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The ability to consistently distinguish real protein structures from
computationally generated model decoys is not yet a solved problem.
One route to distinguish real protein structures from decoys is to de-
lineate the important physical features that specify a real protein. For
example, it has long been appreciated that the hydrophobic cores
of proteins contribute significantly to their stability. As a dataset of
decoys to compare with real protein structures, we studied submis-
sions to the bi-annual CASP competition (specifically CASP11, 12,
and 13), in which researchers attempt to predict the structure of a
protein only knowing its amino acid sequence. Our analysis reveals
that many of the submissions possess cores that do not recapitu-
late the features that define real proteins. In particular, the model
structures appear more densely packed (because of energetically
unfavorable atomic overlaps), contain too few residues in the core,
and have improper distributions of hydrophobic residues through-
out the structure. Based on these observations, we developed a
deep learning method, which incorporates key physical features of
protein cores, to predict how well a computational model recapitu-
lates the real protein structure without knowledge of the structure of
the target sequence. By identifying the important features of protein
structure, our method is able to rank decoys from the CASP compe-
titions equally well, if not better than, state-of-the-art methods that
incorporate many additional features.
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It remains a grand challenge of biology to design proteins that1

adopt user-specified structures and perform user-specified2

functions. Although there have been significant successes (1–3

11), the field is still not at the point where we can robustly4

achieve this goal for any application (12). An inherent problem5

in protein structure prediction and design is that it is extremely6

difficult to distinguish between computational models that7

are apparently low energy (13), but which are different from8

the real, experimentally determined structures (14–16). This9

problem is known as “Decoy Detection”. For example, in10

recent Critical Assessment of protein Structure Prediction11

(CASP) competitions, in which researchers attempt to predict12

the three-dimensional (3D) structure of a protein, based on13

its amino acid sequence, many groups produced impressively14

accurate predictions for certain targets (Fig. 1 (A)). However,15

for most targets there is a wide spread of prediction accuracy16

across the submissions from different groups. (Note that the17

fluctuations in prediction accuracy across groups is comparable18

to fluctuations within a single group. See Supplementary19

Information (SI).)20

In recognition of this issue, there is a subcategory in CASP,21

Estimation of Model Accuracy (EMA), in which researchers 22

aim to rank order the submitted models according to their 23

similarity to the backbone of the target structure. The chal- 24

lenge is that researchers must develop such a scoring function 25

for determining model accuracy, yet they do not have access 26

to the target structure (17–23). Although EMA methods are 27

improving (24–34), they are still unable to consistently rank 28

models submitted to CASP in terms of their similarity to the 29

target structure (23). 30

The protein core has long been known to determine pro- 31

tein stability and provide the driving force for folding (35–43). 32

Additionally, in our previous work, we have found that several 33

features of core packing are universal among well-folded ex- 34

perimental structures, such as the repacking predictability of 35

core residue side chain placement, core packing fraction, and 36

distribution of core void space (44–49). This work suggests 37

that analysis of core residue placement and packing in pro- 38

teins more generally should be a powerful tool for determining 39

the accuracy of protein decoys. Indeed, the RosettaHoles 40

software uses defects in interior void space to differentiate 41

between high-resolution x-ray crystal structures and protein 42

decoys (50). Nevertheless, a minimal set of features that can 43

determine protein decoy accuracy has not yet been identified. 44

We demonstrate, that for recent CASP competition pre- 45

dictions, we can determine protein decoy accuracy solely by 46

Significance Statement

A common problem in both the prediction of a protein’s three-
dimensional (3D) structure from its amino acid sequence, and
also in the design of sequences that will adopt a desired 3D
structure, is that one can create low-energy computational
models that are wrong. Either the predicted structure does not
match the experimentally determined structure, or the designed
sequence does not adopt the desired fold. Here, we identify
features that differentiate real, experimentally determined pro-
tein structures from low-energy, but incorrect, model structures.
We subsequently use these features, which focus on packing
constraints, to develop a deep learning model, which is able to
distinguish real, experimentally determined protein structures
from computationally generated structures that are not correct.

