] T, <QJ_anp lg/o ndl’] qz,g(l),uo), (4.32)

where p/ 1o = €', pd/dp = d/dl, and g(I) must satisfy

— == -B(9). (4.33)

At 1 =0 we have set T'.(I = 0) =T'(q.1, 4z, 9o, o)-
Now we must solve for # and 7 in terms of g in order to obtain the renormalized

vertex function. To find 3(g), we note that

dw3?  d
dl— dl

(g,uf)engZlﬂ) = 0. (4.34)
From this relation we find 8(g) = —¢/(d(InQ)/dg) where Q = gZ,Z'/2. We then
insert the relations for Z and Z, and determine § and 7 to be the following:

Blo) = 5=9" — e (4.35)

ng) = ———g. (4.36)
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In three dimensions € = 0. In this case, integration of dg/dl yields

9o
9() =17 590l / (647)’ (4.37)

where gy = ¢(0) = w*?. The remaining task is simple; we must evaluate the argu-
ments of the exponentials in (4.32) to obtain the / dependence of T',. Since g ~ 1/,
the integral of 7 will scale as In/ and the exponentials of the integral of n will give

power-law dependence on [. We find that

1 590 —4/15
S [ hanar| = [1 —l]
exp L”/O n(l) ] +

- l9/90]". (4.38)

Renormalized Elastic Constants

The scaling relations in (4.16) and (4.32) imply that I, satisfies

Fr (qJ_a 49z, 9, :U') = b74 [9/90]4/15 FT (bqlﬂ b2 [9/90]4/15 49z, 9, ,u'Ob) (439)

We now choose the reference length scale b = pug! = (¢ + w'¢*)~* = [h(q)] .

This implies that

| =In [ﬁ] (4.40)

since 11/ 1o = e!. We find the scaling form of the renormalized vertex function,

4/15
L= @)/l (h‘ijl),qz it ,g,l)

= g [g/90)"" ¢} + [9/90]"° ¢, (4.41)

by squaring the term in the second slot of the renormalized vertex function and adding

it to g~2/3 times the fourth power of the term in the first slot. We then insert (4.37)
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for g and transform back to variables with dimension to find the following expression

for the renormalized vertex function:

59 g 1\ 5¢ 1\
T,(q) = Be [ 1+ -2 1n | =— 2 L Ko [1+ 28 [ =2 4 (4.42
=B (1 g ]} s (1 g 2] ) ot

where go = By K.,3%, i = p/ By, and h(q) = (g2 +\*q1)"* with A = K/ Bom.
is a wavenumber A ~ 1/a associated with the short distance scale a. We identify the
renormalized compression and bending moduli By, (q) and K, (q) as the coefficients

of the ¢? and ¢ terms respectively. The renormalized elastic constants scale as powers

of logarithms at long wavelengths:

Kon(a) ~ B3/2(a) ~ [m (_i)] " (1.43)

where the long wavelength regime is defined by wavenumbers ¢ that satisfy h(q) <
A2 exp [647/(5g0)]. We see that K (q) scales to infinity and Bsm(q) scales to zero

as ¢ — 0.

4.3 RG Analysis of the Sliding Columnar Phase with Rigid Layers

In this section we calculate the logarithmic corrections to the elastic constants for
the sliding columnar phase using the dimensional regularization scheme employed in
the previous section. The steps we follow for the dimensional regularization of the
SC phase closely resemble those followed for the dimensional regularization of the

3D smectic phase since the two Hamiltonians have similar forms. In this section we
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assume that each 2D lattice of columns is flat and only allowed to fluctuate in the z-
direction. We relax this assumption in Sec. 4.4 and find that the renormalized elastic
constants are identical to those of the flat theory to lowest order in the coupling

between strains in the y- and z-directions.

4.3.1 Rotationally Invariant Theory

The rotationally invariant continuum elasticity theory describing the sliding colum-
nar phase was derived previously in Ref. [10, 20]. We found that a phase with weak
positional correlations but strong orientational correlations between neighboring 2D
smectic lattices was possible for sufficiently low temperatures. The strong orienta-
tional correlations require a rotation modulus in the Hamiltonian that assesses an
energy cost for relative rotations of the lattices in addition to the compression and
bending energy costs for a single lattice of columns. The continuum Hamiltonian for

the idealized sliding columnar phase in three dimensions and in units of kg7 is
1
M= / d*x [Bu?, + K(02u.)* + K, (0,0,u.)?] | (4.44)

where B, K,, and K are the compression, rotation, and bending moduli divided by
kgT. The nonlinear strain u,, is identical to the nonlinear strain for one layer of
columns u,, = d,u, — (1/2)[(0u,)? + (0,u,)?]. Below we will drop the (9,u,)? term
from the nonlinear strain since it leads to terms in the nonlinear theory that are also

irrelevant with respect to the three harmonic terms in (4.44). Therefore, we use the
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approximate expression,

1
Uy, = OyU, — 3 (awuz)Z. (4.45)

We note that u,, and H do not possess a shear strain term (8,u,)? because neigh-
boring layers of columns can slide relative to one another without energy cost. The
absence of the shear energy cost is a unique feature of the sliding columnar elasticity
theory. Because the Hamiltonian lacks terms with y-derivatives alone, it is invariant

with respect to shifts in u, that are only a function of y. Hence, H[u',] = H[u,] with
ul, = u, + f(y). (4.46)

This invariance restates that there is no energy cost for sliding neighboring layers of

columns relative to one another by an arbitrary amount.

4.3.2 Engineering Dimensions

We simplify the sliding columnar theory in (4.44) by rescaling the lengths so that
B and K, are replaced by unity and the nonlinear form of u,, is preserved. We
accomplish this by scaling u,, y, and z but not . To implement a dimensional
regularization scheme it is necessary to let z become a d —2 dimensional displacement

in the space perpendicular to y and z. Rescaled variables are defined via

u, = Ly, r=1,

y = L,y, and z = L,Z. (4.47)
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We first set L, = L;' to preserve the form of u,, under (4.47). We then set the

coefficients of 42, and (9;0;1,)? to unity by choosing
K3 1/4
L,= (ﬁ) and L, = (K,B)"/*. (4.48)

The rescaled Hamiltonian becomes

1
H= / 4% [i2, + (950y11,) + v (024,)’] (4.49)
with
Bl/2
w= (4.50)
KK,

and d = 3 — e. In the rest of this section we use (4.49) and drop the tildes.
We determine the dimension of the scaled variables from the dimensions of the

elastic constants in (4.44). The dimensions [B] = L% and [K,] = [K] = L?>~? dictate

[Uz] = L(S—d)/Q, [.’L‘] =1L,

ly] = LU V2] =L@ and [w] = L¢3, (4.51)

Note that [w] scales as p¢ with [u] = L™! and is relevant below d = 3.
The engineering dimensions in (4.51) imply that the Hamiltonian is invariant

under the transformations y — pb and
u,(x) = b%=ul (x) (4.52)
with ' = b~ 'z, ¢ = b=@D/2y and 2 = b=(¢+D/2; 4 e. the Hamiltonian obeys

H [tz w, 1] = H [, wh®, b (4.53)
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This implies that there is a scaling form for the position correlation function G(x) =
(u,(x)u,(0)) and the vertex function I' = G~'. We find that I'(q) obeys the following

scaling relation:
I'(q,w)=b"@r (qu, b(d_l)/zqy, platn/zg wbe) ) (4.54)
When d = 3 this reduces to

T(q,w) = ¢;T (1,4y/02,0:/43) » (4.55)

which is satisfied by the SC harmonic vertex function I' = ¢2 + ngs +w gl

4.3.3 RG Procedure

We now follow closely the RG procedure in Sec. 4.2.3. We rescale the lengths and
fields, ensure that the SC Hamiltonian has the same form as the unscaled SC Hamil-
tonian, impose boundary conditions on the vertex function, and determine the renor-
malization constants in terms of the one-loop diagrammatic corrections. The first
step in the process is to rescale lengths such that the renormalized SC Hamiltonian
has the same form as (4.49). To preserve the form of the nonlinear strain, the z and
u rescalings must be inverses of one another and the y rescaling is arbitrary. We,

therefore, introduce two renormalization constants Z and Z, such that

u,(x) = 2130 (x') = 23 (z, 2y, Z132). (4.56)
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This implies that u.,(x) = 2234/ (x') and 0,0,u,(x) = ZY/32,0,0,u.(x'). We also

define a unitless coupling constant g and renormalization constant Z, by setting
w=guZ'PzZ,2". (4.57)
The renormalized Hamiltonian then becomes
= [t (22,007 + 22, (00000 + (gu°2y) " (@d)] . (458)

We again employ standard RG procedures to calculate Z, Z,, and Z,. The
renormalization constants are fixed once we impose the following three conditions on

the vertex function:

dl’

= =1 (4.59)
d 2
qz Qz:NQst,yZO

dr _

242 o

d(qwqy) Qz:NQst,yZO

dl’ o —

dat = (91) g
qa: QZ:N2aQw,y:0

(Note that we have dropped the primes on the rescaled Hamiltonian.) The vertex

function to one-loop order,
U= @+ + )i+ (22, - 1) (4.60)
+ (2Y92,-1) @+ (997 (2,1 = 1) gt + S(a),

is obtained from (4.58) by adding and subtracting ¢Z +¢2q; + (gu°) "¢, and including

the one-loop diagrammatic contributions to the vertex function, ¥(q). In Appendix
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D we calculate the diagrammatic contributions,

dy g
dq? T 82 (461)
Z QZ:N2aQE,y:0
dy g
= I (4.62)
242 2
A9295) |, _ 2 4= 24m2e
dz e\—1 g
o = (91) ' Toor (4.63)
T QZ:N2=Qm,y:0

to lowest order in €. From these we determine the renormalization constants to be

g
Z = 14— 4.64
+ 1672¢ (4.64)
g
Z = 1—-— 4.
Y 1672¢ (4.65)
g
Z, = 14+ ——. 4.66
I + 1272¢ ( )

Callan-Symanzik Equation

The Callan-Symanzik equation is obtained by requiring that the original theory in
(4.49) be independent of the length scale u. To ensure this, we set udl'/dyp = 0. This
can be converted into a differential equation in the renormalized vertex function I,

using the following scaling relation:
D(q,w) = 272,00 (¢, 2, 0y, 270209, 11) - (4.67)

From the scaling relation we determine that the CS equation has the following four

terms:

lu% 1) (1 . ai) +1,(9) (1 - q%) + ﬂ(g)a%] D=0,  (468)
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where 7(g) and (3(g) were defined previously in Sec. 4.2.3 and n,(g) = (g)d1In Z,/dyg.

