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Stress anisotropy in shear-jammed packings of fric-
tionless disks

Sheng Chen,a,b Weiwei Jin,c,b Thibault Bertrand,d Mark D. Shattuck,e and Corey S.
O’Hernb, f ,g

We perform computational studies of repulsive, frictionless disks to investigate the development
of stress anisotropy in mechanically stable (MS) packings. We focus on two protocols for gener-
ating MS packings: 1) isotropic compression and 2) applied simple or pure shear strain γ at fixed
packing fraction ϕ . We show that MS disk packings occur as geometric families (i.e. parabolic seg-
ments with positive curvature) in the ϕ -γ plane. MS packings from protocol 1 populate parabolic
segments with both signs of the slope, dϕ/dγ > 0 and dϕ/dγ < 0. In contrast, MS packings from
protocol 2 populate segments with dϕ/dγ < 0 only. We then derive a relationship between the
stress anisotropy and dilatancy dϕ/dγ. We show that for MS packings prepared using isotropic
compression, the stress anisotropy distribution is Gaussian centered at zero with a standard de-
viation that decreases with increasing system size. For shear jammed MS packings, the stress
anisotropy distribution is a convolution of Weibull distributions that depend on strain, which has a
nonzero average and standard deviation in the large-system limit. We also develop a framework
to calculate the stress anisotropy distribution for packings generated via protocol 2 in terms of
the distribution for packings generated via protocol 1. These results emphasize that for repulsive
frictionless disks, the ensemble of MS packings is the same for these two packing-generation pro-
tocols. Thus, macroscopic quantities, such as the stress anisotropy, depend on the protocol, not
because the ensembles of MS packings are different, but because the protocol changes the MS
packing probabilities.

1 Introduction
For systems in thermal equilibrium, such as atomic and molecu-
lar liquids, macroscopic quantities, such as the shear stress and
pressure, can be calculated by averaging over the microstates of
the system weighted by the probabilities for which they occur, as
determined by Boltzmann statistics1. In contrast, granular mate-
rials, foams, emulsions, and other athermal particulate media are
out of thermal equilibrium and this formalism breaks down2,3.
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For dense, quasistatically driven particulate media, the relevant
microstates are mechanically stable (MS) packings with force-
and torque-balance on all grains4,5. In contrast to thermal sys-
tems, the probabilities with which MS packings occur are highly
non-uniform and depend on the protocol that was used to gen-
erate them6. For example, it has been shown that MS pack-
ings generated via vibration, compression, and pure and simple
shear possess different average structural and mechanical prop-
erties7–9. However, in previous work on jammed packings of
purely repulsive frictionless disks, we showed that the differences
in macroscopic properties do not occur because the collections
of microstates for each protocol are fundamentally different, in-
stead the probabilities with which different MS packings occur
change significantly with the protocol9. Thus, it is of fundamental
importance to understand the relationship between the packing-
generation protocol and MS packing probabilities.

Jamming, where an athermal particulate system transitions
from a liquid-like to a solid-like state with a non-zero yield stress,
induced by isotropic compression has been studied in granular
and other athermal materials for more than 20 years7,10,11. Re-
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cently, Bi, et al. showed that packings of granular cylinders can
jam via simple and pure shear at fixed area8. This was a surpris-
ing result because many previous studies had emphasized that
the application of shear at fixed packing fraction gives rise only
to flow and unjamming behavior. This point is emphasized in the
schematic jamming phase diagram in the stress Σ and packing
fraction ϕ plane in Fig. 1 (a), which shows that the yield stress Σy

or strain γy increases with ϕ above jamming onset ϕJ at zero shear.
Here, we assume that Σy ∼ γy ∼ (ϕ −ϕJ)

ν , where ν = 0.5. In Fig. 1
(b), we flip the axes so that the packing fraction at the yield strain
increases quadratically from ϕJ with increasing strain. In this pic-
ture, increasing the shear strain does not give rise to jamming.
However, we will show below that this picture is incomplete, and
the application of shear strain can cause unjammed systems of
frictionless, spherical particles to jam9,12.

(a)

unjammed

jammed

(b)

jammed

unjammed

Fig. 1 (a) A schematic jamming phase diagram in the stress Σ and pack-
ing fraction ϕ plane. The solid line indicates the yield stress Σy(ϕ). For
applied stress Σ < Σy, the system is jammed and for Σ > Σy, the system
flows and is unjammed. We assume that the yield strain γy scales with
the yield stress and obeys Σy ∼ γy ∼ (ϕ −ϕJ)

ν , where ν = 0.5 and ϕJ is the
jammed packing fraction in the absence of shear stress. (b) The same
jamming phase diagram in (a) except rendered in the ϕ -γ plane. The
jammed packing fraction increases quadratically with strain from ϕJ . With
the phase diagrams in (a) and (b), increasing strain does not cause a
system to transition from unjammed to jammed.

Despite important work9,12,13 since the original manuscript by
Bi, et al., there are still many open questions concerning shear
jamming. For example, 1) Can shear jamming occur in MS pack-
ings of frictionless grains and if so, do these shear-jammed pack-
ings possess a nonzero stress anisotropy? and 2) Are there sub-
stantive differences between MS packings generated via isotropic
compression versus shear? In this article, we describe numeri-

cal simulations of frictionless, purely repulsive disks aimed at ad-
dressing these two questions. We focus on the differences in the
distributions of the stress anisotropy in MS packings generated by
isotropic compression versus pure and simple shear.