A.T.G. compiled the datasets and carried out the computations. A.T.G, Z.M., J.D.T., Z.A.L., L.R.,
and C.S.O. designed the research and contributed to the analysis of the results. A.T.G., J.D.T.,
C.S.O. and L.R. wrote the article.

The authors declare no competing interests.

1To whom correspondence should be addressed. E-mail: corey.ohern@yale.edu

www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX PNAS | January 3, 2020 | vol. XXX | no. XX | 1–6

www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX


DRAFT
Fig. 1. (A) Scatter plot of the Global Distance Test (GDT) score, which gives the average percentage of Cα atoms that is within a given cutoff distance to the target (averaged
over four cutoff distances), versus the number of residues N in the target structure for free modeling submissions to CASP11 (blue squares), CASP12 (orange triangles), and
CASP13 (red diamonds). (B) GDT plotted versus the root-mean-square deviations (RMSD) among Cα atoms of core residues defined in the target (∆core). The symbols
represent the average in each ∆core bin and the error bars represent one standard deviation.

identifying the structures that place the correct residues in47

the protein core. We also show that only predicted struc-48

tures that place core residues accurately, measured using the49

root-mean-squared deviation of the Cα atoms of solvent inac-50

cessible residues (i.e. ∆core < 1Å), can achieve high Global51

Distance Test (GDT) scores (GDT & 70) (Fig. 1 (B)), where52

GDT ranges from 0 to 100 and 100 is a perfect match to53

the target structure (51). Motivated by these observations,54

we then analyzed several important attributes of the cores of55

both experimentally-observed and predicted protein structures.56

Using these results, we developed a decoy detection method57

based on only five principal features of protein packing that58

are independent of the target structure. Our method is more59

effective than many of the methods in the CASP13 EMA.60

Moreover, all of the methods used in CASP13 EMA employ a61

far greater number of features than we do (52). For example,62

in contrast to our approach, the top performing method in the63

CASP13 EMA, ModFOLD7 (23, 52), uses a neural network to64

combine 21 scoring metrics, each based on numerous starting65

features, to reach a “consensus” GDT. The effectiveness of66

the small number of features in our approach highlights the67

importance of core residues, which take up . 10% of globular68

proteins on average, and packing constraints in determining69

the global structure of proteins.70

1. Results71

First, we identify several key features that distinguish72

high-resolution x-ray crystal structures and computationally-73

generated decoys, such as the average core packing fraction,74

core overlap energy, fraction of residues positioned in the core,75

and the distribution of the packing fraction of hydrophobic76

residues throughout the protein. We then show how these77

features can be used to predict the GDT of CASP submissions,78

independent of knowing the target structure.79

The distribution of packing fractions φ of core residues in80

proteins whose structures are determined by x-ray crystallog-81

raphy occur over a relatively narrow range, with a mean of82