The solution to (4.68) is

Iy (q,9,p) = exp Vol (g - 77y> dl'] X (4.69)

1 1
T, <qm,exp [ /0 nydl’] gy, €Xp lg /O ndl’] qz,g,uo>,

with FT(l = O) = FV‘(qa 9o, IUO) and M/HO = el-
The coupling constant w must be independent of the length scale [. This condition

yields a differential equation for the dimensionless constant g whose solution is

g(l) = #}(Gﬂ)' (4.70)

This equation in turn determines the [ dependence of 7 and 7, since they are both

proportional to g. We find

n(g) = —ny(9) (4.71)

~ 1672

and thus these scale as 1/ at long wavelengths.

Renormalized Elastic Constants

Using (4.70) for g(I) and the relations for n(g) and n,(g) in (4.71), we obtain the

scaling form of the renormalized vertex function:

Tr(q, 9, 1) = b~*[g/0)"* T (bge, bay [9/90] *'*,b%a: [9/90)'"* , 9, mob) . (4.72)
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To set, the length scale, we choose

b=pg' = (¢ +q2q, +w 'q) /" = [h(q)] . (4.73)
It follows that
)
l=1In |- 4.74
[h(m] (4.74)

since p and [ are related via p/uo = €. We then substitute (4.70) for g and transform

back to variables with dimension to obtain the following expression for I'.(q):

g A
r = B1+ L 1| 2 4.
g 1\
K, [1+2 1| 2
N ( +6w2“[h(q)]) Ty

where go = BY2/(KK,/?), i = n/(K,B)"/®, and h(q) = (¢ + A\2q2q} + X*¢3)"/* with
A\ = Ky/B and > = K/B. T* is an upper momentum cutoff A ~ 1/a associated
with the short distance scale a. We can now identify the ¢ dependent elastic constants
and determine their scaling as ¢ tends to zero. At long wavelengths such that h(q) <

A2 exp [6m2/go] the In term dominates, and we find

Kya) ~ K ~ B @)~ [in (1] " (.76

We see that B(q) scales to zero and K(q) and K,(q) scale to infinity as ¢ — 0.
Also note in Table 4.1 that the exponents of the logarithmic power-laws of B(q) and
K(q) are different from those of Bgy,(q) and Kgy,(q), but the signs of the respective

exponents are the same.
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4.4 Sliding Columnar Phase with Fluctuating Lipid Bilayers

In the preceeding section, we considered a model for lamellar DN A-lipid complexes in
which lipid bilayers were treated as rigid planes and no displacements of DNA lattices
in the y-direction were allowed. In physically realized complexes, lipid bilayers can
undergo shape fluctuations and DNA lattices can undergo y-displacements. We can
parameterize the shape of the nth bilayer by a height function h,(z,z), which in
the continuum limit becomes h(x) = hy/q(x,2). The y-displacement of the DNA
lattices in the continuum limit is u,(x). At long wavelengths the displacements h(x)
and u,(x) are locked together. The lock-in occurs because there is an energy cost
for translating each lattice of columns and the lipid bilayers by different constant
amounts in the y-direction. (See Fig.2.1.) We can, therefore, describe long wavelength
elastic distortions and fluctuations of the sliding columnar phase in terms of an elastic

Hamiltonian expressed in terms of displacements u, and u,:

1
Holugu] = / d*x (B, + K2, (%u,)? + K2, (0,0,u.)” + Bu2,  (4.77)

where u,, and u,, are nonlinear strains. We define H; to have units of kgT', and
therefore the constants appearing in this equation are the compression and bending
moduli divided by kgT. The first three terms in (4.77) were discussed previously in

Sec. 4.3 as the u, theory for the sliding columnar phase without fluctuations of the
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lipid bilayers. The next four terms are the compression and bending energies for an
anisotropic 3D smectic with layers parallel to the zz plane. The bending energy is
anisotropic due to the presence of the DNA columns. The final term is a coupling of
the nonlinear strains uy, and u,,.

The form of the nonlinear strains depends on whether Eulerian or Lagrangian
coordinates are used[6]. We find it convenient to use a mixed parameterization in
which x and z are Eulerian coordinates specifying a position in space and y = na is
a Lagrangian coordinate specifying the layer number. The nonlinear strains u,, and
Uy, for this mixed parameterization were derived previously in Ref. [21]. To quadratic

order in gradients of u, and u,, we find

Uy = Oyuy — % [(aw“y)2 + (0.uy)* — (ay“y)Q] (4.78)

b = Dot — 5 [(00.) + (@)’ — (D21, (4.79)

Note that the nonlinear strain u,, does not contain the shear strain term proportional
to (9yu,)®. Thus, layer fluctuations do not modify the essential invariance u!, —
u, + f(y) of the sliding columnar phase to the order considered here. In what follows,

we will truncate the nonlinear strains to

Q

Oy (4.80)

1
Uy, = Oyu, — 5(33:%)2 (4.81)

since the other nonlinear terms are irrelevant with respect to the sliding columnar
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harmonic terms in (4.77).

The goal of this section is to calculate the Grinstein-Pelcovits renormalization of
the eight elastic constants found in the theory of the sliding columnar phase with lipid
bilayer fluctuations. Since the nonlinear strains do not introduce a (9yu,)? term, we
do not expect the bilayer fluctuations to alter the renormalization of the SC elastic
constants in the simplified theory of the previous section to lowest order in BY*. We
will again use dimensional regularization to calculate the renormalization. The for-
mat will closely parallel the previous SC calculation. We first determine which of
the harmonic terms in (4.77) are relevant and drop irrelevant terms. We then rescale
lengths and fields, ensure that the Hamiltonian retains its unscaled form, impose
boundary boundary conditions on the vertex function, and calculate the renormal-
ization constants. The renormalization constants then determine the scaling form of

the vertex function.

4.4.1 Engineering Dimensions

We begin by rescaling the lengths and the fields in H,. In addition to the rescalings

in Sec. 4.3.2, we also rescale u, according to

Uy = Ly, Ty (4.82)

We first impose the conditions of the previous section, i.e. we set the coefficients of

42, and (0305u,)? to unity and ensure that both terms in the nonlinear strain u,,
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scale the same way. As an added constraint, we set the coefficient of ﬂzy to unity.

These conditions fix

KN\
— Yy
o= (8) w

— -1 _ z pz\l/4
L, = L, =(K;,B)"" (4.83)
Once we plug in these scaling lengths, the rescaled Hamiltonian becomes

— 1
Hy = 5 / A% [2, + (0:07u.)? + w™H (021.)? + (Byiiy)? + 20(Dyl )iz (4.84)

+ n (8%1]?,)2 + o (aiaéay)Q + U3(a§ﬂy)2]

with
B* 1/2 BY? chclcc(Kj )3/2
wo= Kz( Igz 1/27 v= BY B* 1/2? v = By Bzy1/2 ) (485)
o(KZy) ( ) (B?)
OKLK o KL(K:)
Vg = BY B~ , and vz = (BZ)?’/QBZ/ .

(It is again necessary to let x represent a d — 2 displacement with d = 3 —¢€.) The
dimensions of the scaled variables and the w and v coefficients are determined using
(4.83) and the dimensions of the compression and bending moduli, [B] = L~¢ and
[K] = L?>74. (Note we have dropped the tildes on the scaled variables in the following

discussion.) We find

[uy] = La-4/2 [v]=L° [v]=L"1, (4.86)

[vy] = L* and [vs] = LT3,
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while the dimensions of u,, y, z, and w were given previously in (4.51). Note that v
does not scale with length. Also note that the coefficients vy, v9, and w3 are irrelevant
when d = 3. We drop the irrelevant terms and arrive at the following simplified

Hamiltonian:

Hy = % /ddx [Uzz + (00yu:)* + w™ (Opuz)? + (Dyuy)® + 2U(ayuy)“zz] . (4.87)

4.4.2 RG Procedure

The present RG procedure will be similar to those employed in sections 4.2.3 and
4.3.3, except we now have two coupling constants, w and v, instead of one. We will
show that the inclusion of v does not alter the renormalization of the sliding columnar
elastic constants to lowest order in v. As before, we rescale the fields and lengths and
seek a renormalized Hamiltonian with the same form as (4.87). We scale y, z, and u,

as we did previously in (4.56) and u, by Z'/2 as follows:
Uy(x) = 51/2u'y(x') = Z~l/2u'y(x, Z,y, Z132). (4.88)
The rescaled Hamiltonian #j looks similar to (4.58) with two additional terms due
to fluctuations of the bilayers. We drop the primes on the variables and find
Hy = 5 [ a2 ¢ 22, 0.0, + (onf ) @) (489)
+ Z7'2,Z(0yuy)? + 202, (0yuy) ),

where

72, =vZY?2 23 (4.90)
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<

u
Z

Figure 4.1: Schematic diagram of the relevant nonlinear term 9,u,(d,u,)?* generated
by the sliding columnar theory with lipid bilayer fluctuations. The symbols x and y
written adjacent to the dividing lines represent x and y derivatives of the respective
fields. The u, field is denoted by a dashed line while u, is denoted by an unbroken
line.
and Z, was defined previously.