Our computational studies yield several key results. First, we
verify that MS packings form geometrical families in the packing
fraction ϕ and shear strain γ plane. MS packings generated by
isotropic compression form parabolic segments with positive cur-
vature in the ϕ -γ plane, populating parabolic segments with both
signs of slope dϕ/dγ. In contrast, MS packings generated via (pos-
itive) shear strain only populate segments with slope dϕ/dγ < 0.
Note that this slope is the opposite sign as that depicted in Fig. 1
(b). Second, we identify relationships between the shear stress
and normal stress difference and the packing fraction and its
derivative with respect to strain for MS packings. These relation-
ships allow us to calculate the stress anisotropy (which includes
contributions from both the shear stress and normal stress differ-
ence) for MS packings by only knowing how the jammed pack-
ing fraction varies with strain. Third, we show that the distri-
bution of the stress anisotropy for isotropically compressed pack-
ings is Gaussian centered on zero with a width that decreases
as a power-law with increasing system size N 14. In contrast, the
stress anisotropy distribution is a convolution of strain-dependent
Weibull distributions with a finite average and standard devia-
tion in the large-system limit for shear-jammed MS packings15.
Fourth, we develop a framework for determining the distribution
of stress anisotropy for shear-jammed packings as a function of
strain using the distribution of stress anisotropy for MS pack-
ings generated via isotropic compression. These results empha-
size that the ensembles of MS packings for frictionless disks are
the same for packings generated via different protocols. How-
ever, the MS packing probabilities vary strongly with the packing-
generation protocol, which gives rise to average macroscopic
quantities that depend on protocol.

The remainder of the article includes three sections and three
appendices, which provide additional details to support the con-
clusions in the main text. In Sec. 2, we describe the two main
protocols that we use to generate MS packings and provide defi-
nitions of the stress tensor and stress anisotropy. Sec. 3 includes
four subsections that introduce the concept of geometrical fam-
ilies, derive the relationships between the stress tensor compo-
nents and the dilatancy, develop a framework for calculating the
shear stress distribution for shear-jammed packings in terms of
the shear stress distribution for isotropically compressed pack-
ings, and describe the robustness of our results are with increas-
ing system size. In Sec. 4, we give our conclusions, as well as de-
scribe interesting future computational studies on shear-jammed
packings of non-spherical particles, such as circulo-polygons16.

2 Methods
Our computational studies focus on systems in two spatial di-
mensions containing N frictionless bidisperse disks that interact
via the purely repulsive linear spring potential given by U(ri j) =
ε
2 (1− ri j/σi j)

2Θ(1− ri j/σi j), where ε is the strength of the repul-
sive interactions, ri j is the separation between the centers of disks
i and j, σi j = (σi +σ j)/2, σi is the diameter of disk i, and Θ(.) is
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the Heaviside step function that prevents non-overlapping par-
ticles from interacting. The system includes half large disks and
half small disks with diameter ratio r = 1.4. The disks are confined
within an undeformed square simulation cell with side lengths,
Lx = Ly = 1, in the x- and y-directions, respectively, and periodic
boundary conditions. Isotropic compression is implemented by
changing the cell lengths according to L′

x = Lx(1− ∆ϕ/2ϕ) and
L′

y = Ly(1−∆ϕ/2ϕ) and corresponding affine shifts in the parti-
cle positions, where dϕ < 10−4 is the change in packing fraction.
Simple shear strain with amplitude γ is implemented using Lees-
Edwards periodic boundary conditions, where the top (bottom)
images of the central cell are shifted to the right (left) by γLy

with corresponding affine shifts of the particle positions17. Pure
shear strain with amplitude γ is implemented by changing the
side lengths according to L′

x = Lx(1+ γ) and L′
y = Ly/(1+ γ) with

corresponding affine shifts of the particle positions.
As shown in Fig. 2, we employ two main protocols to generate

MS packings in the packing fraction ϕ and shear strain γ plane.
For protocol 1, we first place the disks at random initial posi-
tions in the simulation cell, and apply successive simple shear
strain steps dγ < 10−4 to total strain γt at fixed small packing frac-
tion ϕ0 = 0.1. We then isotropically compress the system in small
packing fraction increments dϕ to jamming onset ϕJ at fixed sim-
ple shear strain γ = γt . For protocol 2, we first place the disks
at random initial positions and then isotropically compress the
system to a target packing fraction ϕt < ϕJ at simple shear strain
γ0 = 0. We then apply simple shear to the system in small strain
steps dγ until the system jams at γJ . For protocol 2, the target
volume fraction ϕt varies from ϕm, below which no shear-jammed
packings can be found in the range 0 < γ < 1 to ϕJ obtained from
isotropic compression at γ = 0. In Appendix A, we also include
results for a packing-generation protocol similar to protocol 2,
except we apply pure instead of simple shear strain.

The total potential energy per particle U =U ′/Nε, where U ′ =

∑i> j U(ri j), is minimized using the conjugate gradient technique
after each compression or shear step. Minimization is termi-
nated when the potential energy difference between successive
conjugate gradient steps satisfies ∆U/U < 10−16. We define jam-
ming onset when the total potential energy per particle obeys
Umax <U < 2Umax, with Umax = 10−16. This method for identifying
jamming onset is similar to that used in our previous studies9.