0.55 and a standard deviation of 0.1 (44, 46, 49). We define83

core residues as those with small values of the relative solvent84

accessible surface area, rSASA < 10−3. (See the Materials85

and Methods section for a description of the database of high- 86

resolution protein x-ray crystal structures and definition of 87

rSASA.) In contrast, we find that many of the CASP sub- 88

missions possess core residues with packing fractions that are 89

much higher than those in experimentally determined proteins 90

structures. One way to achieve such an un-physically high 91

packing fraction would be to allow atomic overlaps. We there- 92

fore analyzed the side-chain overlap energy for core residues, 93

using the purely repulsive Lennard-Jones inter-atomic poten- 94

tial, 95

URLJ = N−1
a

∑
i,j

ε

72

(
1−

(
σij
rij

)6
)2

Θ(σij − rij), [1] 96

where the sum is taken over all side-chain atoms i and all 97

other atoms not part of the same residue j, ε defines the 98

energy scale, σij = (σi + σj)/2, σi is the diameter of atom 99

i, rij is the distance between atoms i and j, and Θ(x) is the 100

Heaviside step function, which is 1 when x > 0 and is 0 when 101

x ≤ 0. For high-resolution x-ray crystal structures, half of 102

core residues have an overlap energy of zero; the remaining 103

half of the residues have very small overlap energies with 104

an average value of URLJ/ε ≈ 10−4 (Figs. 2 (A) and (B)). 105

In contrast, the models in the CASP datasets include some 106

extremely high energy residues, with URLJ/ε ∼ 1016. The 107

absence of data points in the lower right-hand corner of Fig. 2 108

(A) clearly highlights that artificially high packing fractions 109

are only found when the overlap energy is high. In Fig. 2 (B), 110

we show the frequency distribution of packing fractions for core 111

residues with URLJ = 0. The differences in peak heights reflect 112

how much more likely it is for core residues from x-ray crystal 113

structures of proteins to have zero overlap energy compared 114

to those in the CASP submissions. 115

These results demonstrate that individual core residues in 116

the computational models submitted to CASP are typically 117

overpacked. We then asked whether core overpacking is re- 118

lated to the number of residues in the core relative to the 119

number of residues in the protein. In Fig. 2 (C), we plot the 120

probability that a structure, either computationally-generated 121

or experimentally-determined, has a given fraction of its total 122
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DRAFTFig. 2. Packing features of high-resolution x-ray crystal structures (black circles) and submissions to CASP11 (blue squares), CASP12 (orange triangles), and CASP13 (red
diamonds). (A) Purely repulsive Lennard-Jones potential energy URLJ that measures the overlap of core residue sidechain atoms versus packing fraction φ. (B) Frequency
distribution of the packing fraction F (φ|URLJ = 0) for core residues with zero overlap energy. (C) Probability distribution P (fc) of the fraction of core residues fc. (D)
Probability distribution P (DKL) of the Kullback-Leibler divergence DKL from the distribution of the packing fractions of all hydrophobic residues in high-resolution x-ray
crystal structures.