Boundary conditions imposed on the vertex functions I';;(q) with ¢, j = y, z ensure
that the Hamiltonian retains its original form in (4.87) after rescaling. The vertex
function is defined by I';;(q) = Gj;'(q) with Gy;(x) = (u;(x)u;(0)). The conditions

imposed on I',, are identical to those given in (4.59); these are augmented by two

conditions on I'y, and T'y,.

dl’
& = 2 (4.91)
d(quz) qz:/J'za(Icc,y:O
dry, _ 1
dq; gz :H27Qz,'y:0

Once we impose these conditions on the vertex functions, we solve for the Z’s in
terms of the one-loop diagrammatic contributions ¥;;, where, for instance, 3J,, is the
one-loop correction to the vertex function I',,. The diagrammatic corrections arise

from the quadratic term in u,,. ugz generates 0,u,(0,u,)?, which was already present
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Figure 4.2: The three diagrams that can be formed by contracting d,u,(d,u,)? with
itself. The only diagram that contributes to the renormalization of BY is pictured in
(a). The diagrams in (b) and (c) contribute to the renormalization of both K?_  and
Kz,

in the theory with u, = 0. The coupling of u,, to u,, generates a new nonlinear term,
Oyuy(0zu,)?. This term is shown schematically in Fig. 4.1. There are six new one-
loop diagrams in addition to the three diagrams of the rigid sliding columnar theory;
these are shown in Figs. 4.2 and 4.3. The diagrams in Fig. 4.2 arise from contractions
of Oyu,(d,u,)? with itself and the diagrams in Fig. 4.3 arise from contractions of
Oty (0pu,)? with 0,u,(dyu,)?. The one-loop diagrammatic corrections ¥,, are easy
to calculate since the form of the propagator GG,, is unchanged from its form in the

rigid sliding columnar theory. The form is not changed, but the compression modulus

B is renormalized by a factor of 1 — 2. The one-loop diagrammatic corrections to



Figure 4.3: The three diagrams that can be formed by contracting 9,u,(0,u,)* with
Oty (0,u,)?. The only diagram that contributes to the renormalization of BY? is pic-
tured in (a). The diagrams pictured in (b) and (c) contribute to the renormalization
of both K7, and K7,

I',, are shown below to lowest order in e:

dx 1
= S - (4.92)
dqz Qz:N2an,y:0 87T € 1 52
d¥,, g
= V1 -2
d(¢q;) 0==4%4z,4y=0 24ne

d¥;, 1 9
= (gp)" 1-7%

dq; 0o =1 4a.y=0 1272¢

These expressions reduce to those found for the rigid theory when 7 = 0.

The calculation of one-loop diagrammatic corrections to I'y, and I'y, is similarly
straightforward. ¥,, is given by the diagram in Fig. 4.3(a). This amplitude is pro-
portional to ¥ since it is formed by contracting dyu, (9,u,)? with 0,u,(dyu,)?. T,y is
given by the diagram in Fig. 4.2(a); it must be proportional to v? since it is formed

by contracting (9y14y((9wuz)2 with itself. The one-loop corrections to I'y, and I'y, are
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given below to lowest order in e:

dXy, qu 1
= T2 = 4.93
d(ayq-) =112 .y =0 8m2e /1 — 12 (4.93)
dzyy _ 952 1
dq‘% qz:/‘27Qw,y:0 87T2€ 1 - 52 )

We then use the conditions imposed on the vertex functions in (4.59) and (4.91)
and the one-loop diagrammatic corrections in (4.92) and (4.93) to find the renormal-
ization constants (the Z’s) in terms of g and 7. We find that the relations for Z,
Z,, and Z, are unchanged to zeroth order in 5. Z and Z, also have terms that are
independent of 7 as shown below to lowest order in e:

5 9

Z ~ 14+ ——"— 4.94
+127T26 ( )
g
Z, ~ 1 .
+87r26

The variation of g and ¥ with the length scale y is obtained by enforcing that both
bare coupling constants do not depend on pu, i.e., we set pdw/dy = pdv/dp = 0.
These two requirements determine the recursion relations for g and 7; we find that

dg/dl is unchanged to lowest order in 7 and

v ___gv
dl 1672

(4.95)

The zeroth order solution for g was found previously in (4.70); we plug this solution

into (4.95) and find

_ Vo

o(l) = ,
TV

where 7y = BY* /v BYB* and gy = \/B*/KZ,/K;,.

(4.96)
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4.4.3 Renormalized Elastic Constants

We found in the previous two sections that the renormalized elastic constants are ob-
tained by solving the Callan-Symanzik equation for the renormalized vertex function.
We find the CS equations for I'}; using the following scaling equations which relate

the bare and renormalized vertex functions:

[.(qwv) = Z_l/?’Zszz(q', 9,7, |1) (4.97)
Fyy(q, w, U) = 2_12;121/3F;y(q17 g, ﬁa M) (498)
Lyo(q,w,v) = Z7V°Z,I7.(d,9,7,p). (4.99)

Eq. (4.97) yields a CS equation identical to (4.68) to lowest order in v, and thus
the renormalized elastic constants B*(q), KZ,(q), and K}, (q) are identical to those
obtained in (4.75) using the u, = 0 theory. The fact that the elastic constants
are identical to zeroth order in T is a consequence of the fact that the nonlinear
term proportional to 7 does not introduce any harmonic terms that were not already
present in the theory without u, fluctuations. We also find that the coefficient of
I, (d') is unity to lowest order o, and hence the vertex function I'y, does not rescale.
As a result, BY = BY(l = 0) plus higher order terms in 7.

We do, however, find a nontrivial renormalization of B¥?. The scaling relation in

(4.99) leads to a CS equation for I'}, with a similar form to the one found in (4.68).
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We find
0 nlg) nlg) [ 0 0 0
— — == — = g, 1—gqg,— —| I, = 4.1
,Ua'u 9 3 qz aqz + Ty (g) Qy a(]y + ﬂ(g) ag T 0 ( 00)
to zeroth order in 7, where
. .dmZ) g
ii(g) = B(y) i Ton (4.101)

and 7 and 7, were defined previously. The solution to (4.100) can be transcribed from

(4.69) and is displayed below:

(@t = | [ (3-n) at] = (1102)

! 1
Ty, (qm,eXp [ /0 nydl’] Gy, €XP lg /0 ndl’] qz,g,uo>.

Since 7, n,, and 7 scale as 1/[, the integrals in the arguments of the exponentials scale
logarithmically with /. Thus, the exponentials yield power-laws in g, and we find, for
example,
. 5/8
7 A _ [9()
- — ar| = |—= . 4.103
o[ 4] -2 s
The renormalized vertex function in (4.102) obeys a scaling form analogous to the

one obeyed by the renormalized sliding columnar vertex function in (4.72). We find

Ty.(a, 9, 1) = b~ [9/g0]"* Ty, (baa, by [9/90) %, b%a: [9/90)"/* , g, pob) , (4.104)

where the b=3 prefactor is present because y scales as b and z scales as b2. We then

choose b = py' = [¢2 + ¢2¢2 + w2 7/* = [h(q)]"! to match the conventions of the
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previous section, substitute (4.70) for g/go, and return to variables with dimension.

The renormalized vertex function becomes

. q1-3/4
9o %3
" (q) = 2BY [14+ 22 In | 4.1
vz () l +esIn [h(Q)H Wz (4.105)

where 77 and h(q) were defined previously. The renormalized elastic constant BY?(q)
is the coefficient of g,g, in the above expression. Therefore, we find that both B*

and BY* scale to zero logarithmically with q at long wavelengths defined by h(q) <

A2 expl6m / go-

4.5 Conclusion

We have calculated the Grinstein-Pelcovits renormalization of the elastic constants
for the sliding columnar phase. We used a simplified model of the sliding columnar
phase in which the DNA columns were prevented from fluctuating perpendicular to
the lipid layers. We found that the elastic constants scaled as powers of In[1/q] at
long wavelengths. In particular, we found that the compression modulus B scales
to zero and the rotation and bending moduli K, and K scale to infinity as ¢ tends
to zero. We employed dimensional regularization in our RG analysis of the sliding
columnar phase to ensure rotational invariance. RG schemes that break rotational

invariance, such as the momentum-shell technique, did not yield correct results.



Chapter 5

Transition to the Nematic Lamellar Phase

In the preceding chapters, we studied the effects of thermal fluctuations on CL-DNA
complexes and found that they induce a second-order phase transition from a colum-
nar phase with strong positional correlations between neighboring lattices to the
sliding columnar phase with weak positional correlations between neighboring lat-
tices. In this chapter, we focus instead on the disordering effects of dislocations.
Edge dislocations in 2D smectic systems have a finite core energy and thus exist at
all temperatures. As a result, they destroy the positional order and convert the 2D
smectic phase to a nematic phase at the longest lengthscales[31]. We show below
that, in contrast to true two-dimensional smectic systems, edge dislocations in the
sliding columnar phase have a core energy that scales logarithmically with system
size, and therefore there is a transition temperature Tk below which the defect-free
sliding columnar phase is favored and above which edge dislocations unbind, melt

the 2D smectic lattices in each gallery, and convert the sliding columnar phase into a
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nematic lamellar phase.