The systems are decompressed (for protocol 1) or sheared in
the negative strain direction (for protocol 2) when U at a local
minimum is nonzero, i.e., there are finite particle overlaps. If
the potential energy is zero (i.e. U < 10−16), the system is com-
pressed (for protocol 1) or sheared in the positive strain direc-
tion (for protocol 2). For protocol 1, the increment by which the
packing fraction is changed at each compression or decompres-
sion step is halved each time U switches from zero to nonzero
or vice versa. Similarly, for protocol 2, the increment by which
the shear strain is changed at each strain step is halved each time
U switches from zero to nonzero or vice versa. These packing-
generation protocols yield mechanically stable packings (with a
full-spectrum of nonzero frequencies of the dynamical matrix18)
at jamming onset. In addition, all of the MS disk packings gen-
erated via protocols 1 and 2 are isostatic, where the number of
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Fig. 2 Schematic of the packing fraction ϕ and simple shear strain γ
plane that illustrates the two main protocols used to generate MS disk
packings. As shown in Fig. 3 (e), the jammed regions are bounded by
parabolic segments. In protocol 1, the system is first deformed to simple
shear strain γt at small initial packing fraction ϕ0 ≈ 0 (point b) and then
isotropically compressed to jamming onset at ϕt (point c). In protocol 2,
the system is first compressed to ϕt below jamming onset (point d) at
γ0 = 0 and then sheared to jamming onset at simple shear strain γt (point
e). Points (c) and (e) correspond to the same total deformation, and thus
the two protocols can yield the same MS packing.

contacts matches the number of degrees of freedom, Nc = N0
c ,

with N0
c = 2N′ − 1, N′ = N −Nr, and Nr is the number of rattler

disks with fewer than three contacts19.
For each MS packing, we calculate the stress tensor:

Σβδ =
1
A ∑

i̸= j
fi jβ ri jδ , (1)

where A = LxLy is the system area, fi jβ is the β -component of
the interparticle force on particle i due to particle j, ri jδ is the
δ -component of the separation vector from the center of particle
j to that of particle i, and β and δ = x,y. From the components of
the stress tensor, we can calculate the pressure P = (Σxx +Σyy)/2,
the normal stress difference ΣN = (Σyy − Σxx)/2, and the shear
stress −Σxy. We define the normalized stress anisotropy to be

τ̂ =
√

Σ̂2
N + Σ̂2

xy, where Σ̂N = ΣN/P and Σ̂xy = −Σxy/P. τ̂ includes
contributions from both the shear stress and the normal stress dif-
ference. We will show below that only the shear stress (normal
stress difference) contributes to τ̂ for MS packings generated via
simple shear (pure shear). Therefore, we will focus on Σ̂xy when
we study packings generated via simple shear and on Σ̂N when we
study packings generated via pure shear. (See Appendix A.) We
calculate mean values and standard deviations of the stress tensor
components over between 103 and 105 distinct MS packings.

3 Results
3.1 Geometrical families

In Fig. 3 (a), we illustrate that MS packings occur as geometri-
cal families, forming continuous segments in the jammed pack-
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ing fraction ϕ and shear strain γ plane, with the same interpar-
ticle contact networks9,20. In panel (a), the N = 6 MS packings
were generated using isotropic compression (protocol 1) from a
single random initial condition. In Fig. 3 (c) and (d), we high-
light two MS packings near the beginning and end of the geo-
metrical family indicated by the filled triangles in (a). The sys-
tem switches from one geometrical family to another when the
interparticle contact network becomes unstable. The beginning
and end of each geometrical family can be identified by find-
ing changes in the interparticle contact network or discontinuous
changes in ϕ(γ) or slope dϕ/dγ.

Each geometrical family of MS packings forms a parabolic seg-
ment in the ϕ -γ plane described by ϕ(γ)=A(γ−γ0)

2+ϕ0, where A,
γ0, and ϕ0 give the curvature, strain offset, and packing fraction
offset for each family. The curvature satisfies A > 0 for all geo-
metrical families of MS disk packings. In Fig. 3 (e) and (f), we
show that the data collapse onto a parabolic form when we plot
(ϕ −ϕ0)/A versus γ − γ0 for all geometric families we found using
protocols 1 and 2, respectively, with more than 105 initial con-
ditions. For protocol 1, we obtain families with both dϕ/dγ > 0
and dϕ/dγ < 0. However, for protocol 2, the geometrical families
only possess dϕ/dγ < 0. For protocol 1, the systems approach the
jammed region from below, and thus they can reach both sides of
the parabolas. For protocol 2, the systems approach the jammed
region from the left, and thus they jam when they reach the left
sides of the parabolas. Note the key difference in the signs of the
slope, dϕ/dγ, between the jamming phase diagrams in Figs. 1 (b)
and 3 (f). The schematic jamming phase diagram in Fig. 1 (b) is
missing the portion of the parabola with dϕ/dγ < 0.

The geometrical family structure can also be seen in the shear
stress versus strain as shown in Fig. 3 (b). In this case, the shear
stress |Σ̂xy| varies quasi-linearly with γ. For MS packings within a
given geometrical family, we find that |Σ̂xy| increases with ϕ and
|Σ̂xy| ≈ 0 when ϕ(γ) is near a local minimum or maximum (i.e.,
∂ϕ
∂γ = 0). Although we illustrated these results for a small system,

we showed in previous studies9 that the geometrical family struc-
ture persists with increasing system size. In large-system limit, the
family structure occurs over a narrow range of ϕ near ϕJ ≈ 0.84,
and the system only needs to be sheared by an infinitesimal strain
to switch from one family to another.