number of residues in the core. It is clear from this plot that123

computationally-generated models often have too few residues124

in the core. Thus, the computationally-generated models not125

only possess cores with un-physically high packing fraction and126

overlap energy, but they also, typically, have a smaller fraction127

of residues in the core compared to x-ray crystal structures of128

proteins.129

Many CASP models have too few residues in the core; how130

does this affect the distribution of hydrophobic residues outside131

of the core? We examined the degree to which the packing frac-132

tions of all hydrophobic residues in a given protein deviate from133

the expected distribution from high-resolution x-ray crystal134

structures (53, 54). (See Fig. 2 (D).) Specifically, we measured135

the Kullback-Leibler (KL) divergence (DKL) between the over-136

all distribution of packing fractions of hydrophobic residues137

from a database of high-resolution x-ray crystal structures,138

and each individual structure’s packing fraction distribution139

for all its hydrophobic residues in that database (55). (See140

SI for more details.) Additionally, we measured the DKL for141

all CASP models against the distribution from the database142

of high-resolution x-ray crystal structures. We find that the143

distribution of packing fractions of hydrophobic residues for144

each individual experimentally-observed protein structure is145

similar to the full distribution, whereas the distributions for146

the computationally-generated structures differ significantly147

from the experimentally observed distribution.148

Before developing a predictive model for decoy detection,149

we investigated the correlation between the accuracy of back-150

bone placement and correct identification of core residues. In151

Fig. 3, we plot the average GDT versus the fraction fcore of152

the predicted core residues that are core residues in the target 153

structure. This plot shows that there is a strong correlation 154

between the accuracy of backbone placement and correct iden- 155

tification of the core residues. In particular, when fcore → 1, 156

the average GDT & 80. However, one does not know the 157

correct set of core residues at the time of the prediction. Yet, 158

the core residues should share the features shown in Fig. 2. 159

Therefore, we should be able to predict the GDT of a model 160

based upon how well the core properties and the distribution 161

of the hydrophobic residues match those of high-resolution 162

x-ray crystal structures of proteins. 163

While we have shown that many predicted structures sub- 164

mitted to CASP do not recapitulate the packing properties 165

of high-resolution protein x-ray crystal structures, we have 166

not yet made a quantitative link between differences in these 167

properties and the overall backbone accuracy (i.e. GDT). 168

Therefore, we developed a neural network based on the four 169

packing-related features in Fig. 2, plus the number, N , of 170

residues in the protein, to construct the GDT function. (We 171

included N to account for larger fluctuations in packing prop- 172

erties that occur for small N .) We built a simple feed-forward 173

neural network with five hidden layers and a combination of 174

common non-linear activation functions. (For more details, 175

see SI.) The mean-squared error in GDT was used as the loss 176

function. Submissions from CASP11, CASP12, and a large 177

database of high-resolution x-ray crystal structures (53, 54) 178

were used as training data. The model was then tested on 179

CASP13 submissions. The results for the predicted versus 180

actual GDT are plotted in Fig. 4. Our model achieves a 181

Pearson correlation of 0.72, a Spearman correlation of 0.71, 182
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a Kendall Tau of 0.51, and an average absolute error of 13183

GDT. For comparison, in the most recent assessment of decoy184

detection (EMA 13), one of the top ranked single-ended meth-185

ods, ProQ3, reported a correlation between CASP13 actual186

GDT and predicted GDT of 0.67 (23). Another recent study187

reported a maximum Pearson correlation of 0.66 for predicted188

versus actual GDT for several methods that tested on CASP12189

structures (27). The best absolute GDT loss reported in the190

CASP13 EMA competition was 7 GDT and the average GDT191

loss across all methods was 15 (52).192

We also investigated the importance of each feature in the193

neural network model. To do this, we randomly permuted194

the values of a given feature after training. This procedure195

decorrelates each structure with its feature value to effectively196

remove that feature from the model. In Fig. 5, we display the197

Pearson correlation between the predicted and actual GDT198

following feature permutations, averaged over 200 different ran-199

dom permutations. All of the features are important, although200

eliminating the sequence length, N , as a feature still yields a201

Pearson correlation of 0.65, indicating it is the least important.202

The two largest single feature changes come from permuting203

either the fraction of core residues or the KL divergence from204

the hydrophobic residue packing fraction distribution, leading205

to Pearson correlations of 0.42 and 0.39, respectively. Also,206

permuting both of these features together leads to the largest207

pair-wise drop in the Pearson correlation to ≈ 0. These results208

indicate that the most important pair of features to include in209

protein decoy detection are the fraction of core residues and210

packing fraction distribution of hydrophobic residues. The211

packing fraction and overlap energy of core residues are slightly212

less important features. We believe this is because including213

the wrong residue in the core will give rise to a low GDT214

(Fig. 3), even if the packing fraction and overlap energy of215

the misplaced residues are typical of those for core residues in216

high-resolution protein x-ray crystal structures.217

2. Discussion218

We have identified several important features characterizing219

protein packing that allow us to distinguish protein decoys220

from experimentally realizable structures. We developed a ma-221

chine learning model, using deep learning on a small number of222

packing features, that is able to predict the GDT of CASP13223

Fig. 3. The average GDT of CASP predictions that correctly identify each given
fraction of near core residues with rSASA ≤ 10−1, fcore, for CASP11 (blue
squares), CASP12 (orange triangles), and CASP13 (red diamonds) structures. Error
bars represent one standard deviation.

Fig. 4. Predicted versus actual GDT of CASP13 structures (gray diamonds) from a
model that was developed from the four features in Fig. 2 plus N input into a neural
network. The open squares represent the average value of the predicted GDT in each
GDT bin and the error bars represent one standard devation.