5.1 Edge Dislocations

The DNA mass density is only defined within each two-dimensional layer, and thus
point dislocations with cores parallel to the y-axis are the only allowed defects. These
edge dislocations signal the removal or insertion of DNA columns in a given layer n
which causes the phase of the DNA mass density wave go(z — u%(r)) to jump by
integer multiple multiples of 27. If we define v"(r) = V u7}(r), the dislocation is
characterized by

j[ v d = knd, (5.1)
r

where £k, is its integer strength and I is some contour in the nth gallery enclosing the
dislocation. Eq. 5.1 indicates that v"(r) has a singular part satisfying V| x v"*(r) =
by (x)y, where

by(x) = da_ my,(r)é(y — na) (5.2)
and

Mu(t) = kg0 (r — Tny) (5.3)
l
is the dislocation density in gallery n with [ labeling each dislocation.
We will now calculate the energy cost for edge dislocations in the sliding columnar
phase. Since the DNA columns bend to fill the void caused by edge dislocations, we

include energy costs associated with nonuniform changes in the DNA director in
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addition to the sliding columnar elastic energy in Eq. 3.1. We therefore consider the

Hamiltonian

Holv",0"] =

|

Sa / Er[Br)? + D(o} — 0" + K(8,6")°  (5.4)
K?/

+ (0n _ 077.—}—1)2 + sz(azen)ﬂ

a

that couples displacements and angles in a rotationally invariant way. This energy
reduces to the sliding columnar elastic energy in Eq. 3.1 when 6" is integrated out.
Our strategy is to minimize this Hamiltonian subject to a nonzero dislocation density
by(x). The algebra is simpler in Fourier space. To transform from real space to

Fourier space, we use

v(q) = Z a / d%e‘“qrrﬂyna)v"(r) (5.5)

and a similar expression for §(q). The Euler-Lagrange equations yield expressions for
0(a) and v,(q):

Du, (Q)

0(a) D+ K(Q)f (5.6)
wla) = —p A, ), 6:1)

where
K(q)¢* = K¢ + Kyq;p(¢ya) + K00, (5.8)

and p(u) = 2(1 — cos[u])/u?. We then employ the constraint equation

iqL X v(q) = by(q)y (5.9)
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which relates v,(q) to v,(q) and the specified dislocation density b,(q) to completely
determine #(q) and v(q). In the final step, we insert the expressions for #(q) and

v(q) into the Fourier transformed version of Eq. 5.4 and find

B rle dg, 1 dqu K(a)g*|by(q)?

E==
2 Jonja 27 J (2m)2 Bq? + K(q)¢*[q% + (B/D)q?]

(5.10)

for the energy of edge dislocations in the sliding columnar phase. In the calculations
of the self energy and interaction energy below, we take the D — oo limit and assume
K(q)¢®* ~ K¢ + qugp(qya). The terms that are neglected in these approximations
are subdominant to the Bg? term at long lengthscales, i.e. these terms have at least
two more factors of ¢,. If we set K, = 0, Eq. 5.10 reduces to expression for the energy

cost for edge dislocations in a 2D smectic[31].

5.2 Self and Interaction Energies

We now calculate the energy of an individual dislocation and the interaction energy
of a pair of dislocations using Eq. 5.10. We find that both the energy of an isolated
dislocation and the energy of two dislocations in different layers diverges logarithmi-
cally with system size. In contrast, the energy of two dislocations in the same layer
with equal and opposite signs diverges only with their separation. Since the energy of
an isolated dislocation or pairs of dislocations in different layers diverges logarithmi-
cally with system size, the sliding columnar phase will Kosterlitz-Thouless melt to a

nematic lamellar phase when the temperature is greater than a dislocation unbinding
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temperature Tx7 which will be calculated below.
The self energy of an isolated £1 dislocation is obtained by inserting b,(q) = +ad

into Eq. 5.10. We find that

E, = L /PRy In [eD(“’)wLx/x*] (5.11)

T2

diverges logarithmically with system size. In the above expression, w = A z*,

D(w):/()w@ lJ(t) _1] _ 7w/4 when w — 00

T 70 (5.12)

0 when w — 0,

J(t) = /0 dur/f(u) + 22, (5.13)

f(u) = u?p(u), and J(0) = 4.
The interaction energy of two dislocations with strengths k; and ko separated by

x = (r,na) is obtained using
by(q) = ad (kl + er_iq'x) . (5.14)
We find that the interaction energy of the pair of dislocations can be decomposed as
Ey(r,na) = EYY + EM. (5.15)

The first term E$Y diverges logarithmically with system size, and the second term

Eint does not diverge with system size. The divergent contribution is given by

Egiv = Cy(n, ky, ks) In [an(w:k1,k2)wLm/$*] , (5.16)
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where

Fy(w, by, ky) = /‘” dt (ky + ko) [J () — J(0)] — 2kiks [Ln(t) — L (0)]

0 T(0)[Fr + ka2 — 2hrkaLy (0) (5.17)

depends on n, the upper wavenumber cutoff w, and the strengths of the dislocations.

In the expression for F,(w, k1, ko),

La(t) = /Oﬂdu(l—cos[nu]) Flu) + 22, (5.18)
Ln(0) = 4;377’21, (5.19)

and Fo(w, k1, ko) = D(w). The coefficient of the In L, term is given by

d*\/BK 8n2
CQ(TL, k]_, k2) = Ty ([kl + k2]2 — 4n2 — 1]{)1]{32) . (520)

It is apparent from this expression that when k; = —ky and n = 0 (i.e. the two
dislocations are located in the same layer), C(0, k1, —k;) = 0 and the energy does
not diverge with system size.

However, when n # 0, Co(n, k1, k) > 0 and the dislocation energy diverges log-
arithmically with system size. To see this, consider the two cases: k;/ky < 0 and
ki/ko > 0. When the two dislocations have opposite signs, both terms in Eq. 5.20 are
positive and Cy(n, |ki|, —|k2|) > 0. In this case, the configuration with the lowest en-
ergy is ky = —ky = 1 with n — o0, and thus opposite-signed dislocations in different
layers repel each other. The energy of this configuration is £, = 2E,. When the

two dislocations have the same sign, the two terms in Eq. 5.20 have opposite signs,
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but Cs(n, k1], |k2|) > 0. In this case, the minimum value of Cy occurs at n = 1 and

o i e = Vs (1?) S

p >0 (5.21)
for all values of ki/ko > 0. Since n = 1 corresponds to the minimum energy, like-

signed dislocations in different layers attract each other. The configuration k; = ky =
1 and n =1 has energy F,; = 4F,/3 and thus F,_ > F,, > E,. The energy of an
arbitrary configuration of dislocations can also be calculated; we find that the energy
of an individual dislocation yields the lowest energy[23].

The nondivergent contribution to Ey(r,na) is given by

&,/BK,

int __
By = —kiho—t

Ky(r,na). (5.22)

If the system overcomes the In L, energy barrier, the two dislocations interact via

K5 (r,na) which is defined by

Ky(r,na) = /Ow % /07r duy/ f(u) + 2 cos[nu] (1 — cos [t%] exp [—;t\/f(u) + t2D .

K, (r,na) is difficult to calculate for arbitrary separations x, however, it can be cal-
culated in the limits z > z*, 2 = 0 and z > 2*, x = 0. We find that K, scales
as

4 In[e?tPn(@hy|z|/2*]  if 2> 2* and 2 =0

KQ(I', na) = m

(5.23)
In[ePrtPnay|z|/2*] if 2> 2* and z =0,

where D,,(w) is defined by

Dy (w) = /Ow@ [J"(t) _ 1] (5.24)
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with

Jn(t) = /07r duy/ f (u) + t2 cos[nu] (5.25)

and J,(0) = 4/(1 — 4n?).

D: :/01 dy lil _jn(y)] - [ dyFny(y) (5.26)

is a finite number that depends on n with

F.(y) = %(O) /Oﬂ du cos(nu)y/ f(u) exp [—y\/f(u)] . (5.27)

Thus, Ei"* ~ — Ak, ky/(1—4n?) Inr for large r, with A > 0. If k; /ky > 0, the coefficient
of Inr is positive for all n > 0 and negative for n = 0. As a result, like-signed
dislocations in different layers attract each other, whereas like-signed dislocations in

the same layer repel each other.

5.3 Dislocation Unbinding Temperature

In the previous section, we showed that the energies of unmatched dislocations (i.e.
two +1 dislocations) in the same gallery and pairs of dislocations in different galleries
scale logarithmically with system size. Thus, we can borrow the Kosterlitz-Thouless
(KT) argument which balances the energy cost for creating dislocations with the en-
tropy gain of placing dislocations anywhere in each two-dimensional layer to predict
the dislocation unbinding temperature[15]. Each configuration of dislocations will

have a different unbinding temperature, however, the lowest unbinding temperature
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is the most relevant. Above this temperature, dislocations (either composite or in-
dividual) unbind, renormalize the compression modulus B to zero, and destroy the
in-plane 2D smectic order of the sliding columnar phase. The lowest unbinding tem-
perature corresponds to the configuration of dislocations with the lowest energy. We
showed in Sec. 5.2 that an individual dislocation has the lowest energy. This result,
however, depends on the form of the orientational interactions between smectic lat-
tices. If further-neighbor orientational couplings are included, composite dislocations
can have lower energy than an individual dislocation.

The difference in free energy between the defect-free state and the state with a
single dislocation is

AF = (E, —2T)InL, (5.28)

The dislocation unbinding temperature

Ty PEs (5.29)

Twr =
KT 272

is obtained by setting AF = 0. When T" < Tk, the energy term dominates and the
defect-free sliding columnar phase has lower energy. When T > Ty, the entropy

term dominates, dislocations are favored, and each layer becomes a nematic phase.

