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A B S T R A C T   

Addressing complex materials science problems through machine learning (ML) is challenging. A primary reason 
for the challenge is that the underlying mechanisms may vary within the considered problem space. To quantify 
this, we divide alloy data into subgroups and construct ML models to predict metallic glass formation. We 
discover that subgrouping guided by physical insights into the problem leads to significantly higher prediction 
accuracy. Specifically, when applying Inoue’s subgrouping, models specific to subgroups outperform those 
trained on the entire dataset. Moreover, our analysis uncovers distinct mechanisms and contributing factors that 
control the glass-forming ability in different subgroups, shedding light on the diverse nature of this phenomenon. 
Statistical methods for subgrouping prove less effective and constrained when compared to physics-informed 
subgrouping. Our results underscore the importance of leveraging physical insights for effective subgrouping 
or precise feature representation, to guide ML strategies when tackling complex materials science problems. Such 
an integrated approach has the potential to unlock new insights into material composition-property relationships 
and accelerate materials discovery in a wide range of applications beyond metallic glass formation.   

1. Introduction 

Complex materials science problems and phenomena often involve a 
large number of atoms, which are usually many orders of magnitude too 
large to be addressed by ab initio calculations. Examples of such complex 
materials science problems include the prediction of liquidus tempera-
ture of an alloy [1–3], the viscosity of a liquid [4,5], the plastic region of 
the stress-strain curve [6], microstructure and microstructure evolution 
and the resulting properties [7–11], and the glass forming ability (GFA) 
[12–15] of an alloy. 

Particularly, bulk metallic glass (BMG) formation has raised signifi-
cant scientific and technological interest [12,13,16,17]. The techno-
logical interest originates from their superb properties and property 
combinations [18–26] and from their unique-for-metals processability 
[27]. Scientifically, BMGs give rise to a convenient spatial and temporal 
window to study the structure of glass and liquids [28,29] and their 

structure-property relationships [30–32]. Generally, as BMG formation 
is a complex process, it has been difficult to predict GFA of alloys. 

For such complex problems, empirical rules, model descriptions, and 
guiding principles have been developed to help understand and predict 
material behavior and properties and also to guide materials discovery. 
Examples include the Hume-Rothery rules for solid solution formation 
[33,34], the Hall-Petch relationship for grain boundary strengthening 
[35,36], Turnbull’s reduced glass transition temperature criteria for 
bulk glass formation [37], correlation between elastic constants and 
plasticity in metallic glasses [18,22,38], and Inoue’s rules for designing 
BMGs [13]. Obviously, to apply broadly across the wide range of a 
complex problem, such rules must be generalized. Thereby, they can 
describe general trends [12,16,38,39], but at the cost of accounting for 
material-specific behavior. This has led to refinement and further 
specification of rules [40–44]. For example, Inoue suggested that more 
accurate design criteria for BMGs are possible when subgrouping alloys 
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based on their chemical characteristics which are reflected in the loca-
tion of the alloy constituents in the periodic table [45]. However, thus 
far, validating such empirical rules or subgrouping has remained chal-
lenging as it requires large amounts of consistent and high-quality data. 
It is obvious that the availability of effective rules guiding metallurgy is 
of paramount importance when considering the vast composition and 
processing space available for alloys [46]. 

In this study, we employ machine learning (ML) strategies to quan-
tify the effectiveness of such rules. Specifically, we apply ML to a 
comprehensive database of alloys to validate Inoue’s empirical rules and 
subgrouping for metallic glasses [45]. For this, we divide the database 
into seven subgroups according to Inoue’s subgrouping criteria. Subse-
quently, we build individual random forest ML models for each sub-
group of data, using physics-informed features that have been previously 
confirmed as effective [14]. When predicting into held-out test datasets, 
we find that the models trained on the same subgroup of data perform 
better than the models trained on all available data, suggesting that 
physics-informed subgrouping is more effective at enhancing prediction 
accuracy than increasing data quantity. 

A powerful test of the subgrouping approach is to use models trained 
on each subgroup to predict into other subgroups, and compare these 
predictions with predictions where training and testing is performed 
within the same subgroup. Our results show that predictions within the 
same subgroup are significantly more accurate than predictions into 
other subgroups. To calibrate this result, we compare the above results 
with the predictions generated by models trained on randomly grouped 
data, assuming no domain-specific knowledge regarding subgrouping. 
Specifically, we conduct a parallel experiment where we randomly 
divide all data into seven “subgroups”, each equivalent in size to Inoue’s 
seven subgroups and repeat the same process of ML training and pre-
diction. From this benchmark experiment, we observe no significant 
difference between within-group predictions and out-of-group pre-
dictions, while the accuracy of within-group predictions is lower than 
that using Inoue’s subgrouping, revealing the effectiveness of Inoue’s 
subgrouping strategies that are physics informed. 

