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Proteins fold to a specific functional conformation with a densely packed core that controls their stability.
Despite their importance, we lack a quantitative explanation for why all protein cores, regardless of their overall
fold, possess average packing fraction ⟨φ⟩= 0.55. However, important developments in the physics of jamming
in particulate systems can shed light on the packing of protein cores. Here, we extend the framework of jamming
to describe core packing in collapsed polymers, as well as in all-atom models of folded proteins. First, we show
in a bead-spring polymer model that as the hydrophobic interactions increase relative to thermal fluctuations,
a jamming-like transition occurs when the core packing fraction exceeds φc = 0.63 with the same power-law
scaling exponents for the potential energy Vr, excess contact number ∆N, and characteristic frequency of the
vibrational density of states ω∗ versus ∆φ = φ −φc as those for jammed particulate systems. Then, we develop
an all-atom model for proteins and find that, above φc ∼ 0.55, protein cores undergo a jamming-like transition,
but with anomalous power-law scaling for Vr, ∆N, and ω∗ versus ∆φ . The all-atom protein model remains close
to the native protein structure during jamming and accurately refolds from partially unfolded states.

I. INTRODUCTION

In native solution conditions, globular proteins fold from an
extended chain to a compact, functional state. Upon folding,
proteins form dense, solvent-inaccessible, or core, regions,
which include ∼ 10% of the protein and provide their stabil-
ity [1]. Focusing on the hard-core atomic interactions, initial
calculations of the core packing fraction found φ ∼ 0.7-0.74,
which is close to the maximum packing fraction in crystalline
solids [2–8]. In such hard-particle models, the maximum
packing fraction corresponds to a minimum in the potential
energy, i.e. V ∼ 1/φ . While it has been suggested that the
dense packing observed in protein cores can give rise to glassy
dynamics, the current consensus is that proteins fold reliably
because they possess funneled energy landscapes that direct
them toward conformations with minimum energy or maxi-
mum packing fraction [9–17]. More recent work has shown
that the average core packing fraction in proteins (without in-
teratomic overlaps) is ⟨φ⟩= 0.55±0.01 [18–22]. Why do all
protein cores possess this average packing fraction?

Here, we demonstrate that the dense packing ⟨φ⟩ ≈ 0.55
in protein cores occurs because they exist at jamming on-
set. First, we review the key features of the jamming tran-
sition in particulate systems, i.e. the power-law scaling of
the structural and mechanical properties of jammed packings
with ∆φ = φ − φc. Second, we demonstrate that the final
stages of polymer collapse can be described as a jamming
transition. When a weakly attractive bead-spring polymer is
quenched below the coil-globule and glass transitions [23, 24],
its interior undergoes a jamming transition at packing frac-
tion φc ∼ 0.63 with the same power-law scaling behavior for
the structural and mechanical properties versus ∆φ as found

for the jamming transition in particulate systems. Finally, we
carry out similar studies of hydrophobic collapse for an all-
atom protein model with weak attractive nonbonded interac-
tions, as well as constraints on the bond lengths, bond angles,
and peptide-bond dihedral angles to maintain proper amino
acid stereochemistry. We find that the all-atom protein model
collapses as the attractive strength relative to temperature in-
creases and undergoes a jamming-like transition from a floppy
to a rigid state near φc ∼ 0.55 with novel power-law scaling
exponents for the structural and mechanical properties ver-
sus ∆φ . These results suggest that proteins collapse until the
core amino acids reach a mechanically stable state that resists
further compression induced by the hydrophobic interactions.
Moreover, the all-atom model can refold proteins from par-
tially unfolded states, suggesting that it captures the protein
conformational landscape near the folded state.

II. IDENTIFYING JAMMING TRANSITIONS IN
REPULSIVE SYSTEMS AT FINITE TEMPERATURES

UNDER CONFINEMENT

We first review the jamming transition of repulsive systems
during compression in periodic boundary conditions at finite
temperatures for both collections of repulsive spheres and a
single repulsive bead-spring polymer. For repulsive spheres,
we assume that they interact via the purely repulsive linear
spring potential,
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FIG. 1. Visualizations of repulsive spheres (a)-(c) and a repulsive bead-spring polymer (d)-(f) undergoing compression in periodic boundary
conditions (black box) at packing fractions below, near, and above φc (left, center, and right columns, respectively). The color indicates the
monomer diameter size increasing from blue (σs) to green (σmax).

where ri j is the separation between particles i and j, σi j =
(σi +σ j)/2 is the average diameter, and Θ(·) is the Heaviside
step-function. The total potential energy for systems contain-
ing repulsive spheres is Vr = ∑i> j Vrnb(ri j) summed over all
overlapping pairs. For illustrative purposes, we present re-
sults for N = 256 particles, averaged over 20 packings for
each value of φ during compression. To prevent crystalliza-
tion, σi is randomly selected from a power-law size distri-
bution, P(σi) = Aσ

−3
i , with minimum and maximum diam-

eters σs and σmax = 2.2σs and polydispersity D = (⟨σ2
i ⟩ −

⟨σi⟩2)/⟨σi⟩2 ∼ 0.23 [25].
We also study jamming of a single bead-spring polymer un-

dergoing isotropic compression. Neighboring spherical beads
i and j = i+ 1 on the polymer are bonded via double-sided
linear spring interactions,
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where ϵb = ϵr and r0
i j = σi j. The non-bonded interactions for

the bead-spring polymer are purely repulsive, and thus the to-
tal potential energy Vr = ∑i> j Vrnb(ri j)+∑i, j=i+1 Vb(ri j).

To initialize the systems with purely repulsive spheres,
we randomly place the spheres within a periodic box with-
out overlaps at an initial packing fraction φ = 0.01, where
φ = ∑

N
i=1 vp,i/vb, vp,i is the volume of particle i, and vb is

the volume of the box. To initialize the repulsive bead-
spring polymer, we generate an excluded volume random
walk within a periodic box. For both systems, we apply

affine, isotropic compression in small steps of δφ = 10−3,
with each compression followed by energy minimization, un-
til the system reaches a target packing fraction φ [26]. We
then carry out Langevin dynamics [27] at constant tempera-
tures T/ϵr = 10−6, 10−7, 10−8. We show collections of re-
pulsive spheres and a single repulsive bead-spring polymer
undergoing isotropic compression in a periodic box for pack-
ing fractions below, at, and above jamming onset in Fig. 1.