5.4 Thermodynamic Stability

To determine the thermodynamic stability of the sliding columnar phase, we must

compare the critical temperatures Ty and Txr. If Tgr > Ty, there is a temperature
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nematic nematic
columnar lamellar lamellar
T, >Ty | | -
TKT Td
B
increasingT
diding nematic
columnar columnar lamellar
Ty >T, —= } } >
Td TKT

Figure 5.1: Two possibilities for the relative magnitudes of T; and Txr. If Ty > Ty,
there is a temperature window where the sliding columnar phase is the stable phase. If
on the other hand Txr < Ty, the sliding columnar phase is bypassed, and the system
proceeds from the columnar phase to the nematic lamellar phase as temperature is
increased.
window Ty < T' < Tkt where the positional coupling between lattices in neighboring
layers is irrelevant, dislocations are energetically unfavorable, and the sliding colum-
nar phase is thermodynamically stable. The system proceeds from the columnar
phase to the sliding columnar phase to the nematic lamellar phase as temperature is
increased as shown in Fig. 5.1.

However, if Txr < T}, there is no temperature window where the sliding columnar
phase is thermodynamically stable, and the system proceeds from the columnar phase

directly to the nematic lamellar phase as temperature is increased. In this scenario,

the positional coupling is irrelevant only in the temperature regime where dislocations
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are energetically favorable. Using Eqs. 3.18 and 5.29, we find
= —=— (5.30)

is less than one, and there is no temperature window where the sliding columnar
phase is stable.

However, further-neighbor orientational interactions of the form

H=—Ya / d2r K0, (x) — O m(r)]? (5.31)

can also be included in the SC Hamiltonian in Eq. 3.1. We will show in a forthcoming
paper [23] that the K" can be tuned so that there is a temperature window where

the sliding columnar phase is stable.



Chapter 6

Conclusion

In this thesis, we have introduced the new sliding columnar (SC) phase of matter
which may exist in layered systems composed of weakly-coupled 2D smectic lattices.
The sliding columnar phase is characterized by weak positional but strong orienta-
tional correlations between neighboring 2D smectic lattices. The SC harmonic free
energy contains an orientational rigidity that aligns neighboring 2D smectic lattices
in addition to in-plane compression and bending moduli. The presence of the orien-
tational rigidity fundamentally alters the energy spectrum. In light of this, we have
calculated the structural properties of the sliding columnar phase, for example, the
SC displacement correlation function, scattering intensity, and dislocation energy. We
found that thermal fluctuations give rise to the sliding columnar phase by reducing
the positional coupling between neighboring 2D smectic lattices to zero. However,
at the longest lengthscales edge dislocations melt 2D smectic lattices and convert

the sliding columnar phase into a nematic lamellar phase. We are able to fine-tune

96
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further-neighbor interactions so that they stabilize the sliding columnar phase[23],

however, these interactions do not yet have a physical origin.

6.1 Characteristic Lengthscales

A current topic of research is determining whether sliding columnar behavior is
present in recent X-ray scattering experiments on CL-DNA complexes[3, 28]. Even
though we found that the sliding columnar phase is converted into a nematic lamellar
phase at the longest lengthscales, the SC phase may exist on shorter lengthscales
determined by the density of edge dislocations. Thus, CL-DNA complexes studied
in recent experiments with domain sizes L ~ 0.1ym may exhibit sliding columnar
behavior. However, in the next round of experiments it will be important to prepare
aligned CL-DNA samples because powder-averaging complicates the functional form
of the scattering intensity and makes it difficult to identify sliding columnar behavior.

We showed in Sec. 3.4 that the density-density correlation function S(r) displays
different functional forms depending on the magnitude of the in-plane separation r.
The crossover lengthscales for the correlation function are I, [,, &, x*, and z*. The
harmonic 2D smectic regime is defined by z,2 < [, and the nonlinear 2D smectic
regime is defined by z, 2z > [, ,, where the nonlinear lengths [, , are given in Eq. 2.3.
In the nonlinear regime, the anharmonic terms in the rotationally invariant strain u,,

are significant and cause the in-plane compression and bending moduli to depend on
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Table 6.1: The nonlinear lengths, I, and [,, calculated as a function of the DNA spac-
ing d using the experimental values of the in-plane correlation length &, in Ref. [28].

Nonlinear length d =28A d=55A

ly 0.35pm  0.24pm

l, 9um 6pum

the wavenumber q. Using

52/3

— 1/3, 2
B2 = (32) ™ Td7/3£;/3

(6.1)

and Ky = T¢,/2d, we can write [, , in terms of the in-plane correlation length £, and
the DNA spacing d. (Note that the nonlinear length [, includes an extra factor of
8 relative to the definition in Eq. 2.3.) Both &, and d were measured in the high-
temperature X-ray scattering experiments[26, 28]. In Table 6.1, we have calculated
the nonlinear lengths for small and large DNA spacings. Note that L < [, ,, and
thus significant departure from harmonic 2D smectic behavior was not found in the
high-temperature CL-DNA experiments[26, 28|.

The finite length of the DNA molecules ipya &~ 16um introduces another crossover
lengthscale. The density of DNA molecules within a given layer is p = 1/dlpna, and

thus edge dislocations occur on lengthscales z, z > £;, where

€4 = y/dlpna (6.2)
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is the dislocation length due to finite-sized DNA. We find &; ~ 0.21pym and 0.30pum
when d = 28A and 55A respectively. Note that L < &, and thus the subdomains are
small enough to possess 2D smectic ordering. We can also estimate the core energy
cost for creating hairpin edge dislocations within the 2D smectic lattices. Hairpins
cause the DNA director to change by Af ~ 7 over a lattice spacing d. The energy

cost for a hairpin can be estimated from the 2D bending energy. We obtain

Ew _7&
L ——l 6.3
2T  4d’ (6:3)
which implies that hairpins are favored on lengthscales greater than
Ej,
Enp = dexp (2—;) : (6.4)

Since &pp > &4 > L throughout the experimental range in d, hairpins do not affect
the analysis of the shape of I(g) in Ref. [28]. We do not yet have accurate estimates
of z* and z* since the value of the orientational rigidity K, is unknown. Scattering

experiments will see sliding columnar behavior on lengthscales less than &, if 2%, 2* <

€a-

6.2 Future Projects

The ideas presented here can also be applied to a three-dimensional stack of XY-
models. We have found a sliding XY phase which behaves essentially like decoupled,

independent 2D XY -models with zero free energy cost associated with rotating spins
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in one layer relative to those in neighboring layers[22]. As a result, the two-point
spin-correlation function for the sliding XY phase decays algebraically with in-plane
separation. We propose that this sliding XY phase may exist between the low-
temperature 3D orientationally ordered phase and the high-temperature disordered
phase. Since the XY order parameter is analogous to the nematic order parameter,
the phase sequence columnar — sliding columnar — nematic lamellar — sliding

nematic lamellar — disordered layers is possible in CL-DNA complexes.



Appendix A

Calculation of the Sliding Columnar Displacement Fluctuations

In this Appendix, the expression for the sliding columnar displacement fluctuations
given in Eq. 3.7 will be derived. To do this, we evaluate the integral of the the Fourier

transformed SC correlator G(q) over all g-space:

d3q d3q T
m2y = [ =9 G(q) = ’
((u?)?) / (n)? (@) / (27)3 Bq? + Kq? + K,q2¢2p(g,a)

(A.1)

where p(u) = 2[1 — cos(u)]/u®. The fluctuations diverge at small wavenumbers q ~
1/L, where L is the system size. To calculate how the fluctuations scale with L,,
we set L, — oo and L, ~ L,. Note that the SC form for G(q) is valid only when
L, > z*, where z* = a/p, and p, = \/m . The first step in the calculation is
to perform the integration over g, with A, — oo and then use the fact that G(q) is
an even function of q so that the remaining integrals run over only positive ¢, and
gy- Note that taking the A, — oo limit does not alter ¢, — 0 divergences. The

resulting expression

(WD) = 55757 fm o Jpr G ’
2r2VBK Jizt ¢o Jrit T g2 4 1i262p(gy0)
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where A, = 7/a, is made dimensionless by changing variables to v = ¢yz* and w =
gya. The In? L, divergence of the displacement fluctuations can be seen immediately
by looking at the g, — 0 limit of Eq. A.2.

The SC displacement fluctuations can be written as the sum of a continuum term

I, that does not depend on p(w) and discrete term I, that does depend on p(w).

T

u)?) = ————[I.+ 1], A3
((uf)7) 277 [BE, [Le + 4] (A.3)
where I. and I; are defined by
Aez™ dy  fady dw
I, = / 4w Ad
oLzt v JaLyt A v? + w? (8.4)
1 1

Agx* al
Id = / d_'U ’ dw

*Ly' v JaLy'

\/v2 +wp(w) Vvt w?
We first focus on the continuum contribution I.. The integral over w is straightfor-
ward;

= [ [ FA ) (L, )] = 1~ 1 (4.5)

L7l
where

f(z,v) =1n [x + Va2 + UQ] : (A.6)

The integral over v in [, c(l) can be evaluated by separating the function

F(Aya,v) = In[2A,a] + In E + %,/1 n (U/Aya)2] , (A7)

into a constant term and a term that is well-behaved at small v. We then insert this
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expression into Eq. A.5 and find that

(1) Agz” dU 1 1
10 = n[2A,a] In[A, L,] + / iy [§+§,/1+(U/Aya)2 . (AB)
z*Lyt v

The first term diverges with system size L,, and the second term is nondivergent.
f(aL;l, v) can also be separated into a constant term and a term that depends on v.

We then integrate f(aL,',v) over v to find

@ 1 Aes™ du
1) = n2aL, "] In[A, L] + / 1
Lyl v

1 1 L,v\?2
LY —y> . A,
2+2 +(a ( 9)

The L, dependence in the integrand of the second term can be moved to limits of the
integral by changing variables to s = L,v/a. In contrast to the previous expression
for I() in Eq. A.8, the large s part of the integral in Eq. A.9 diverges with system size.