3.2 Relationship between the stress tensor components and
dilatancy

In this section, we derive relationships between the components
of the stress tensor (i.e. the shear stress Σ̂xy and normal stress dif-
ference Σ̂N) and the packing fraction and dilatancy21–23, dϕ/dγ,
for MS packings generated via protocols 1 and 2. For MS packings
belonging to a given geometrical family, the total energy does not
change following a single strain step. Thus, for a simple shear
step dγ, the total work is given by −PdA − ΣxyAdγ = 0. Using
dA/A =−dϕ/ϕ , we find

Σ̂xy =− 1
ϕ

dϕ
dγ

. (2)
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Fig. 3 (a) Packing fraction ϕ at jamming onset as a function of simple
shear strain γ for MS packings with N = 6 generated via isotropic com-
pression (protocol 1) and (b) the corresponding magnitude of the shear
stress

∣∣Σ̂xy
∣∣ versus γ. The data in (a) and (b) were obtained using the

same single set of random initial conditions. Panels (c) and (d) show the
MS packings near the start and the end of a geometrical family, indicated
by the lower and upper filled triangles in (a). Each geometrical family in
(a), as well as the families obtained from other random initial conditions,
can be described by parabolic segments, ϕ = A(γ − γ0)

2 + ϕ0, in the ϕ -γ
plane, where A > 0, ϕ0, and γ0 are the curvature, packing fraction offset,
and strain offset for each geometrical family. Panels (e) and (f) show
the normalized coordinates, (ϕ − ϕ0)/A versus γ − γ0, for all MS pack-
ings with N = 6 generated via protocols 1 and 2, respectively. Protocol
1 generates packings with both signs of dϕ/dγ, whereas protocol 2 only
generates packings with dϕ/dγ < 0. The jammed and unjammed regions
of the (ϕ −ϕ0)/A and γ − γ0 plane are indicated.

For a pure shear strain step dγ, the total work is given by −PdA−
σyyLxdLy −σxxLydLx = 0, where dLβ = Lβ (γ)− Lβ (γ + dγ) (with
β = x, y) is the change of the cell side lengths during the pure
shear strain step. Using this relation, we find

Σ̂N =−1+ γ
2ϕ

dϕ
dγ

. (3)

Thus, the shear stress Σ̂xy (normal stress difference Σ̂N) along a
geometrical family is proportional to the dilatancy, dϕ/dγ during
simple (pure) shear.

In Fig. 4 (a) and (b), we compare the results from the calcu-
lations of the shear stress and normal stress difference using the
stress tensor (Eq. 1) to those using Eqs. 2 and 3 for N = 6 MS
packings generated using protocol 1. We find strong agreement.
In Fig. 4 (c) and (d), we further compare the two methods for
calculating the stress tensor components by plotting Σ̂xy from the
stress tensor versus the right side of Eq. 2 and Σ̂N versus the right
side of Eq. 3 for several system sizes and protocols 1 and 2. The
data collapse onto a line with unit slope and zero vertical inter-
cept. Data points that deviate from the straight line collapse onto
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Fig. 4 (a) Shear stress Σ̂xy versus simple shear strain γ and (b) normal
stress difference Σ̂N versus pure shear strain γ for N = 6 MS packings
generated via isotropic compression (protocol 1). Gray circles are data
points obtained from the components of the stress tensor and blue dots
are obtained by finding all of the geometrical families and calculating Σ̂xy
and Σ̂N from Eqs. 2 and 3 along each family. Panels (c) and (d) show
plots of Σ̂xy and Σ̂N calculated using the stress tensor versus the results
from Eqs. 2 and 3 for MS packings with N = 6 (circles), 10 (diamond), 16
(squares), and 32 (upward triangles). Open (solid) symbols indicate MS
packings generated via protocol 1 (protocol 2). The solid line has unit
slope and zero vertical intercept.

the line when dγ is decreased to 2×10−4.

3.3 Distributions of the shear stress and normal stress dif-
ference for protocols 1 and 2

In the inset of Fig. 5 (a), we show the probability distributions for
the shear stress and normal stress difference, P(Σ̂xy) and P(Σ̂N),
for MS packings generated via isotropic compression (protocol 1)
and P(Σ̂N) for MS packings generated via protocol 2 with simple
shear. When scaled by the standard deviation S, these distribu-
tions collapse onto a Gaussian curve centered at zero with unit
standard deviation. As shown in Fig. 5 (b), the standard devia-
tions for all three distributions scale with system size as

S1(N) = S0
1N−ω1 , (4)

where S0
1 ≈ 0.61 and ω1 ≈ 0.48. Thus, the stress tensor is isotropic

in the large system-limit for MS packings generated via isotropic
compression (protocol 1). In addition, the normal stress differ-
ence is zero for MS packings generated via protocol 2 with simple
shear.

Table 1 Means (⟨.⟩) and standard deviations (S) of the shear stress Σ̂xy
and normal stress difference Σ̂N distributions in the large-system limit for
protocols 1 and 2.

Protocol ⟨Σ̂xy⟩∞ ⟨Σ̂N⟩∞ Sxy
∞ SN

∞
Protocol 1 0 0 0 0
Protocol 2
simple shear 0.060 0 0.015 0
protocol 2
pure shear 0 0.055 0 0.016
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Fig. 5 (a) The probability distributions of the shear stress P(Σ̂xy) for MS
packings generated via protocol 2 with simple shear for N = 32 (circles),
64 (squares), 128 (crosses), 256 (triangles), and 512 (diamonds). The
solid lines are predictions from Eq. 14. In the inset, we show three types
of probability distributions scaled by their standard deviations S: P(Σ̂xy)

(same symbols as main panel) and P(Σ̂N) (same symbols as main panel,
but in red) for MS packings generated via isotropic compression (protocol
1) and P(Σ̂N) for protocol 2 with simple shear (same symbols as main
panel, but in gray). The solid black line is a Gaussian distribution with
zero mean and unit standard deviation. (b) System-size dependence
of ⟨Σ̂xy⟩ (circles) and standard deviations of P(Σ̂xy) (triangles) and P(Σ̂N)

(squares) for MS packings generated via protocol 2 with simple shear and
the standard deviations of P(Σ̂xy) (crosses) and P(Σ̂N) (diamonds) for MS
packings generated via protocol 1. The dashed, solid, and dash-dotted
lines are fits to Eqs. 4, 5, and 6, respectively.