To identify jamming onset, we quantify two distinct types
of power-law scaling relations for the structural and mechani-
cal properties versus ∆φ [28–31]. First, in Fig. 2 (a), we show
that below a critical packing fraction φc, ⟨Vr/N⟩ increases
slowly with φ . However, above φc, the total potential energy
increases as a power-law,

⟨Vr/N⟩ ∼ (φ −φc)
δ , (3)

where for the purely repulsive linear spring potential, δ = 2,
and φc ≈ 0.64 for the system sizes, particle size polydisper-
sity, and compression protocol used here. As T → 0, the
plateau in ⟨Vr/N⟩ → 0 for φ < φc, and the jamming transi-
tion becomes more distinct. We show in Fig. 2 (e) that a sim-
ilar jamming transition occurs during compression of a sin-
gle repulsive bead-spring polymer. We note two small differ-
ences. First, ⟨Vr/N⟩ plateaus for φ < φc instead of increas-
ing slowly and is larger than that for repulsive spheres due to
the additional bond constraints. Second, φc ∼ 0.63 is slightly
decreased compared to that for jammed repulsive spheres.
While previous studies have obtained jammed packings of
bonded spheres that are just as dense as jammed disconnected
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FIG. 2. Hallmarks of the jamming transition during isotropic compression at finite temperatures, T/ϵr = 10−6 (yellow), 10−7 (green), and
10−8 (blue) in collections of repulsive spheres (top row) and a single bead-spring polymer (bottom row) under periodic boundary conditions.
(a) and (e): The average potential energy per particle ⟨Vr/N⟩ plotted versus packing fraction φ . The black dot-dashed lines indicate fits to
Eq. 3 with δ = 2. (b) and (f): The vibrational density of states D(ω) plotted versus frequency ω at each φ colored by ⟨Vr/N⟩ increasing from
blue to red for T/ϵr = 10−8. The black dashed lines indicate the cutoff in D(ω)< 10−1 for determining the characteristic frequency ω∗. (c)
and (g): ω∗ plotted versus ⟨Vr/N⟩. (d) and (h): The excess number of (non-bonded) contacts above isostaticity ∆N plotted versus ⟨Vr/N⟩. The
black dashed lines indicate a slope of 1/4.

spheres [32, 33], single bead-spring polymers jam at slightly
lower φc in periodic boundary conditions [24, 34, 35].

A hallmark of the jamming transition can also be found in
the system’s mechanical properties. Unjammed systems pos-
sess many low frequency, liquid-like modes in the vibrational
density of states (VDOS). Near jamming onset in repulsive
spheres, excess intermediate frequency modes, known as the
boson peak, occur in the VDOS, and as φ increases above jam-
ming onset the boson peak decreases [36–38]. We calculate
the VDOS from the eigenvalues en of the displacement cor-
relation matrix S = V C−1, where Vi j = ⟨viv j⟩ is the velocity
correlation matrix, Ci j = ⟨(ri − r0

i )(r j − r0
j )⟩ is the positional

covariance matrix, vi are the sphere velocities, and ri and r0
i

are the instantaneous and average sphere positions. The an-
gle brackets indicate time averages. The VDOS D(ωn) is then
obtained by binning the frequencies ωn =

√
en, where the fre-

quencies are given in units of
√
ϵr/(mσ2

s ) and m is the mass
of each sphere [39, 40].

In Figs. 2 (b) and (f), we plot the VDOS for repulsive
spheres and the bead-spring polymer as a function of ⟨Vr/N⟩
(increasing from blue to red) for T/ϵr = 10−8. We find
that when the total potential energy is small, the VDOS pos-
sesses many liquid-like modes. As ⟨Vr/N⟩ increases, a low-
frequency, non-Debye plateau forms near jamming onset, and
the plateau decreases as the system is further compressed.
The main difference in the VDOS for repulsive spheres and
the bead-spring polymer is that the VDOS for the bead-spring
polymer has a peak at ω = 1 for all φ , which corresponds to
the the bond-length fluctuations. The formation of the plateau
in the VDOS can be quantified by the characteristic frequency
ω∗ at which D(ω∗) falls below a small threshold. Previ-
ous studies of jamming in repulsive spheres have found that
ω∗ obeys the power-law scaling relation ω∗ ∼ ⟨V ⟩ζ , where
ζ = 1/4 and ⟨V ⟩ is the average potential energy [24, 41].

We show in Figs. 2 (c) and (g) that ω∗ ∼ (⟨Vr/N⟩)ζ above
jamming onset for repulsive spheres and the collapsed bead-
spring polymer respectively, where ζ = 1/4.

The number of interparticle contacts controls the transition
from floppy to rigid states, i.e. at jamming onset, collections
of repulsive spheres become isostatic with the same number
of contacts as degrees of freedom Nc = Niso = dN −N0 + 1,
where d is the spatial dimension and N0 is the number of zero
modes from d rigid translations and underconstrained spheres.
We can determine N0 from the number of zero eigenvalues of
S. In Fig. 2 (d), we show that above φc, the average excess
number of contacts above isostaticity ∆N = ⟨Nc⟩−Niso scales
with the same exponent ζ = 1/4 versus potential energy as
that found for the scaling exponent for ω∗ versus ⟨Vr/N⟩.
In addition, we find the same power-law scaling exponent
for ∆N versus ⟨Vr/N⟩ for the bead-spring polymer, where
∆N = ⟨Nc⟩+Nb −Niso, Nb = N − 1 is the number of poly-
mer bonds, and N0 is the number of underconstrained flipper
spheres. (See Fig. 2 (h).)

Taken together, the power-law scaling relations for ⟨Vr/N⟩,
ω∗, and ∆N above φc indicate jamming transitions that oc-
cur in collections of repulsive particles and a single repul-
sive bead-spring polymer during isotropic compression in pe-
riodic boundary conditions. Computational studies of jam-
ming have largely been restricted to repulsive systems under
confinement. Below, we extend studies of jamming to attrac-
tive bead-spring polymers under open boundary conditions to
understand whether the same power-law scaling relations for
the structural and mechanical properties hold during polymer
collapse.
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FIG. 3. (a) Average core packing fraction ⟨φ⟩ plotted versus strength of the attractive interactions α2β for bead-spring polymers at temperatures
T/ϵr = 10−6 (yellow), 10−7 (green), and 10−8 (blue) and α = 0.5 (circles), 1.0 (squares), 1.5 (upward triangles), and 2.0 (downward triangles).
The black dashed lines indicate fits to Eq. 5 with a = b = 1. (b) Average pair potential energy ⟨Vr/N⟩ plotted versus α2β . The black dashed
lines indicate fits to Eq. 6 with c = 2. (c) ⟨Vr/N⟩ plotted versus average core packing fraction ⟨φ⟩. The black dashed lines indicate fits to Eq. 7.
At large ⟨φ⟩, ⟨Vr/N⟩−V0 ∼ ⟨φ −φc⟩δ , where δ = c/a = 2 and φc = 0.63. (d)-(f) Visualizations of attractive bead-spring polymers at packing
fractions below, near, and above φc. The color indicates the monomer diameter increasing from blue (σs) to green (σmax).