The divergence can be isolated by adding and subtracting In[s/2]/s. The resulting

expression,
1 AL 1 L
@ _ 4 R et R T el ' Al
I; ln[ZaLy [n{As L] + 2]n l 2ty ] 2111 lQlLyLw] (410
AoLy/uy 1 1
[ L LT ] i),
Ly/Lm“y S 2 2

has two terms that diverge and two terms that do not diverge with system size. Note
that L,/Lyu, is O(1) since L, ~ L,. We then subtract I2) from IV, drop the
nondivergent terms, and set L, = L, to obtain

AL,
24y

1 1
I, =In[A, L] In[A,L,] — g In l 1 =5 In®[24, Ay L] (A.11)

for the continuum contribution to the displacement fluctuations.
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The discrete contribution is obtained by evaluating
Agz* (]
Iy = / Y Pw), (A.12)

Lyt v

where
1 1
\/1)2 + w?p(w) V2 + w?

(A.13)

F(U)Z/Oﬂdw

In the definition of F'(v), the lower limit a/L, = 0 since the small w part of inte-
gral is well-behaved. In contrast to the continuum term, the discrete term diverges
logarithmically with system size. To see this, we expand F(v) around v = 0 and
find F(v) = F(0) + av® + O(v*), where F(0) = In[4/7] and a is a constant. Thus,
I; = In[4/7]In[A, L] plus terms that do not diverge with system size. To make the
argument of the In term in I; match the In? term in I, we add and subtract the

constant In[4/7]In[2u,A, /A;] to find
I, = In[4/7] In[2p, Ay L,]. (A.14)

We then add I. and I; and rewrite Eq. A.3 as

n\2\ __ T
(P = S o

In the final step, we factor out a 1/2, combine the In L, and In* L, terms, and drop a

(% an[QNyAyLz] + 111[4/71’] ln[QNyAyLw]) . (A'15)

nondivergent term to yield the following expression for the displacement fluctuations

in the limit L, — oo and L, ~ Ly:

(A.16)




Appendix B

Calculation of the Sliding Columnar Position Correlation Function

In this Appendix, we evaluate the SC position correlation function

9u(r,0) = 5 ([u2(x) = WO (B.1)

between two DNA strands located in layer n = 0 and separated by r in the xz plane.
For general separations, g,(r,0) cannot be expressed in closed form. The aim of this
Appendix is to calculate g,(r,0) along the special directions z = 0, > z* and x = 0,

z > z*.

B.1 Large z, Small z Limit

The following expression for g,(x,0) is obtained by setting z and n to zero in Eq. 3.14:

d?q 1 — cos(gyx)
2m)2 Bq2 + K ¢4 + K,q2q2p(qya)’

QWL®=T/( (B.2)
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The first step in the derivation of g,(z,0) is to perform the integration over ¢, with

A, — o0. The ¢, integration yields

T
g’u '/I"J 0 = I ./L', Aw 9 B3
(2,0) %Wﬁi( ) (B.3)
where
Ay 1— 7/ T*
I(z,A,) = dgy — O T) (027 / day (B.4)
0 \/qx + q;p(gy*

We then decompose I(z,A;) = I.(z,A;) + Li(r,A;) into continuum and discrete

contributions as we did previously in Appendix A, where

As 1 —cos(qpz) [/

dq
IC ‘r’Am = / qx— 7y
( ) 0 Gz 0 Va2 + qi

Ay 1 — cos(gpzx) [7/=
Li(z, Ay) = /0 dg, L= 4:2) /0 dg,

Az

1 1
2 2 * N 2 2
\/Qw + ¢p(gyz*) \/qa: +q

Since the A, — oo limit is well-defined, we calculate I.(z) = I.(z,00) and I4(z) =
I;(x,00) and drop terms that depend on the finite ultraviolet cutoff.
To calculate the continuum contribution, we first set g, = ug, and then v = g,x.

These changes of variables yield

e = [ LK), (B.)
where
K= [~ du%. (B.7)
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The strategy for calculating the In® z term in I,(z) is to isolate the part of K (v) that

scales as Inv for large v. To this end, we write

K@) = /01 du[l — cos(uv)] +/ — [1 — cos(uv)] lﬁ - 1] (B.8)
/ du 1 — cos(uv)
Lou Vit

It is obvious that only the first term has the correct scaling; the remaining terms
in K (v) are then separated into constants and functions of v that are well-behaved

either as v — 0 or v — oo. This partitioning leads to
K(v) = In(Bv) + K (v), (B.9)

where B = 2¢7, v is Euler’s constant, and

© cosu L cos(uv) 1 % du cos(uv)
= d —/ d -1l - — B.10
/v T o T L/1+u2 ] 1 u /14 u? ( )

scales as 1/v? for large v.
We then plug K(v) into Eq. B.6 and break the integral over v into small- and

large-v parts to obtain

L(z) = 1@1((@)+/1”‘”/z @ Bv]+/M/$ R(v). (B.11)

0 v

Next, we evaluate the integral over v in the second term, collect constants, and find
1 2 *
I(z) = 3 In“[2e"mx/z*] + Aq, (B.12)
where

A, = ——ln2[267] + /1 W g /100 DEw). (B.13)

v
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The second and third terms in A, are finite since K (v) scales as v? for small v in the
former and there is phase cancellation from the cos(uv) factor at large v in the later.
We will now calculate the discrete contribution to g,(z,0). The first step is to

rewrite I4(z) in dimensionless form:

Azz™ dy

La(z) = /0 "1 - cos(va /s F(v), (B.14)

where F'(v) was defined previously in Eq. A.13. We next break the integral over v

into small- and large-v parts and take the x > x* and A, — oo limits to obtain

Li(z) = F(0) /Old—v[l—cos (ve/a") ]+/ Clre) - FOI+ [ W pw).  (B.15)

v

Note that taking the x > z* limit removed the cos(vz/z*) terms from the last two
terms in Eq. B.15 due to phase cancellations. It is again obvious that the first term

in Eq. B.15 scales logarithmically with z/z*, and thus
Iu(z) = In[4/7]In [evﬁ*] + B, (B.16)
x

where
B, = /1 W ip(y) - ]+/ (B.17)

is a constant. The last step in the calculation of g(z,0) is to add the continuum and

discrete terms, I.(x) and I4(x). The final result is

9u(2,0) = glc—x (%)2 <ln [8e7x ] +C, ) (B.18)
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where C, = 2(A, + B,) — In*[4/7] — 21n[4/7] In[27]. Both the z-dependent term and
the constant term in g,(x,0) agree with a recent calculation in Ref. [10]. Numerical

calculation of the constant yields |C,| < 0.002.

B.2 Large 7z, Small x Limit

The calculation of g,(z,0) is similar to the calculation of g,(z,0) given previously
given in Sec. B.1. The expression for g,(z,0) is obtained by setting z and n to zero in
Eq. 3.14. The first step in the calculation is to perform the integration over g, with
A, — oo which yields

= LI(Z,AI), (B.19)

gu Z:O -
(2,0) 272, /BK,

/A dq /7r/w — E*Z)‘(Ix\/ a2 +azp(gyz*)

\/ @ + ¢2p(qya*)

where

I(z, A;)

(B.20)

In what follows, we set A, — oo, drop terms that depend on the finite ultraviolet
cutoff, and define I(z) = I(z, 00). The second step is to change variables to u = ¢, /¢,
and v = Azq; and decompose I(z) = I.(z) + I4(2) into continuum and discrete terms,

where

n du —vuv14+u2
L(z) = / / B.21
(2) 2 w1t u? ( )

) = [T R0 - P/,
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where n = 7%2/2*, 2* = o[\

Yo B
Vo2 wlp(u) VO

F(v,n) = /07r du (B.22)

and F(v,0) is equivalent to F'(v) defined in Eq. A.13.
We first focus on the continuum contribution to g,(z,0). The integral over v in

I.(z) can be broken into small- and large-v parts,

L) = / v, /1 " ), (B.23)

where
— emvuV 1+u?

o 1
J(v) = / dy————c—. B.24
W)= v (B.24)
The strategy is to extract the part of J(v) that scales as In v for large v. If J(v) ~ Inwv

for large v, I.(z) will scale as In*[z/2*] as expected. Note that .J(v) scales as v? for

small v, and thus the first term in Eq. B.23 is a finite constant. After some algebra,

we find
J(v) = In[Dv] + J(v), (B.25)
where D = 2¢e7,
J(v) = " du— — / um g vuVitu? / u_\;g, (B.26)
and
o(u) = L2 (B.27)

V1 +u?



111

We can now plug the expression for J(v) in Eq. B.25 into Eq. B.23 and obtain the

continuum contribution

1
I.(2) = Zln2 [2677T2£*] + A, (B.28)
z
where
1 1 rldv 1 feodv ~
PR AL 5o
4n[e]+20UJ(v)+21 UJ(U) (B.29)

is a constant. Note that J(v) decays exponentially for large v, and thus the third
term in A, is finite.
We now concentrate on the discrete contribution to g,(z,0). The integral over v

in Iy(z) =1 51) + 1, 52) can also be broken into small- and large-v parts, where

= Y, 0) — Fv,v2)2)] (B.30)

v
and [ C(lZ) is an identical expression except the limits on the integral over v run from
7

one to infinity. To isolate the In z term in I, ’, we change variables to t = vz/z* and

take the z > z* limit. In the large z limit, Eq. B.30 becomes

1Y = F(0,0)In [Zi +B,, (B.31)
where F'(0,0) = In[4/~n] and
B, - /01 % F(0,0)~ F0.0] - [~ %F(O,t) (B.32)

is a constant. The large-v contribution to I,

%
19 = / %F(U,O), (B.33)
1
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is simply a constant when z > z*. We then collect the discrete contributions and
find

() = n H 2]+ B. (B.34)

where B, = B, + 1.

The last step in the calculation of g,(z) is to add I.(z) and I4(z). The final result
is
Z*

A\ /1
gu(z>:l—(%> (2

where C, = 2(A, + B,) — 2In*[4/7] — 2In[4/7] In[2e”7?] ~ 1.35 was evaluated numer-

32e73] + Cz) , (B.35)

ically. Ref. [10] obtained the same z-dependence for g,(z,0) but obtained a different

constant with C, = 7%/8 ~ 1.23.