In the main panel of Fig. 5 (a), we show the probability distri-
bution of the shear stress P(Σ̂xy) for MS packings generated via
protocol 2 with simple shear. We note that Σ̂xy > 0 and P(Σ̂xy) is
non-Gaussian for protocol 2. In contrast to the behavior of the
average shear stress ⟨Σ̂xy⟩ for MS packings generated via isotropic
compression (protocol 1), ⟨Σ̂xy⟩ approaches a nonzero value in
the large-system limit for MS packings generated via protocol 2
with simple shear. As shown in Fig. 5 (b),

⟨Σ̂xy⟩(N) = Σ̂0N−Ω + Σ̂∞, (5)

where Σ̂0 ≈ 0.54, Ω ≈ 0.42, and Σ̂∞ ≈ 0.060. Similarly, we find that
the standard deviation of P(Σ̂xy) for MS packings generated via
protocol 2 with simple shear approaches a nonzero value in the
large-system limit:

S2(N) = S0
2N−ω2 +S∞, (6)

where S0
2 ≈ 0.28, ω2 ≈ 0.45, and S∞ ≈ 0.015. In contrast, the width
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of the distribution of jammed packing fractions tends to zero in
the large-system limit11. Thus, the packing-generation protocol
strongly influences the stress anisotropy, especially in the large-
system limit. The results for the average values and standard de-
viations of the distributions P(Σ̂xy) and P(Σ̂N) in the large-system
limit for the different protocols are summarized in Table 1.

We will now develop a framework for determining the distri-
bution of shear stress P(Σ̂xy) for MS packings generated via pro-
tocol 2 with simple shear from the shear stress distribution ob-
tained from protocol 1. We first make an approximation in Eq. 2,
Σ̂xy ≈ − 1

ϕ0

dϕ
dγ , where ϕ0 is the average packing fraction for MS

packings generated using protocol 2. Now, the goal is to calcu-
late the distribution of the dilatancy, which hereafter we define as
ϕ̇ ≡− dϕ

dγ .

We first consider an infinitesimal segment of a geometrical fam-
ily (labeled i) that starts at (γi,ϕi) and ends at (γi+dγ,ϕi−dϕ). We
only need to consider segments with negative slope, which im-
plies that dγ > 0, dϕ > 0, and ϕ̇ > 0. The probability to obtain an
MS packing on segment i is proportional to (1) the volume of the
initial conditions in configuration space that find segment i24,25,
V1,i for protocol 1 and V2,i for protocol 2, and (2) the region of
parameter space over which the segment is sampled, dγi for pro-
tocol 1 and dϕi for protocol 2. Thus, P1,i ∝ V1,idγi for protocol 1
and P2,i ∝ V2,idϕi for protocol 2.

The probability distribution for the dilatancy ϕ̇ can be written
as:

P1,2(ϕ̇) =
V1,2(ϕ̇)∫ ∞

0 V1,2(ϕ̇)dϕ̇
, (7)

where V1,2(ϕ̇) is the sum of the basin volumes over all of the in-
finitesimal segments with slope ϕ̇ ,

V1(ϕ̇) = ∑
i

V1,i(ϕ̇)dγi (8a)

V2(ϕ̇) = ∑
i

V2,i(ϕ̇)dϕi. (8b)

In the small-γ limit (γi ≈ 0), the basin volumes for each segment i
from protocols 1 and 2 satisfy V1,i ≈V2,i. (In Appendix B, we iden-
tify the shear strain at which this approximation breaks down.) In
this limit, the protocol dependence of P(ϕ̇) is caused by the region
of parameter space over which the MS packings are sampled, dγi

for protocol 1 versus dϕi for protocol 2. Thus, the distribution of
dilatancy for protocol 2 for simple shear is given by:

P2(ϕ̇) =
∑i V2,idϕi∫ ∞

0 ∑i V2,idϕidϕ̇
≈ ∑i V1,idγiϕ̇∫ ∞

0 ∑i V1,idγiϕ̇dϕ̇
(9a)

≈ P1(ϕ̇)ϕ̇
⟨ϕ̇⟩1

, (9b)

where we have used the relation dϕi = dγiϕ̇ and ⟨ϕ̇⟩1 is the aver-
age of ϕ̇ for MS packings generated using protocol 1 with ϕ̇ > 0.

In Fig. 5 (a), we show that the dilatancy distribution P1(ϕ̇) for
ϕ̇ > 0 from protocol 1 obeys a half-Gaussian distribution,

P1(ϕ̇) =
√

2
S1
√

π
exp

(
− ϕ̇ 2

2S2
1

)
, (10)

with standard deviation S1. After we substitute P1(ϕ̇) in Eq. 10
and ⟨ϕ̇⟩1 =

√
2/πS1 into Eq. 9b, we find the following for the

dilatancy distribution for MS packings generated via protocol 2
with simple shear in the small-γ limit:

P2(ϕ̇ |γ ≪ 1) =
k0

λ0

(
ϕ̇
λ0

)k0−1

exp

[
−
(

ϕ̇
λ0

)k0
]
. (11)

P2(ϕ̇ |γ ≪ 1) = fw(ϕ̇ ;λ0,k0) is a Weibull distribution with shape
parameter k0 = 2 and scale parameter λ0 =

√
2S1. We show in

Fig. 6 (b) that the prediction in Eq. 11 agrees quantitatively with
the simulation results for γ < 2×10−4 over a range of system sizes.
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Fig. 6 (a) Probability distribution of the dilatancy P1(ϕ̇) for ϕ̇ > 0 scaled
by the standard deviation S1 for MS packings generated via protocol 1
with N = 64 (squares), 128 (circles), 256 (triangles), and 512 (crosses).
The solid line is the half-Gaussian distribution in Eq. 10. (b) Probability
distribution of the dilatancy P(ϕ̇) for MS packings generated via protocol
2 with simple shear in the small strain limit (γ < 2× 10−4). The symbols
are the same as in panel (a). The solid line is the Weibull distribution in
Eq. 11 with shape parameter k0 = 2 and scale parameter λ0 =

√
2S1.