III. ONSET OF JAMMING DURING COLLAPSE OF
ATTRACTIVE BEAD-SPRING POLYMERS

Here, we show that a uniformly attractive spherical bead-
spring polymer undergoes a jamming transition during col-
lapse. In this case, the compaction is not applied through
the boundary conditions as for studies of jamming transitions
in collections of repulsive particles, but is induced through
the attractive, hydrophobic interactions between monomers in
the polymer under open boundaries. As shown in Sec. II,
repulsive (nonbonded and bonded) spheres undergo a jam-
ming transition with power-law scaling of the structural and
mechanical properties versus ∆φ when they are compressed
above jamming onset at sufficiently low temperatures. To
model nonbonded attractive interactions within bead-spring
polymers, we modify the repulsive spring potential in Eq. 1 by
extending the interaction distance to rβ/σi j = 1+σi jβi j/σs
and cutoff the interactions at rα/σi j = 1 + α > rβ using a
piecewise harmonic function of ri j:

Va(ri j)

ϵr
=


1
2

(
1− ri j

σi j

)2
−Vc/ϵr for ri j ≤ rβ ,

− k
2ϵr

(
ri j
rα

−1
)2

Θ

(
1− ri j

rα

)
for ri j > rβ ,

(4)

where Vc/ϵr = (k/ϵr)
(
rβ/rα −1

)2
/2 +

(
1− rβ/σi j

)2
/2 to

ensure continuity. α defines the attractive range and βi j =
βλi j defines the magnitude of the attractive force between
beads i and j. For uniformly attractive bead-spring polymers,
λi j = 1 for all pairs. Additionally, we use the same size distri-
bution P(σi) as in Sec. II. Neighboring beads i and j = i+1 on
the polymer are bonded via double-sided linear spring inter-
actions as in repulsive bead-spring poylmers (Eq. 2). Because
there is no confining box for the attractive bead-spring poly-
mer, we must define a new approach for calculating the lo-
cal φ . To calculate the average core packing fraction ⟨φ⟩, we
identify core beads as those with zero exposed surface area
measured using the Richards-Lee spherical probe algorithm
with probe size σp/σs = 1.4, as is commonly used to calculate
the solvent accessible surface area for proteins [42, 43]. The
packing fraction of core bead i is φi = vb

i /vv
i , where vb

i and vv
i

are the volumes of bead i and its enclosing Voronoi cell [44].
The average core packing fraction is ⟨φ⟩= n−1

c ∑
nc
i=1 φi, where

nc is the number of core beads in the polymer. Our choice
of σp/σs is similar to the size ratio of alanine to a water
molecule, but our results are insensitive to this choice.

To study the collapse of bead-spring polymers, we carry
out Langevin dynamics [27] under open boundary conditions
for attractive range 0.5 ≤ α ≤ 2, attractive depth 10−12 ≤
β ≤ 10−3, and temperature 10−8 ≤ T/ϵr ≤ 10−6. The sim-
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FIG. 4. (a) Vibrational density of states D(ω) for attractive bead-spring polymers for average potential energy ⟨Vr/N⟩ (in units of ϵr) increasing
from 10−9 (blue) to 10−1 (red). The black dashed line indicates D(ω∗) = 10−1. (b) The characteristic plateau frequency ω∗ and (c) average
excess number of contacts above the isostatic value ⟨∆N⟩ plotted versus ⟨Vr/N⟩/α . The black dashed lines in (b) and (c) have slope 1/4.

ulations are initialized from a collapsed structure generated
by an excluded-volume random walk where the system is en-
ergy minimized after each bead is placed [26]. In Fig. 3 (a),
we plot ⟨φ⟩ versus the attractive strength α2β , which demon-
strates that the attractive strength controls the available free
volume in the core analogous to the pressure (or total poten-
tial energy) in purely repulsive systems. (See Fig. 3 (d)-(f) for
visualizations of typical conformations.) When the attractive
strength is low, thermal expansion dominates and the core un-
packs. As α2β increases, a plateau in ⟨φ⟩ forms, followed by
an over-compressed regime. ⟨φ⟩ versus α2β is well fit by

⟨φ⟩= A
(
α

2
β
)a −B

(
α

2
β
)−b

+φc, (5)

where A and B are constants, φc → 0.63 and the exponents
a → 1 and b → 1 as T/ϵr → 0. Note the similarity between φc
in the collapsed attractive bead-spring polymer and jammed
repulsive packings shown in Sec II.

To identify jamming onset, we calculate Vr/ϵr =
∑i> j Vrnb(ri j)/ϵr + ∑⟨i, j=i+1⟩Vb(ri j)/ϵr, where the first sum
is over distinct nonbonded pairs and the second sum is over
bonded pairs. In Fig. 3 (b), we plot the time-averaged ⟨Vr/N⟩
versus α2β . We find that ⟨Vr/N⟩ ∼ V0, where V0 ∼ T/ϵr for
α2β < T/ϵr. However, when α2β > T/ϵr, ⟨Vr/N⟩ increases
from the plateau value V0 as a power-law:

⟨Vr/N⟩−V0 =C
(
α

2
β
)c
, (6)

where C is a constant and c → 2 as T/ϵr → 0. Thus, when
⟨φ⟩ > φc, ⟨Vr/N⟩ increases strongly, which indicates a jam-
ming transition. In Fig. 3 (c), we combine data from Figs. 3
(a) and (b). For ⟨φ⟩ < φc, ⟨Vr/N⟩ ∼ V0. When ⟨φ⟩ > φc,
⟨Vr/N⟩ increases as a power-law, which can be obtained by
combining Eqs. 5 and 6:

⟨φ⟩= A (∆Vr)
a/c +B(∆Vr)

−b/c +φc, (7)

where ∆Vr = ⟨Vr/N⟩−V0, A = A/Ca/c, and B = B/C−b/c.
When ⟨∆φ⟩≫ 0, Eq. 7 simplifies to ⟨∆Vr/N⟩ ∼ ⟨∆φ⟩δ (Eq. 3),
where δ = c/a → 2 in the T/ϵr → 0 limit, which is the same
scaling exponent found for jamming of repulsive spheres and

the repulsive bead-spring polymer in Sec. II [28]. The poten-
tial energy for collapsed bead-spring polymers increases as a
power-law above a characteristic φ in the same way that the
potential energy scales with φ above jamming onset for dis-
connected and connected repulsive spheres. For 2D attractive
bead-spring polymers, we find similar behavior for ⟨Vr/N⟩
versus αd−1β in d spatial dimensions.