structures with high accuracy and without knowledge of the 224

target structures. In addition to developing a highly predic- 225

tive model, this work also demonstrates the importance of the 226

core and packing constraints for protein structure prediction 227

and points out potential improvements to current prediction 228

methods by properly modeling protein cores. Importantly, the 229

machine learning model we developed can be used to identify 230

protein decoys beyond those generated by CASP. For example, 231

molecular dynamics (MD) simulations are often used to ana- 232

lyze thermal fluctuations in folded proteins. To what extent 233

do the protein conformations sampled in such MD simulations 234

recapitulate the packing properties of experimentally observed 235

protein structures (56)? The model developed here can be 236

used in concert with MD simulations to filter out un-physical 237

conformations, which will have low values of GDT, without 238

using knowledge of the experimentally observed protein struc- 239

ture. Thus, such an approach can be used to improve protein 240

structure prediction. Additionally, our model can be used to 241

assist protein design methods by selecting designs that are 242

more likely to be experimentally attainable. 243

We expect future improvements to our basic model will 244

increase its accuracy. For example, we have shown that the 245

identification of core residues is one of the most important 246

aspects for determining a predicted structure’s accuracy. Thus, 247

we will also implement recurrent neural networks to predict 248

the rSASA values for each residue (57). This model can 249

then be concatenated with the model developed here. In 250

addition, we will incorporate predictions of GDT into MD 251

folding simulations to improve the accuracy of computationally- 252

generated protein structures. In addition to appreciating the 253

overall success of our approach, it will also be informative to 254

study in greater depth cases where there are large deviations 255

in GDT. For example, investigating examples of high predicted 256

GDT, but low actual GDT (or vice versa) has the potential 257

to provide key insights into native protein structures. 258

Materials and Methods 259

260

Datasets. In the main text, we show results for the free modeling 261

CASP submissions, and the corresponding results for template- 262

based modeling data are provided in the Supplementary Informa- 263
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Fig. 5. Pearson correlation coefficients between the predicted and actual GDT of
CASP13 structures following permutations of single features (along the diagonal) and
pairs of features (for the off-diagonal components). The color ranges from purple (0)
to yellow (1) corresponding to the Pearson correlation coefficient.

tion. For the decoy datasets, we examined CASP11 (2014) (58),264

CASP12 (2016) (59) and CASP13 (2018) (14) downloaded from265

the predictioncenter.org data archive. Each target in the com-266

petitions has a corresponding experimental structure. We selected267

targets with an x-ray crystal structure under a resolution cutoff. A268

cutoff of ≤ 2.0 Å was used in the cases of CASP11 and CASP12,269

however; a cutoff of ≤ 2.7 Å was used for CASP13, as very few270

protein targets fell under ≤ 2.0 Å . These cutoffs resulted in a271

dataset of 16, 905 predictions based on 49 target structures. For272

the x-ray crystal structure dataset, we compiled a dataset of 5547273

x-ray crystal structures culled from the PDB using PISCES (53, 54)274

with resolution ≤ 1.8 Å, a sequence identity cutoff of 20%, and an275

R-factor cutoff of 0.25.276

rSASA. To identify core residues, we measured each residue’s solvent277

accessible surface area (SASA). To calculate SASA, we use the278

Naccess software package (60), which implements an algorithm279

originally proposed by Lee and Richards (61). To normalize the280

SASA, we take the ratio of the SASA within the context of the281

protein (SASAcontext) and the SASA of the same residue extracted282

from the protein structure as a dipeptide (Gly-X-Gly) with the283

same backbone and side-chain dihedral angles:284

rSASA =
SASAcontext

SASAdipeptide
. [2]285

Core residues are classified as those that have rSASA ≤ 10−3. In286

Fig. 3, “near core” residues are those with rSASA ≤ 10−1.287

Packing Fraction. A characteristic measure of the packing efficiency288

of a system is the packing fraction. The packing fraction of residue289

µ is290

φµ =
νµ

Vµ
, [3]291

where νµ is the non-overlapping volume and Vµ is the volume of292

the Voronoi cell surrounding residue µ. The Voronoi cell represents293

the local free space around the residue. To calculate the Voronoi294

tessellation for a protein structure, we use the surface Voronoi295

tessellation, which defines a Voronoi cell as the region of space in a296

given system that is closer to the bounding surface of the residue297

than to the bounding surface of any other residue in the system. We298

calculate the surface Voronoi tessellations using the Pomelo software299

package (62). This software approximates the bounding surfaces300

of each residue by triangulating points on the residue surfaces. We301

find that using ∼ 400 points per atom, or ∼ 6400 surface points per302

residue, gives an accurate representation of the Voronoi cells and303

the results do not change if more surface points are included.304
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