We will now consider the dilatancy distribution for MS pack-
ings generated via protocol 2 at finite shear strains. For protocol
1 (isotropic compression), our previous studies have shown that
the distribution of jammed packing fractions is independent of the
shear strain γ 9. However, for protocol 2 (e.g. with simple shear),
systems will preferentially jam on geometrical families at small γ,
effectively blocking families at larger γ, which causes the fraction
of unjammed packings to decay exponentially with increasing γ
for protocol 2 at a given ϕ 9. Therefore, as γ increases, the as-
sumption that V1,i ≈V2,i is no longer valid, as shown in Appendix
B. To characterize the γ-dependence of the dilatancy distribution,
we partition the packings into regions of strain γ required to jam
them. We can then express the dilatancy distribution for MS pack-
ings generated via protocol 2 with simple shear as an integral over
γ:

P2(ϕ̇) =
∫ ∞

0
P2(ϕ̇ |γ)P2(γ)dγ, (12)
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where P2(ϕ̇ |γ) is the conditional probability for obtaining ϕ̇ at a
given γ and P2(γ) is the probability for obtaining an MS packing
as a function of γ, which displays exponential decay9: P2(γ) =
α exp(−αγ). We show in Fig. 7 (a) that P2(ϕ̇ |γ) obeys a Weibull
distribution, fw(ϕ̇ ;λ ,k), with shape k(γ) and scale parameters
λ (γ) that depend on strain γ. k(γ) and λ (γ) decay exponentially
to steady-state values in the large-γ limit as shown in Fig. 7 (b):

χ∞ −χ(γ)
χ∞ −χ0

= exp(−γ/γc), (13)

where χ = k, λ and χ0 and χ∞ are the values when γ = 0 and
γ → ∞, respectively. We find that both k and λ reach steady-state
values when γ > γc, where γc ≈ 0.02 in the large-system limit.
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12 (a)

0 0.1 0.2

0

0.5

1 (b)

Fig. 7 (a) The conditional probability P2(ϕ̇ |γ) for obtaining dilatancy ϕ̇ for
MS packings with N = 128 generated via protocol 2 with simple shear for
γ < 2×10−4 (circles), 0.012 < γ < 0.016 (triangles), 0.020 < γ < 0.022 (di-
amonds), 0.022 < γ < 0.024 (squares), and 0.024 < γ < 0.026 (crosses).
The solid lines are Weibull distributions fw(ϕ̇ ,λ (γ),k(γ)). (b) The γ-
dependence of the shape parameter χ = k (open symbols) and scale
parameter χ = λ (solid symbols) for fits of P2(ϕ̇ |γ) to Weibull distributions
for N = 128 (circles), 256 (triangles), and 512 (diamonds). χ0 and χ∞ give
the values of k and λ at γ = 0 and in the γ →∞ limit, respectively. The solid
lines are fits to an exponential decay, ∼ exp(−γ/γc), where γc = 0.027,
0.026, and 0.021 for N = 128, 256, and 512, respectively.

In the final step, we combine Eqs. 11 and 12 with the results
from Eq. 13 to predict the distribution of shear stress for MS pack-
ings generated via protocol 2 with simple shear:

P2(Σ̂xy) = ϕ0

∫ ∞

0
fw(Σ̂xy;λ (γ),k(γ))α exp(−αγ)dγ, (14)

where Σ̂xy = ϕ̇/ϕ0 has been used to relate P2(Σ̂xy) to P2(ϕ̇). The
results from Eq. 14 agree quantitatively with the distribution di-
rectly calculated from the stress tensor components over a range
of system sizes as shown in Fig. 5 (a). Thus, these results empha-
size that we are able to calculate the distribution of shear stress

for MS packings generated via protocol 2 from the distribution
of shear stress from MS packings generated via protocol 1, plus
three parameters: αγc, k∞, and λ∞. We will show below that ⟨Σ̂xy⟩
depends very weakly on k∞.

3.4 System-size dependence of the average shear stress for
shear-jammed packings

In Fig. 5, we showed that the average shear stress ⟨Σ̂xy⟩ ∼ 0.06
reaches a nonzero value in the large-system limit for MS packings
generated via protocol 2 with simple shear. In this section, we
investigate the system size dependence of ⟨Σ̂xy⟩ using the frame-
work (Eq. 14) for calculating the shear stress distribution for MS
packings generated via protocol 2 using the shear stress distribu-
tion for MS packings generated via isotropic compression (proto-
col 1).

⟨Σ̂xy⟩ for MS packings generated via protocol 2 can be calcu-
lated from the probability distribution P2(Σ̂xy):

⟨Σ̂xy⟩=
∫ ∞

0
Σ̂xyP2(Σ̂xy)dΣ̂xy

≈
∫ ∞

0

ϕ̇
ϕ0

(ϕ0P2(ϕ̇))
dϕ̇
ϕ0

=
1
ϕ0

∫ ∞

0
ϕ̇P2(ϕ̇)dϕ̇ .