We quantify the rigidity of attractive bead-spring polymers
by calculating the eigenvalues of the displacement correaltion
matrix as in Sec. II. In Fig. 4 (a), we plot the VDOS for at-
tractive bead-spring polymers as a function of ⟨Vr/N⟩. We
find that when the potential energy is low, the system dis-
plays many liquid-like modes. As ⟨Vr/N⟩ increases, a low-
frequency, non-Debye plateau forms near jamming onset, and
the plateau decreases as the system further collapses. The
plateau in the VDOS can be quantified by the characteristic
frequency ω∗ at which D(ω∗) falls below a small threshold.
We show in Fig. 4 (b) that ω∗ ∼ (⟨Vr/N⟩/α)ζ above jamming
onset for collapsed bead-spring polymers, where ζ = 1/4 is
the same as that found for jamming of collections of repulsive
spheres and the repulsive bead-spring polymer. Note that di-
viding ⟨Vr/N⟩ by α collapses the data for different attractive
ranges as previously reported [24].

An essential feature of the jamming transition is isostaci-
tity, i.e. systems rigidify when the number of (non-redundant)
constraints equals the number of degrees of freedom. While
the number of non-redundant constraints is difficult to de-
termine in 3D packings with finite-ranged interactions that
can be either attractive or repulsive, we have shown previ-
ously that packings interacting via Eq. 4 are isostatic when
contacts are defined for separations between nonbonded pairs
with ri j < rβ [24, 45, 46]. In Fig. 4 (c), we plot ∆N = Nc(ri j <
rβ ) + Nb − Niso versus ⟨Vr/N⟩/α , where Nb is the number
of polymer bonds, Niso = dN −N0, and N0 = 6 is the num-
ber of trivial translational and rotational modes. The excess
contact number follows the same power-law scaling relation
∆N ∼ ⟨Vr⟩ζ with ζ = 1/4 as that found for jamming of repul-
sive spheres and polymers. Thus, the collapse of weakly at-
tractive bead-spring polymers belongs to the same universality
class as that for jamming of disconnected, repulsive spheres.
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IV. A STEREOCHEMICALLY ACCURATE REPULSIVE
ALL-ATOM PROTEIN MODEL

In this section, we develop a stereochemically accurate all-
atom model for proteins to investigate jamming in the context
of core formation in proteins. The guiding principle in the
development of the all-atom protein model is to restrain the
minimum components of protein stereochemistry necessary
to sample experimentally-accurate protein conformations. For
the bonded interactions, we add restraints on the bond lengths
ri j, bond angles θi jk, and dihedral angles involving double
bonds ωi jkl to the equilibrium values, r0

i j, θ 0
i jk, and ω0

i jkl that
occur in each target protein’s x-ray crystal structure:

Vb(ri j)

ϵb
=

1
2σ2

H

(
ri j − r0

i j
)2
, (8)

Va(θi jk)

ϵa
=

1
2

(
θi jk −θ

0
i jk

)2
, (9)

Vd(ωi jkl)

ϵd
=

1
2

(
ωi jkl −ω

0
i jkl

)2
, (10)

where ϵb = ϵa = ϵd = ϵr are the respective spring constants and
σH is the diameter of hydrogen. We set the energy parameters
to be equal to weight nonbonded overlaps and deformations
in protein stereochemistry equally. We add restraints to the
main chain peptide bond dihedral angles, known as ω , which
due to the peptide bond’s partial double-bonded character, are
relatively planar in high-quality protein structures. For amino
acids with side chains containing double bonds, we also add
dihedral angle restraints to maintain their planar geometry for
phenylalanine, tyrosine, histidine, and tryptophan.

Nonbonded interactions are modeled as repulsive steric in-
teractions with weak hydrophobic attractions (Eq. 4). As pro-
teins are molecular systems, the selection of a repulsive atom
sizes {σi} is not straightforward and many sets have been
used [2–8, 18, 47]. We must also consider the backbone di-
hedral angles of rotatable single bonds within amino acids.
In Fig. 5 (a), we plot the probability distribution of the back-
bone dihedral angles ϕ and ψ from our x-ray crystal structure
dataset (described below in Sec. V), which defines the bound-
aries of allowed dihedral angle pairs, shown as a black con-
tour line containing 99.5% of the experimental data [48–51].
Similarly, each amino acid side chain takes on particular dihe-
dral angles, called rotamers, that most frequently occur. (See
Fig. 5 (b) for an example of leucine’s side chain dihedral angle
distribution.) Whether experimentally obtained protein struc-
tures or computational models sample the correct backbone
and side chain dihedral angle distributions is typically deter-
mined by the community software MOLPROBITY [49–51].

To ensure that computational models possess the correct
backbone and side chain dihedral angle distributions, most
all-atom force fields include explicit restraints [52–56]. How-
ever, Ramachandran, et al. first demonstrated that by assum-
ing only repulsive, hard-core atomic interactions, one can re-
capitulate the backbone dihedral angles ϕ and ψ that occur

FIG. 5. The probability distribution of (a) backbone dihedral angles
P(ϕ,ψ) and (b) side chain dihedral angles P(χ1,χ2) of isoleucine
sampled in the protein x-ray crystal structure database. Colors from
light to dark indicate increasing probability on a logarithmic scale.
The black contour contains 99.5% of the data, similar to the defini-
tion of Ramachandran and side chain outliers by MOLPROBITY.

in proteins as those that do not cause large interatomic over-
laps, i.e. within the bounds shown in Fig. 5 (a) [57, 58]. Re-
cent studies have also shown that a similar approach can re-
capitulate the side chain dihedral angle distributions in x-ray
crystal structures of proteins given an appropriate set of atom
sizes [59–63]. We therefore employ a set of atom sizes {σi}
that give rise to large interatomic overlaps when the backbone
and side chain dihedral angles populate unallowed dihedral
angle combinations. (See Table I.)