Appendix C

Evaluation of the 3D Smectic One-Loop Diagrams

Our task in this Appendix is to calculate X(q) defined in Sec. 4.2.3 as the one-loop
diagrammatic corrections to I'(q), the vertex function for the 3D smectic. These
corrections arise from the nonlinear terms in the Hamiltonian in (4.10). The two
nonlinear terms are d,u,(V ;u)?/2 and (Vu)*/8 (shown schematically in Fig. C.1),
and only contractions of the former contribute to the renormalization to one-loop
order. The three possible contractions are shown in Fig. C.2. The diagrammatic

corrections 3(q) can be expressed as

S(q) =T (a)g; + M2(a)gl = T1(q) + S2(q). (C.1)

Note that we have separated the ¢ and ¢4 dependence of ¥(q) so that to lowest order

in q
dx d¥y
dg? " (©2)
z lgz=p2,q1. =0 % lgz=p2,q1=0
and
dx d>s
dat vy (C.3)
91 qz=p2,q.=0 71 q-=p2,q,. =0
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u u*
(a) , X 1,X
1,X 1,X
u u*
1,X u
(O JTp— X

Figure C.1: Schematic representation of the two relevant nonlinear terms in both the
3D smectic and sliding columnar elasticity theories. The perpendicular derivatives
(L) correspond to the 3D smectic theory and the z derivatives to the sliding columnar
theory. The term (0, ,u)* is pictured in (a) and the term (9,u)(0, zu)? is pictured
in (b). The symbols L, z, and z represent L, x, and z derivatives of the u field.
The diagram with four u fields in (a) does not contribute to the renormalization to
one-loop order; only contractions of (b) with itself contribute.

The contributions of d¥,/dg? to dX/dg?> and of d¥;/dqt to dX/dq} at the special
point ¢, = u? and g, = 0 are higher order in ¢ than the contributions in (C.2) and
(C.3). We begin by calculating 3 (q).

The diagram in Fig. C.2(a) alone contributes to X1(q) since it is the only one
with ¢? on the external legs. To evaluate the integrals in the perturbation theory, we
use dimensional regularization, i.e we take d = 3 — ¢, set the cutoff to infinity, and
look for the 1/¢ terms. 31(q) is obtained by calculating the ¢> contribution from the

following integral:

Yi(a) = _q2_§ _o:o (;ijri);i [(QL +k1)ilgr + ki)jkiik Gk + q)G’(—k)], (C.4)



1,x 1,x
(@ ——
Z z
1,x 1,x
1 x 1 x
(b) ——
1 ,x 1, x
VA Z
J_,X Z
(c) ——
¢ 1 x
z 1,x

Figure C.2: The three one-loop diagrams that contribute to the renormalization of
the 3D smectic and sliding columnar elastic constants. These diagrams are formed by
contracting 9,u (9, ,u)? with itself. The diagram in (a) contributes terms proportional

to ¢2 since a factor of g, is on each external leg. The diagrams in (b) and (c) contribute

terms proportional to ¢} in the 3D smectic theory and terms proportional to ngj and

q* in the sliding columnar theory since these diagrams have ¢2 or ¢2 on the external
legs.

where 4,7 = x,y and

1

@ t+wlgl

G(a) (C.5)

The coefficient of the ¢2 term in (C.4) is I1;(q). We can then approximate 3;(q) by
writing 31(q) = ¢2I; (¢, = 0, ¢,) plus higher order terms in ¢, that vanish when we
apply the boundary condition in Eq. (4.22). We obtain II;(g,) by setting ¢, = 0 in
the integral on the right hand side of (C.4).

To evaluate the integral, we first combine the denominators of G(k+q) and G(—k)
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employing the following identity:

1 1 1 dx
- . (C.6)
] I [

(k. + 0.7+ w R k2w 1kt bt 00.)? + (1 - 2)g2 + w k]

We then change variables to k., = k, + zq, and perform the integration over k.. We
find that ¥;(q) can be written in terms of the integral J(4, 3, z, ¢,) with J(s,v, z,q,)

defined by

k3
[2(1 — 2)g2 + w1k4 ]2

J(s,v,2,q,) = /oo dkﬂci‘e
0

wv/?

= 4F(v/2)r (%(21} — 85— 2+6)) r (%(5—!— 2 — e))
2] (s—20+2—€)/4 | )

z

X [3:(1 — z)wq

where I'(x) is the gamma function evaluated at z. The expression for 3;(q) is simple

when expressed in terms of the integral J (4,3, z,q,); we find

q?

E1((21) = - 167

1
/ dz J(4,3,1,q,). (C.8)
0

From (C.7) we know that the most dominant term in J(4, 3, z, ¢,) scales as 1/e and

thus
w2

—e/4
Si(a) = —p—d: (wi?) (C.9)

plus higher order terms in e. We can also write X,(q) as

d¥i(q)
dg?

g
= — 1
167me (C 0)

qz=p2,q1 =0

when we replace w by (gu€)%/?.



117

Y5(q) is determined by calculating the ¢4 contributions from the diagrams in

Figs. C.2 (b) and (c). 32(q) is the ¢| part of the the following integral:

Yold) = —ququ; / % [(kz +q.) %k ik + (ko +q.) (kL + qJ_)ij_ikz]
xG(k +q)G(—k). (C.11)

The ¢} contributions come from expanding G(k + q) to second order in g, ; we see
from (C.11) that we need both the first and second order terms in the expansion.
The coefficient of the ¢! term in the above expansion is IIs(g. = 0,¢,), and thus
Y9(q) = ¢1Ils(q.) plus higher order terms in ¢, that vanish when we apply the
boundary condition in (4.23).

The first and second terms in the integrand of (C.11) correspond to the diagrams
in Figs. C.2 (b) and (c), respectively. We break up the integral so that Ys(q) =

¥8(q) + X5(q), and we first calculate ¥5(q).

1 o dk d)
b 2 1—¢
Y(q) = _éqJ_qu_qu_IQJ_m /_Oo o /7(27r)2_€dkﬂ-cL
QJ_:()]

d’G(k + q)
X e ——
where € is the solid angle in 2 — € dimensions and the second derivative of G gives

dgi,dq.,,

the coefficient of the quadratic term in the expansion of G(k + q). We then remove

the angular dependence by integrating over {2 and using the following two identities:

s So_e o
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and

df2 Sy,
/ (2m)2—¢ kiikijkiik im = 7(2 i BE k' (84;6um + 0abjm + Sim0;1), (C.13)

where 4;; is the Kronecker delta and Sy = Q/(2m)¢ = 27%2/((27)%T(d/2)) with
d = 2 —e. We are interested in the lowest order terms in € and hence will use
Sy« & (2m)~" below. We then change variables to k. = k, + ¢, and combine the

denominators of G(—k) and G(k + q) using an identity similar to (C.6).

1 1
X 7 = C.14
(ks —q.)* + w 'k [k? + w’lkjl_] ( )
1
L(n+ 1)/ dz fn(@) T
O [tk — 2.2 +2(1 — 2)2 + w kYL
where n = 2,3 and
1—ux, n=>2
falz) = (C.15)

(1—2)%/2, n=S3.

We change variables again to k” = k, + zq, and integrate over k”; we find that 3X%(q)

can be written in terms of the integrals J(s,v, z, q,) defined previously in (C.7):

w—l

»b = ——
2(Q) 3971

1

qi/ dz [— 5(1—x)J(4,3,2,q,) — 152°(1 — x)¢2J (4,5, 2, q,)
0

+9w (1 — 2)%J(8,5,7,¢,) + 45w 'z*(1 — 2)%¢*J (8,7, z, qz)]

J(4,3,2,q,) and J(8,5,x,q,) have terms proportional to 1/e¢ but J(4,5,z,q,) and
J(8,7,2,q,) do not. We keep the terms that are proportional to 1/e and drop the

others. In the last step we perform the x integration and find

wl/?

" B4me

25 (q) = gt (wg?) =/ (C.16)
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plus higher order terms in e.
We next obtain 35(q) by calculating the ¢} contributions from the diagram in

Fig. C.2(c). ¥5(q) can be written in terms of the following integral:

) ds) o dk,
Y5(a) = _QLiQLj/deLki /;Oo o
dG(k+q
(b + ) GH) [ g, TEXTD
9L q1=0
91,91, @Gk+q)
T L AR . C.17
D dq.,dq.,, qu]] (©17)

The first and second derivatives of G' give the coefficients of the linear and quadratic
terms in ¢, in the expansion of G(k + q). We then follow a procedure similar to the
one employed to find 3%(q), i.e., we change variables to k!, = k, + g,, combine the
denominators of G(k+ q) and G(—k), and integrate over €. The remaining integrals
in (C.17) are over k; and z. We then integrate over &k, and write 35(q) in terms of
J(s,v,2,q,); we find

-1

1
v / dx [— 9(1—1x)J(4,3,x,q,) + 27x(1 — x)quJ(él, 5,%,q,)

Zg(‘l) = —%qzi 0

+9w (1 - 2)2J(8,5,7,¢.) — 45w 'w(1 — 2)°¢2J(8,7,7,¢.)].  (C.18)

Only J(4,3,z,q,) and J(8,5,x,q,) have terms proportional to 1/e. We keep these

terms and perform the integration over z to find

c 3?1)1/2 —€
S5(a) = a1 (we) / (C.19)
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We obtain ¥5(q) by adding 3%(q) and ¥5(q) in (C.16) and (C.19) to yield

dz?(q) — (9/1'6)_2/3 9
dal |, _ 4 —0 32me’
once we set w = (gu)?/® and ignore higher order terms in e.