(15)

After substituting Eq. 12 into Eq. 15, we have

⟨Σ̂xy⟩=
1
ϕ0

∫ ∞

0
ϕ̇
(∫ ∞

0
fw(ϕ̇ ;λ (γ),k(γ))α exp(−αγ)dγ

)
dϕ̇

=
1
ϕ0

∫ ∞

0
⟨ϕ̇⟩γ α exp(−αγ)dγ,

(16)

where ⟨ϕ̇⟩γ = λ (γ)Γ(1+1/k(γ)) is the average of ϕ̇ at strain γ. The
shape parameter k(0) = 2 and increases with γ, and thus 0.886 ≲
Γ(1+1/k(γ))< 1. Therefore, ⟨ϕ̇⟩γ can be approximated as

⟨ϕ̇⟩γ ≈ λ (γ) = λ∞[1− exp(−γ/γc)]+λ0 exp(−γ/γc). (17)

After substituting Eq. 17 into Eq. 16, we find

⟨Σ̂xy⟩ ≈
λ∞ +λ0αγc

ϕ0(αγc +1)
, (18)

which is plotted versus system size in Fig. 8. We fit the system-size
dependence to following form:

⟨Σ̂xy⟩(N) = Σ̂0N−Ω + Σ̂∞, (19)

where Σ̂0 ≈ 0.62, Ω ≈ 0.41, and Σ̂∞ ≈ 0.060, which are similar to
the values found directly using the data in Fig. 5.

4 Conclusions and Future Directions
In this article, we carried out computer simulations of frictionless,
purely repulsive disks to investigate the development of stress
anisotropy in mechanically stable (MS) packings prepared using
two protocols. Protocol 1 involves shearing the system quasistati-
cally to a given strain at low packing fraction and then compress-
ing the system quasistatically to jamming onset at fixed strain.
Protocol 2 involves compressing the system quasistatically at γ = 0
to a packing fraction below jamming onset, and then shearing the
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Fig. 8 The system-size dependence of ⟨Σ̂xy⟩ ≈ (λ∞ +λ0αγc)/[ϕ0(αγc +1)]
(circles) from Eq. 18. The best fit to Eq. 19 is given by the solid line. The
shear stress in the large-system limit ⟨Σ̂xy⟩∞ ≈ 0.060 is indicated by the
dashed line.

system quasistatically to achieve jamming onset.
We find that MS disk packings occur as parabolic segments with

positive curvature in the ϕ -γ plane. MS packings generated via
isotropic compression (protocol 1) populate parabolic segments
with both dϕ/dγ > 0 and dϕ/dγ < 0. However, MS packings gen-
erated via shear (protocol 2) populate parabolic segments with
only dϕ/dγ < 0. We find that the stress anisotropy distribution
for MS packings generated via protocol 1 is a Gaussian with zero
mean and a standard deviation that scales to zero in the large-
system limit. In contrast, MS packings prepared using protocol 2
have a nonzero stress anisotropy τ̂∞ ≈ 0.06 and standard deviation
S∞ ≈ 0.015 in the large-system limit.

We also derived relationships between the components of the
stress tensor (shear stress and normal stress difference) and the
dilatancy dϕ/dγ. Using these relations, we developed a statisti-
cal framework to calculate the stress anisotropy distribution for
shear-jammed packings (i.e. MS packings generated via proto-
col 2) in terms of the stress anisotropy distribution for isotropi-
cally prepared packings (i.e. MS packings generated via protocol
1). We showed that the stress anisotropy distribution for shear-
jammed packings can be described by a convolution of Weibull
distributions with shape and scale parameters that depend on
strain. The results for the stress anisotropy distribution from the
statistical framework agree quantitatively with the direct mea-
surements of the stress tensor for MS packings generated using
protocol 2. These results emphasize that the packing-generation
protocol can dramatically influence the probabilities with which
MS packings occur, and thus change the average macroscopic
quantities that are measured for a given protocol.

There are several interesting directions for future research in-
vestigating the development of stress anisotropy in jammed sys-
tems. First, how does the presence of frictional interparticle
forces affect this picture? Recent computational studies have
shown that the shear modulus displays a discontinuous jump with
increasing strain for static packings of frictional spheres26. Can
the discontinuity in the shear modulus be explained using the sta-
tistical framework for the shear stress distribution that we devel-
oped here? Second, how does non-spherical particle shape affect

the geometrical families ϕ(γ)? In preliminary studies, we have
shown that the geometrical families for MS packings of circulo-
polygons occur as parabolic segments that are both concave up
and concave down. (See Appendix C.) In future studies, we will
generate packings of circulo-polygons using protocol 2 to connect
the statistics of the geometrical families ϕ(γ) to the development
of nonzero stress anisotropy in the large-system limit for MS pack-
ings of non-spherical particles.

Appendix A: Normal stress difference Σ̂N for
MS packings generated via protocol 2 with
pure shear
In Fig. 5, we presented the probability distributions for the shear
stress Σ̂xy and normal stress difference Σ̂N for MS disk packings
generated via protocol 1 and protocol 2 with simple shear. In this
Appendix, we show the results for the probability distributions
P(Σ̂xy) and P(Σ̂N) for MS disk packings generated via protocol 2
with pure shear.

Pure shear strain couples to the normal stress difference, not
to the shear stress. Thus, as shown in Fig. 9 (a), the probability
distributions P(Σ̂N) for MS packings generated via protocol 2 with
pure shear are qualitatively the same as P(Σ̂xy) for MS packings
generated via protocol 2 with simple shear. The probability distri-
butions P(Σ̂N) and P(Σ̂xy) for MS packings generated via protocol
1 and P(Σ̂xy) for MS packings generated via protocol 2 (with pure
shear) are Gaussian with zero mean and standard deviations that
scale to zero with increasing system size. (See Eq. 4.)