Atom Type Our all-atom protein model σi Amber σvdw,i s
C 1.5 1.7 1.1
CO 1.3 1.7 1.3
O 1.4 1.5 1.1
N 1.3 1.6 1.2
H 1.1 1.0 0.9
HN 1.0 1.0 1.0

TABLE I. The atomic radii σi in Å for each atom type in the all-
atom protein model and van der Waals radii σvdw,i (i.e. location of
the minimum in the Lennard-Jones interatomic potential) from the
Amber force field [47]. s indicates the ratio of the van der Waals radii
to those used in the present study. The atom types with subscripts
indicate an additional atom type when the main atom is bonded to
the subscripted atom.
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FIG. 6. (a) The average repulsive overlap energy ⟨Vrnb/N⟩ is plotted versus the temperature T/ϵr. The difference in the fraction of outliers in
the (b) backbone dihedral angles and (c) side chain dihedral angles between the all-atom protein models (without attractions) and x-ray crystal
structures of proteins plotted versus T/ϵr. (d) Root-mean-square deviation in the Cα atom positions ∆ f (in Å) between the all-atom protein
model and the experimental structures plotted versus T/ϵr. The atom sizes {σi} are scaled by s = 0.7-1.2 colored from purple to yellow with
circular markers. The data for s = 1 from the main text is highlighted using dashed lines and square markers.

To validate the atom sizes in the all-atom protein model, we
carry out Langevin dynamics simulations with no attractions
(α = β = 0) starting from the energy minimized protein x-ray
crystal structures over a wide range of temperatures. We study
50 randomly selected, single-chain proteins with no disulfide
bonds from the x-ray crystal structure dataset. The protein
sizes range from Naa = 60 to 524 amino acids with an av-
erage of ⟨Naa⟩ = 180. (PDBIDs are given in Table II.) We
use the MOLPROBITY software to assess the degree to which
the backbone and side chain dihedral angle restraints are sat-
isfied during the simulations. Even high-quality x-ray crys-
tal structures possess some fraction of Ramachandran fro and
side chain fsco dihedral angle outliers. Therefore, we report
the difference between the experimental and simulation frac-
tion outliers ∆ fro and ∆ fsco. We conduct simulations with the
atom sizes {σi} in Table I, as well as scale them by s to quan-
tify the sensitivity of the MOLPROBITY metrics on the atom
sizes.

As shown in Fig. 6 (a), for s ≤ 1, as the temperature is low-
ered, the all-atom protein models sample more hard-sphere-
like conformations with fewer nonbonded overlaps quantified
as the repulsive overlap energy Vrnb = ∑i> j Vrnb(ri j) summed
over all overlapping nonbonded pairs (Eq. 1). However, for
s > 1, the atom sizes are so large that atomic overlaps occur
even at low temperatures and ⟨Vr/N⟩ is nearly constant with
decreasing T . In Fig. 6 (b) and (c), we show that when s = 1
and T/ϵr ≲ 10−5, both the Ramachandran backbone outliers
and side chain dihedral angle outliers relative to the outliers in
the high-resolution x-ray crystal structure database approach
zero. When the atom sizes are decreased with s < 1, even in
the low-temperature limit, the all-atom protein model samples
a large number of backbone and side chain dihedral angle out-
liers. The side chain dihedral angles are particularly sensitive,
increasing from ∆ fsco ∼ 0 for s= 1 to ∆ fsco > 0.35 for s= 0.9.
In addition, increases in the atom sizes (with s > 1) lead to a
larger plateau in ∆ fro, yet few side chain dihedral angle out-
liers, likely because the large overlaps shown in Fig. 6 (a) lock
the initial x-ray crystal structure dihedral angles into place.

We also calculate the root-mean-square-deviations
(RMSD) in the Cα positions between the simulated and

experimental structures,

∆ =

√√√√ 1
Naa

Naa

∑
m=1

(⃗rms − r⃗me)2, (11)

where r⃗ms and r⃗me are the Cα positions of the mth amino acid
from the simulations and x-ray crystal structures, respectively.
In Fig. 6 (d), we show that the root-mean-squared deviations
of the final simulation backbone Cα atoms from the exper-
imental structure ∆ f increase significantly due to large non-
bonded atomic overlaps.

For s > 1, the atoms cannot be considered as nearly hard
spheres because there are large overlaps between nonbonded
atoms resulting in the repulsive all-atom protein model rapidly
unfolding under constant temperature dynamics. Most all-
atom force fields for proteins use van der Waals radii that
are larger than the atom sizes we employ. (See Table I for
a comparison of the atom sizes used in the present study to
those used in the Amber force field [47].) For all atoms ex-
cept hydrogen, s > 1 when comparing the atom sizes from our
all-atom protein model to those used in the Amber force field.
Since other all-atom models for proteins use s > 1, large at-
tractive forces and explicit restraints on the backbone and side
chain dihedral angles are needed to recapitulate the distribu-
tions found in x-ray crystal structures of proteins [52–56]. In
this way, our all-atom protein model has the minimal elements
necessary to capture high-resolution x-ray crystal structures.

V. A SELF-CONSISTENT CALCULATION OF PROTEIN
CORE PACKING

While the packing fraction of protein cores has been quan-
tified numerous times since the first x-ray crystal structures
were solved, the literature provides a wide range of atomic
sizes {σi} [2–8, 18, 47]. With the atom sizes defined and
validated in Sec. IV, we calculate the core packing fraction
using a dataset of ∼ 5,000 high-quality x-ray crystal struc-
tures with a resolution < 1.8 Å culled from the Protein Data
Bank (PDB) using the PISCES software with all hydrogens
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FIG. 7. The probability distribution P(⟨φ⟩) of the average core pack-
ing fraction ⟨φ⟩ from high-resolution protein x-ray crystal structures
(black circles) fit to a Gaussian with average and standard deviation
⟨φ⟩= 0.55±0.01. Inset: PDBID: 5juh from the x-ray crystal struc-
ture database. The main chain is shown as a ribbon diagram and the
interior, core residues are rendered as spheres.

placed using the REDUCE software [64–66]. The relative
solvent-accessible surface area (rSASA) is measured using
the Lee-Richards algorithm with a spherical probe the size
of a water molecule and core residues are defined as those
with rSASA ≤ 10−3 [42, 43]. The packing fraction of core
residue i is φi = vb

i /vv
i , where vb

i is the non-overlapping vol-
ume of the core amino acid and vv

i is the volume of its en-
closing Voronoi cell [44]. The average core packing fraction
is ⟨φ⟩= n−1

c ∑
nc
i=1 φi, where nc is the number of core residues.