(C.20)



Appendix D

Evaluation of the Sliding Columnar One-Loop Diagrams

The aim of this Appendix is to calculate X(q), the one-loop diagrammatic corrections
to the vertex function for the sliding columnar phase. The rotationally invariant
theory given in (4.49) contains two relevant nonlinear terms, 0,u,(0,u,)* and (9,u,)*.
These terms are pictured schematically in Fig. C.1. From this figure we see that
only contractions of d,u,(0,u,)? renormalize the elastic constants to one-loop order.
The three possible contractions are shown in Fig. C.2. X(q) has ¢Z, ¢2¢;, and g;

contributions, and we will calculate each separately below. To do this, we express

() = M(a)g + Ma(a)giq; + s(a)g, (D.1)

Yi(q) + X2(q) + Z3(q)-

We have separated the ¢, qfcq;, and ¢+ dependences so that, for instance,

_ a3
~ dg!

= (D.2)

q.=p2,q1.=0 q:=n2,q.=0
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As in Appendix C, we use dimensional regularization to calculate the integrals.
The ¢2 contribution to ¥(q) results from squaring the diagram in Fig. C.1(b) and
contracting both pairs of x derivatives. This leaves ¢, on each external leg as shown

in Fig. C.2(a). X:(q) is the ¢? part of the following integral:

Yi(q) = _%3 (;i:);li [(qw + kz)%iG(q + k)G(—k)], (D.3)
where
1
G(a) (D.4)

gt w gy
The coefficient of the ¢Z in the above integral is II;(q) and thus ¥1(q) = ¢2II;(¢sy =

0,¢.) plus higher order terms in ¢, and ¢, that vanish when we apply the boundary

condition in (4.59). Thus, £;(q) is obtained by setting ¢, = ¢, = 0 in (D.3). We find

k4

D.5
e o R [ + k) F o i o)

2
qz 1—e
G / dkdk,d"~k

where we have changed variables to k, = w~'/?k} and dropped the prime. The first
step in evaluating this integral is to combine the two denominators in (D.5) using the
identity in (C.6) with k% replaced by k2k3. We then perform the integration over k,

and find that ¥;(q) can be written in terms of the integral (4,0, 3, z, q,), where

kikie

I(s,t,v,2,q,) = / dk.dk, /2
0 [2(1 — 2)g2 +w k23

= %F(%(t—i—l—e))f‘(%(s—t—i—e))
xF(i(Qv—t—s—2+e))

s+t—2v42—¢€)/4
X [3:(1 - x)wqg]( Homzmal .
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We give the most general form for the integrals over k, and k, since we will need

these integrals later when we calculate ¥5(q) and X3(q). We find

Sua) =~ [ e 14.0.3 D.7

l(q)_ 871'2 qz 0 X ( ) Yy 7x>q2)' ( . )
and

D _ W o 2y—c/4 D.8

1(@) = —g5-¢:(we;) (D.8)

since 1(4,0,3,z,q,) x 1/e. We then set w = guc to find 3;(q) as a function of g,

d¥1(q) ___9
dq? 8¢

(D.9)

q: :N2an,y:O

Both the ¢2

2q; and g; contributions to X(q) come from the diagrams with z deriva-

tives on the external legs. The two contributing diagrams are shown in Figs. C.2 (b)

and (c). Their sum is given by

S = —qﬁ/ C(i;;)]: [(k: + ¢:)°k2 + (g2 + k2) (02 + ko) ok G(K + @)G (k). (D.10)

We find the g2g] terms by expanding G'(k + q) to second order in g,. We see that

cc
only the quadratic term in the expansion contributes. Higher order terms will vanish
when we apply the second boundary condition in (4.59). We then follow a procedure
similar to the one employed to calculate the ¢4 contribution to the 3D smectic vertex
function in Appendix C. We find that ¥5(q) can be written in terms of the integrals

I(s,t,v,z,q,) as shown below:

w172

1
Do) = -~ ng;/o do[ —2(1 - 2)1(4,0,3,2,q.) + 6w (1 — 2)°1(6,2,5,,q.)

— 3xq3(2m —1)(1-2)I(4,0,5,2,q,) + 15w_13:q2(2x -1 - x)2I(6, 2,7, x, qz)]
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We then look for the leading order terms in €; 1(4,0,3,x,q,) and 1(6,2,5,z, q,) have
leading order terms proportional to 1/e while 1(4,0,5, z,¢,) and 1(6,2,7,z,q,) do not
and are dropped. After integrating over z we obtain

w

Sa(q) = 5 - dagy (wa?) ™/ (D.11)
and
dXsy g
= —— D.12
d(ngg) =124z, =0 24me ( )

¥3(q) is obtained by calculating the terms proportional to ¢} in (D.10). We obtain
these terms by expanding G(k + q) to second order in ¢, and noting that both first
and second order terms in the expansion contribute. Note that higher order terms
in the expansion will vanish once we apply the third boundary condition in (4.59).
We calculate the g% contributions from Figs. C.2 (b) and (c) separately and define
Y3(q) = Z5(q) + X5(q). We first calculate the contribution from Fig. C.2(b). Using

the same procedure as the one employed to calculate the g2

g, contribution to X(q),
we find that ¥3(q) can be written in terms of the integral I(s,t,v, z,q,).

w32

1
Eg(q) = - ]2 q;l/o dxl:_(1_‘T)(61(4a0a3ax7(h)+I(2a2731x7Qz)

+ 182°¢°1(4,0,5,7,q,) + 32°¢°1(2,2,5,7,¢,))
+ 3w (1 —2)?(41(8,0,5,7,q.) + 202%¢21(8,0,7, 2, ¢.) + 41(6,2,5,7, .)

+ 202%¢21(6,2,7,7,¢.) + 1(4,4,5,,¢:) + 52°¢21(4,4,7,7,¢.))].  (D.13)

We note that three of the integrals in (D.13), 1(4,0,5,z,¢,), 1(8,0,7,,q,), and



125

0

1(6,2,7,x,q,), have leading order terms that scale as ¢’ and are dropped. Two

integrals, 1(2,2,3,z,q,) and I(4,4,5,7,q,), have 1/¢> as well as 1/¢ terms, while the
remaining five integrals 1(4,0,3,z,q,), 1(2,2,5,2,q.), 1(8,0,5,z,q,), 1(6,2,5,x,q,),
and I(4,4,7,,q,) have leading order contributions that scale as 1/e. We collect

terms and perform the x integration to find

Ly

1 1
—e/4
87T2o5qm

Sh(a) = —patwe?) /[~ + 2] - . (D.14)

2 rather than e¢~!. The

Note that the dominant contribution to E’?’, is of order €~
undesirable ¢ 2 term and the In[2]/e term will be cancelled by terms in 3§. The term

proportional to In[2]/e originates from the integrals (2,2, 3, z,q,) and 1(4,4,5,x,q,)-

This can be seen by expanding I(4,4,5,z,q,) in powers of €; we find

1(4’ 4’ S’miqz) =

2u5/2 el’(5/2) €I'(1) —
5 (1 T 3T6/2) +3 F(l)) [:U(l - x)qu] (D.15)

€
to order O(1/¢), where I''(z) is the derivative of the gamma function evaluated at
x. The logarithm arises from evaluating the derivative of the gamma function at
a half integer. For example, I''(5/2)/T'(5/2) = —vy + 8/3 — 2In[2] where v is the
Euler-Mascheroni constant.

We can also write X§(q) in terms of the integrals I(s,t, w,z,q,). We obtain

w32

1
Zg(q) = - ]2 q;l/o dz [(1 - .’E)( - 10[(47 0,3,z, QZ) + 303:(1 - .’E)qg[(ll, 0,5,z, QZ)

— 31(2,2,3,7,¢.) + 9z(1 — 2)¢?1(2,2,5,2,¢.)) + 3w~ (1 — 2)*(41(8,0,5,7,¢.)

— 20z(1 — 2)¢?1(8,0,7,2,q,) +4I(6,2,5,7,q,) — 202(1 — x)¢1(6,2,7,7,q,)
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+ I(4,4,5,2,q¢.) — 52(1 — 2)¢21(4,4,7,2,¢.) ), (D.16)

which becomes

1 1 7

() = — g5 e(we) /| = - —nf2] - ] (D.17)

when only terms proportional to 1/€? and 1/¢ are retained. We see that when we add

(D.14) to (D.17), the terms proportional to 1/e* and In[2]/e cancel and we are left

with
1 —€
S3(q) = =g (wg?) "/ (D.18)
127%¢
and
d¥;(q) 4 g
= O —=. D.19

qz=12,qz,y=0



Appendix E

SC One-Loop Diagrams with a Finite Wavenumber Cutoff

In this Appendix we show that employing a finite cutoff leads to ambiguities when
we evaluate the sliding columnar one-loop diagrams. These diagrams are shown in
Fig. C.2; (a) contributes to 3;(q) and both (b) and (c) contribute to ¥5(q) and
¥3(q). The ambiguous result is that we obtain different answers for 3(q) depending
on whether external momentum ¢ is sent through the top or bottom part of the
internal loop. The ambiguity develops when momentum ¢, appears in the internal
loop and the top and bottom paths through the internal loop are different. The
diagram that causes this ambiguity is the ¢; part of Fig. C.2(b). We can see this
by calculating the g2 corrections to the vertex function, ¥}(top) and 34(bot), which

result from sending k + g through the top(bottom) sections of the internal loop.

t0p) =~ [, s [k + 02 "GRG+ )], (E1)
and
000 = ~¢2 [ o5 [0 + 0 GGk Q) (B2

127
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where A is a finite wavenumber cutoff and G(q) was defined previously in (D.4). With
A # o0,
Y2 (top) # X% (bot). (E.3)
If we employ dimensional regularization instead and send A — oo, these top and

bottom amplitudes are identical.
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