The average of P(Σ̂N) for MS packings generated via protocol 2
with pure shear decreases as N increases, but reaches a nonzero
value in the large-system limit:

⟨Σ̂N⟩(N) = Σ̂0N−Ω + Σ̂∞, (20)

where Σ̂0 ≈ 0.49, Ω ≈ 0.40, and Σ̂∞ ≈ 0.055. Similarly, the stan-
dard deviation of P(Σ̂N) also reaches a nonzero value in the large-
system limit:

S2(N) = S0
2N−ω2 +S∞, (21)

where S0
2 ≈ 0.30, ω2 ≈ 0.50, and S∞ ≈ 0.016. The results for MS

packings generated via protocol 2 with pure shear are analogous
to those observed for MS packings generated via protocol 2 with
simple shear. (See Table 1.)

Appendix B: Protocol dependence of the vol-
ume of the basin of attraction for MS pack-
ings
In the description of the statistical framework (Sec. 3.3) for calcu-
lating the distribution of dilatancy for MS packings generated via
protocol 2 with simple shear from those generated via protocol
1, we first assumed that the volumes of the basins of attraction
were the same (i.e. V1,i ≈ V2,i) for protocols 1 and 2. In this
Appendix, we illustrate that this assumption breaks down for suf-
ficiently large simple shear strains.

We illustrate the basin volume for an N = 6 MS packing, which
is a four-dimensional quantity, by projecting it into two dimen-
sions. We consider a particular N = 6 MS packing at shear strain
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Fig. 9 (a) The probability distribution P(Σ̂N) of the normal stress dif-
ference for MS packings generated via protocol 2 with pure shear for
N = 32 (circles), 64 (squares), 128 (crosses), and 256 (triangles). The in-
set shows the distributions for Σ̂N (same symbols as in main panel) and
Σ̂xy (same symbols as in main panel, but in red) for MS packings gen-
erated via protocol 1, and Σ̂xy for MS packings generated via protocol 2
using pure shear (same symbols as in main panel, but in gray). The solid
black line is a Gaussian distribution with a zero mean and unit standard
deviation. (b) System-size dependence of 1) the average (circles) and
standard deviation (triangles) of P(Σ̂N) for MS packings generated via
protocol 2 with pure shear, 2) standard deviation of P(Σ̂xy) (squares) for
MS packings generated via protocol 2 with pure shear, and 3) standard
deviations of P(Σ̂N) (crosses) and P(Σ̂xy) (diamonds) for MS packings
generated via protocol 1. The dashed, solid, and dash-dotted lines are
fits to Eqs. 4, 20, and 21, respectively.

γ and packing fraction ϕ that can be generated readily via pro-
tocol 1 and protocol 2 with simple shear. We identify a point
(r1,r2, . . . ,r6) within the basin of attraction of the MS packing and
constrain the positions of particles 2 through 6. The initial posi-
tion of particle 1 is allowed to vary in the x-y plane. The pixels in
each panel of Fig. 10 represent the initial positions of particle 1
and they are colored blue if the initial configuration at (x,y) maps
to the position of particle 1 in the particular MS packing that we
selected. The area of the blue region gives the projected area of
the basin of attraction for that particular MS packing.

In Fig. 10 (a) and (b), we show the basins of attraction for a
particular MS packing at a small shear strain, γ = 2× 10−3, for
protocols 1 and 2, respectively. The areas of the blue regions are
nearly the same, which suggests that V1,i ≈V2,i. However, at larger
shear strains, the basin volumes for the two protocols deviate.
For example, in Fig. 10 (c) and (d) at shear strain γ = 0.02, the
projected area for protocol 1 is much larger than that for protocol
2, which implies that V1,i ̸=V2,i.
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Fig. 10 Two-dimensional projection of the four-dimensional basin of
attraction for a particular N = 6 MS packing generated using (a) protocol 1
and (b) protocol 2 (with simple shear) at shear strain γ = 2×10−3. The x-
and y-coordinates indicate the initial position of particle 1, while particles
2 through 6 are fixed to specific locations within the simulation cell. If a
pixel is blue, the initial position maps to the target MS packing after the
packing-generation procedure. Panels (c) and (d) are comparable to (a)
and (b) except the shear strain has been increased to γ = 0.02.

Appendix C: Simple shear of circulo-triangle
packings
In this Appendix, we show that MS packings of non-spherical par-
ticles, specifically circulo-triangles, also form geometrical families
in the packing fraction ϕ and shear strain γ plane. We consid-
ered bidisperse mixtures of circulo-triangles, half large and half
small with area ratio ra = 1.42 and interior angles of 33◦, 62◦,
and 85◦ for each triangle. We fixed the asphericity parameter
A = p2/4πa = 1.1, where p and a are the perimeter and area of
the circulo-triangles, respectively. At this asphericity, the packings
can be either isostatic or hypostatic16.

As is the case for circular disks, we find that the geometrical
families for MS packings of circulo-triangles generated via proto-
col 1 with simple shear form parabolic segments in the ϕ -γ plane,
satisfying ϕ(γ) = A(γ −γ0)

2+ϕ0. However, we find that the curva-
ture of the parabolas can be both concave up and concave down
(A > 0 and A < 0) for MS packings of circulo-triangles. In con-
trast, A > 0 for MS disk packings. A < 0 implies strain-induced
compaction, which may be caused by the alignment of the circulo-
triangles during shear.
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unjammed regions of the (ϕ −ϕ0)/|A| and γ − γ0 plane are indicated.
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