We have previously found that protein cores in experiments
possess an average packing fraction of ⟨φ⟩ = 0.55± 0.01, as
shown in Fig. 7 [18, 19, 21, 22].

VI. PROTEIN CORE FORMATION DESCRIBED AS A
JAMMING TRANSITION

Does the jamming transition that describes bead-spring
polymer collapse apply to protein core formation? As de-
scribed in Sec. IV, to construct an all-atom protein model
analogous to the bead-spring polymer model, we enforce the
correct stereochemistry of the amino acids using harmonic po-
tentials on the bond lengths, bond angles, and peptide bond
dihedral angles. Nonbonded interactions are modeled using
Eq. 4, where λi j = (λi +λ j)/2 is the average hydrophobicity
associated with atom pairs i and j, and 0 ≤ λi ≤ 1 is the hy-
drophobicity per amino acid that is assigned to each atom on
a given amino acid [67]. (See Table III.)

To explore the dynamics of protein core formation in the
all-atom model, we carry out Langevin dynamics starting
from the energy minimized x-ray crystal structure (using α =
β = 0 to remove initial atomic overlaps) for all 50 studied
protein. (See Table II). In Fig. 8 (a), we plot the packing
fraction of core residues ⟨φ⟩ averaged over the 50 proteins
versus increasing attractive strength. At small α2β , the pro-
teins unfold and ⟨φ⟩ < 0.55. As the attractive interactions
increase, a plateau at ⟨φ⟩ ∼ 0.55 (i.e. at the average packing
fraction of experimentally determined protein cores) occurs

PDBID Naa PDBID Naa PDBID Naa PDBID Naa PDBID Naa
2f60 60 5b8d 99 1e29 135 5ljp 168 4lgj 256
1utg 70 4kdw 102 4wee 135 3bwz 171 4r78 287
1cc8 72 1ifr 113 5juh 137 4n6q 178 1lzl 317
5hub 79 2igp 114 4ga2 144 5ckl 181 5dp2 335
5wd9 86 2opc 115 2iih 146 4o6u 182 1m15 356
4he6 89 3zsu 118 5cvw 150 3rlk 183 6o08 360
4ltt 91 2ckk 120 3zuc 153 6dnm 187 5mpr 364
4xxl 92 4o0a 123 1hzt 153 3boe 209 2aeu 366
1v05 96 6bl5 129 3k7i 157 1sdi 213 4xd1 397
4qnd 97 1vsr 134 2z6o 166 3dha 254 1q6z 524

TABLE II. The 50 proteins that we simulated using the all-atom
model identified by their PDBIDs. We also provide the number of
amino acids Naa for each protein.

for α2β ∼ T/ϵr. Increasing the attraction further causes a
steep increase in ⟨φ⟩. As T/ϵr is lowered, the all-atom model
behaves similarly to the bead-spring polymer, and the plateau
extends to smaller α2β . ⟨φ⟩ versus α2β is well fit by the
power-law scaling in Eq. 5, where φc → 0.55 and the expo-
nents a → 1/3 and b → 2 as T/ϵr → 0, notably different than
the exponents for the attractive bead-spring polymer (as well
as collections of repulsive spheres).

Residue λi Residue λi Residue λi Residue λi
ARG 0.0 GLN 0.29 GLY 0.52 TRP 0.85
ASP 0.09 PRO 0.39 TYR 0.64 VAL 0.89
GLU 0.16 HIS 0.4 ALA 0.67 PHE 0.96
LYS 0.16 SER 0.42 CYS 0.74 LEU 0.97
ASN 0.25 THR 0.48 MET 0.84 ILE 1.0

TABLE III. The relative hydrophobicity λi for each of the 20 amino
acids indicated by their three letter codes.

Furthermore, when we plot the sum of the average total
nonbonded repulsive potential energy and bonded potential
energy per atom ⟨Vr/N⟩ versus α2β in Fig. 8 (b), we find
that ⟨Vr/N⟩ ∼V0, where V0 ∼ T/ϵr for α2β < T/ϵr. However,
when α2β > T/ϵr, ⟨Vr/N⟩ increases from the plateau value V0
as a power-law in α2β (Eq. 6), where c → 3/2 as T/ϵr → 0.
Thus, we find that when ⟨φ⟩ > φc, the total pair potential en-
ergy per atom increases strongly, which indicates a jamming-
like transition. In Fig. 8 (c), we combine data from Figs. 8 (a)
and (b). For ⟨φ⟩ < φc, ⟨Vr/N⟩ ∼ V0. When ⟨φ⟩ > φc, ⟨Vr/N⟩
increases as a power-law in ⟨φ⟩ − φc as in Eq. 7. In Fig. 8
(c), we show that δ ′ = 9/2, which is larger than the exponent
δ = 2 obtained for collapsed bead-spring polymers.

We also determine the VDOS for the all-atom protein
model by calculating the eigenvalues of S for the backbone
Cα atoms as a function of ⟨φ⟩. In Fig. 9 (a), we show the
VDOS for the all-atom protein model; it displays similar fea-
tures as a function of ⟨Vr/N⟩ as those found near jamming
onset for the weakly attractive bead-spring polymer. How-
ever, the power-law scaling of the characteristic frequency
ω∗ ∼ ⟨Vr/N⟩ζ ′

(Fig. 9 (b)) has a larger exponent ζ ′ = 1/3
than that found for collapsed bead-spring polymers.

To calculate the number of excess contacts above isostatic-
ity ∆N for the all-atom protein model, we must first deter-
mine the number of redundant restraints Nr for ⟨φ⟩< φc. Re-
dundant restraints give rise to states of self-stress and do not
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FIG. 8. (a) The average core packing fraction ⟨φ⟩ plotted versus the attraction strength α2β for the all-atom protein model for temperatures
T/ϵr = 10−6 (yellow), 10−7 (green), and 10−8 (blue) and α = 0.5 (circles), 1.0 (squares), 1.5 (upward triangles), and 2.0 (downward triangles).
The red dot-dashed line and cyan shading indicate the average and standard deviation of the core packing fraction in the x-ray crystal structure
data set. The black dashed lines indicate fits to Eq. 5 with a = 1/3 and b = 2. (b) The average potential energy per atom ⟨Vr/N⟩ plotted versus
α2β . The black dashed lines indicate fits to Eq. 6 with c = 3/2. (c) ⟨Vr/N⟩ plotted versus ⟨φ⟩. The red dot-dashed line and cyan shading
indicate the average and standard deviation of the core packing fraction in the x-ray crystal structure data set. The black dashed lines indicate
fits to Eq. 7. At large ⟨φ⟩, ⟨Vr/N⟩−V0 ∼ ⟨φ −φc⟩δ ′

, where δ ′ = c/a = 9/2 and φc = 0.55. (d)-(f) Visualizations of PDBID: 5juh at packing
fractions below, near, and above φc. The backbone is rendered as a ribbon diagram, while the core residues at φc are shown as spheres.

FIG. 9. (a) VDOS for the all-atom protein model as a function of ⟨Vr/N⟩ (in units of ϵr) increasing from 10−9 (blue) to 10−1 (red). The black
dashed line indicates D(ω∗) = 2× 10−1. (b) The characteristic plateau frequency ω∗ and (c) average excess number of contacts above the
isostatic value ⟨∆N⟩ plotted versus ⟨Vr/N⟩/α . The black dashed lines in (b) and (c) have slope 1/3.

rigidify the system [68]. In the case of bead-spring polymers,
each bond is independent and therefore non-redundant. To
calculate the number of zero modes N0 for the unjammed sys-
tem with ⟨φ⟩ < φc, we minimize the all-atom model (α = 0)
for each protein, numerically calculate the dynamical ma-
trix M = ∂ 2Vr/(∂ ri∂ r j) with respect to the backbone Cα

atom positions, and count the number of zero eigenmodes
of M. According to Maxwell-Calladine constraint counting
dN −Nr = N0. Therefore, we can determine Nr and calculate
∆N = dN − (Nr +Nc(ri j < rβ )). In Fig. 9 (c), we show that
∆N ∼ (⟨Vr/N⟩/α)ζ ′

with ζ ′ = 1/3, again larger than ζ = 1/4
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found for collapsed bead-spring polymers.
Thus, taken together, Figs. 8 and 9 show that the all-atom

protein model undergoes a jamming-like transition when the
average core packing fraction increases above the value ob-
served in x-ray crystal structures. However, the transition to
the jammed state in the all-atom protein model displays scal-
ing exponents δ ′ and ζ ′ that are larger than those found previ-
ously for the jamming transition in repulsive spheres and col-
lapsed bead-spring polymers [24]. These results suggest that
the anomalous scaling exponents are caused by the unique ge-
ometry of amino acids and not from nonbonded attractive in-
teractions [69, 70].

We have demonstrated that during folding, the all-atom pro-
tein model undergoes a jamming-like transition for ⟨φ⟩ > φc.
We now quantify whether the backbone atoms deviate from
the x-ray crystal structures during the collapse process. We
calculate the root-mean-square-deviations (RMSD) in the Cα

positions between the simulated and experimental structures
∆ (Eq. 11). We find that ∆ converges rapidly versus time,
and thus we focus on ∆ f at the last time point. We plot
⟨∆ f ⟩ averaged over the 50 proteins in Fig. 10. We find that
⟨∆ f ⟩ ∼ 1 Å near jamming onset, confirming that not only the
core packing fraction, but also the global backbone confor-
mation is nearly identical to the x-ray crystal structure at jam-
ming onset.

FIG. 10. (a) Cα RMSD ⟨∆ f ⟩ in Å between the all-atom protein mod-
els and the x-ray crystal structures averaged over 50 proteins plot-
ted versus α2β when starting from the experimental structure for
temperature T/ϵr = 10−6 (yellow), 10−7 (green), and 10−8 (blue)
and α = 0.5 (circles), 1.0 (squares), 1.5 (upward triangles), and 2.0
(downward triangles).

VII. PROTEIN RE-FOLDING

Does the Cα RMSD of the all-atom model relative to the
x-ray crystal structures remain small when the simulations are
initialized further from the x-ray crystal structure? To study
the ability of the all-atom model to refold proteins, we initial-
ize the simulations with conformations at different Cα RMSD
∆i using conformations generated by the model with no attrac-
tions (α = β = 0), which unfold over time. We then carry out
Langevin dynamics simulations of the all-atom model with at-

tractions at T/ϵr = 10−7 over the range 0.5 ≤ α ≤ 5.5 and we
set β such that α2β ∼ T/ϵr. In Fig. 11, we plot the long-
time Cα RMSD ⟨∆ f ⟩ versus ∆i for a range of α averaged
over all 50 proteins. We find that for short attractive ranges
(i.e. α ≲ 0.5), while when starting in the crystal structure
can lead to a jamming transition, the model cannot refold (i.e.
⟨∆ f ⟩ ∼ ∆i) above ∆i ∼ 2 Å. As α is increased, the model can
refold initial states with ∆i ≲ 5 Å to ⟨∆ f ⟩ ∼ 2 Å, a threshold
that is considered properly folded in all-atom MD simulations
of protein folding [71]. In addition, all proteins that refold
form a well-defined core with ⟨φ⟩ ∼ 0.55.

FIG. 11. The final average Cα RMSD ⟨∆ f ⟩ (in Å) plotted versus the
initial Cα RMSD ∆i in Å for T/ϵr = 10−7. The filled circles are
colored by α = 0.5-5.5 increasing from purple to yellow, and β is
set so that α2β ∼ T/ϵr. All-atom MD simulations of a single protein
(PDBID: 2IGP) using the Amber99SB-ILDN force field are shown
as grey squares. The red dashed line indicates ⟨∆ f ⟩= ∆i.

To compare refolding of our all-atom attractive protein
model to results from current all-atom force fields for pro-
teins, we carried out MD simulations of the N = 114 residue
globular protein PDBID: 2IGP using the Amber99SB-ILDN
force field [53, 72] starting from several partially unfolded
states with Cα RMSD ∆i from the x-ray crystal structure. The
MD simulations were carried out in a periodic dodecahedron-
shaped box that is sufficiently large such that the protein sur-
face is at least 20 Å from the box edges. The simulation box
was solvated with water molecules modeled using TIP3P at
neutral pH and 0.15M NaCl [73, 74]. Short-range van der
Waals and screened Coulomb interactions were truncated at
1.2 nm, while long-ranged electrostatic interactions were tab-
ulated using the Particle Mesh Ewald summation method. The
LINCS algorithm was used to constrain the bond lengths. We
performed two energy minimization runs to first relax the pro-
tein and then to relax the water molecules and the protein
together using the steepest decent algorithm until the max-
imum net force magnitude on an atom is smaller than 50
kJmol−1nm−1. We perform NVT simulations of the system
at temperature T = 300 K using a velocity rescaling thermo-
stat for sampling the canonical ensemble [75]. The equations
of motion for the atomic coordinates and velocities are inte-
grated using a leapfrog algorithm with a 2 fs time step. We
ran 10 simulations for 1000 ns starting from the same pro-
tein conformation, but with different initial velocities for each
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FIG. 12. The average Cα RMSD ⟨∆⟩ in Å plotted versus time (in ns)
from MD simulations of the globular protein PDBID: 2IGP using the
(a) Amber Amber99SB-ILDN force field. (b) Similar data as in (a)
except for the Cα RMSD ∆ in Å for a single initial condition from
MD simulations of the all-atom protein model in reduced time units

t̃ ∼ t/
√

mHσ2
H/ϵr. The line color indicates the initial Cα RMSD ∆i

for ∆i = 0, 2, 4, 6, 8 Å from blue to red.

atom randomly selected from a Maxwell-Boltzmann distribu-
tion at T = 300 K. We then calculated the average Cα RMSD
between the simulation structures and the x-ray crystal struc-
ture as a function of time.

In Fig. 12 (a), we show that when the initial atomic posi-
tions are close to the x-ray crystal structure, the Cα RMSD
⟨∆⟩ ∼ 2 . This result indicates that the closest free energy
minimum of the Amber99SB-ILDN force field is ∼ 2 Å from
the experimental structure and that the free energy barriers are
sufficiently large at T = 300 K that the system is not able to
move away from the minimum. However, for an initial Cα

RMSD ∆i > 2 , little refolding is observed and ⟨∆⟩ ∼ ∆i. The
average experimental refolding time at room temperature for a
protein of this size is typically larger than 1 µs [76]. However,
the experimental structures likely refold from completely un-
folded states, whereas the simulations shown here start from
much smaller initial Cα RMSD of ∆i < 8 . In Fig. 12 (b), we
show that in contrast to the results for the Amber99SB-ILDN
force field, or model (with α = 2.5 and α2β ∼ T/ϵr) is able to
refold or partially refold over a wide range of ∆i. For ∆i ≲ 4 Å,
∆≲ 2 Å. For ∆i ≳ 4 Å, the protein partially refolds with ∆<∆i
at long times. The Amber99SB-ILDN data is compared to the
average refolding result in Fig. 11 as grey squares.

VIII. DISCUSSION

We have shown that the collapse of weakly attractive bead-
spring polymers displays a jamming-like transition in the
same universality class as that for jamming of disconnected,
repulsive spheres. We further showed that hydrophobic col-
lapse of a stereochemically accurate all-atom protein model
displays a jamming-like transition with similar power-law
scaling for the structural and mechanical properties of protein
cores above φc ≈ 0.55, but the power-law scaling exponents
differ from those for jamming of repulsive spheres. Thus, our
results suggest that ⟨φ⟩ ≈ 0.55 observed in x-ray crystal struc-
tures of proteins reflects the onset of a jamming-like transition
during hydrophobic collapse.

FIG. 13. The average core packing fraction ⟨φ⟩ of hen egg white
lysozyme (HEWL) plotted versus pressure (P in MPa). The x-ray
crystal structures solved at P = 0.1 (PDBID: 4wld) and 890 MPa
are visualized in green (top left) and cyan (bottom right), respec-
tively. The backbone is shown as a ribbon diagram and the solvent-
inaccessible core residues are shown as spheres.

Connecting protein core formation and the jamming transi-
tion offers several directions for future research. For example,
the response to point mutations in proteins can be reformu-
lated as an unjamming or jamming process, which can lead
to improved predictions of conformational changes upon mu-
tation [77–79]. Packing at protein-protein interfaces can also
be interpreted in the context of jamming, which can provide
insight into the scoring of computational models of protein-
protein interfaces [80]. In addition, the all-atom model de-
veloped here can be used to investigate crowding and sticking
interactions that affect in vivo protein structure [81].

The results described here can also improve our understand-
ing of the mechanical properties of proteins. Experimental
studies have shown that proteins possess a low-frequency bo-
son peak [82, 83], which is associated with functional and
allosteric large-scale motion of proteins [84, 85]. In future
studies, we will compare low-frequency eigenmodes of the
all-atom models of x-ray crystal structures to known col-
lective motions of proteins. In addition, specially-designed
x-ray crystallography cells have been developed to deter-
mine protein crystal structures across a wide range of pres-
sures [86, 87]. While we show in Sec. V that for all high-
resolution x-ray crystal structures at ambient pressure, ⟨φ⟩ =
0.55 ± 0.01, in Fig. 13 we find that at high pressures, the
core packing fraction of hen-egg white lysozyme increases to
⟨φ⟩ ∼ 0.58 [86]. While the applied pressure does not distort
the protein stereochemistry into regions that are disallowed at
ambient pressure or generate large nonbonded atomic over-
laps, it is still unclear whether the denser core packing is a
lower potential energy minimum or if these conformations are
only stable under large applied pressures.

The all-atom protein model developed here can be used to
investigate whether denser core packings can occur even at
ambient pressure. For example, jammed packings of repulsive
spheres exist in a rugged potential energy landscape. Thus,
the packing fraction at jamming onset in repulsive spheres de-
pends on the compression rate and the rate at which thermal
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energy is removed from the system [24, 25, 88–92]. Previous
computational studies have suggested that proteins exist in a
glassy potential energy landscape, and experimental studies
on small proteins have provided evidence that the final stage of
protein folding, known as the dry molten-globule, represents
slow evolution toward the final fold [93–101]. By varying the
thermal quench rate used to induce collapse, we can deter-
mine whether denser protein cores are possible in the absence
of large applied pressures, generating new insights into the
glassy energy landscapes of proteins. Studies of jamming in
proteins connects protein biochemistry to the physics of dis-
ordered materials and will provide theoretical predictions of
the structural and mechanical properties of proteins that can
be directly measured in experiments at high resolution.
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