To understand the underlying origin of Inoue’s subgrouping, we 
identify and compare the feature importance across ML models trained 
on different subgroups. We find that feature importance varies signifi-
cantly across groups, indicating that motifs for glass formation vary 
among these Inoue’s subgroups. 

Overall, our findings suggest that more specific physical insights are 
needed to develop effective ML models for complex materials science 
problems. Effective subgrouping solely through data science strategies is 
generally not feasible due to the astronomical vastness of the parameter 
space of complex materials science problems and the non-physical ap-
proximations that all such data science strategies employ. More accurate 
ML models can be achieved either by constructing physics-informed 
features based on human insights [14] or dividing the data into sub-
groups that follow the same underlying physics, as proposed in this 
study. Such approaches can be applied to other complex materials sci-
ence problems beyond metallic glass formation. Additionally, our find-
ings suggest that the effectiveness of empirical rules as guiding 
principles can be tested, and mechanistic insights can be revealed using 
ML strategies, potentially leading to the development of more accurate 
and generalizable rules. Further investigation into the underlying 
mechanisms of subgrouping could also reveal new insights into the 
relationship between material composition and properties. 

2. Methods 

2.1. Data collection and subgrouping 

We utilize a database complied by Liu et al. [14] composed of 
essentially all experimentally reported data from the Landolt-Bornstein 
Handbook on “Nonequilibrium Phase Diagrams of Ternary Amorphous 
Alloys” [47], and peer-reviewed literature on GFA of alloys. We labeled 

alloys as either BMG formers (critical cooling rate Rc < 103 K/s) or 
non-glass formers (Rc > 106 K/s), resulting in a database of 2740 unique 
alloy compositions, with 1027 BMG and 1713 non-glass formers. The 
database contains 55 distinct elements and considers alloys ranging 
from binary to octonary alloys, with ternary alloys forming the majority 
of the alloys. 

We used the classification system proposed by Inoue [45] to group 
alloys into seven distinct subgroups based on their constituent elements 
(Fig. 1). This classification system groups alloys using the atomic size 
difference, heat of mixing, and period of the constituent elements in the 
periodic table. The seven subgroups from Group 1 (G1) to Group 7 (G7) 
are as follows:  

1. ETM/Ln-LTM/BM-Al/Ga  
2. ETM/Ln-LTM/BM-Metalloid  
3. Al/Ga-LTM/BM-Metalloid  
4. IIA-ETM/Ln-LTM/BM  
5. LTM/BM-Metalloid  
6. ETM/Ln-LTM/BM  
7. IIA-LTM/BM 

where ETM, Ln, LTM, BM and IIA refer to early transition, lanthanide, 
late transition, group IIIB–IVB, and group IIA-group metals, 
respectively. 

2.2. Feature construction: physics-informed features 

The identification and construction of features that represent the 
property of interest of an alloy is critical for building effective and 
interpretable ML models. Here, the property of interest is the GFA of the 
alloy. Features, summarized in feature vectors, can be defined as a set of 
quantitative and qualitative attributes that describe the alloy for the 
property of interest and are the building blocks of ML models. Each alloy 
composition and label, i.e., BMG or non-glass, corresponds to a feature 
vector. Physical insights into the problem can be utilized to choose or to 
construct features more effectively [14]. In our study, we select and 
build features based on their ability to represent the underlying atomic 
interactions in the alloy governing GFA. The characteristics of an alloy 
to be a BMG former are [13]: a) a composition close to a deep eutectic, b) 
atomic size difference of larger than 12 %, c) a large negative heat of 
mixing among at least two constituent elements. These empirical rules 
reflect the established understanding of an alloy’s characteristics to form 
a BMG, which have been also suggested by Inoue [13]. To represent 
these rules by properties that are a priori known, we construct the 
following features:  

1. Liquidus temperature of the alloy, Talloy. To determine Talloy for a 
general multicomponent alloy, we first break down the alloy into all 
possible binary combinations. The liquidus temperature for each 
binary system is readily available, such as in the ASM Alloy Phase 
Diagram Database. The liquidus temperature of the alloy, Talloy, is 
constructed using the ratio of these binary combinations. We 
extrapolate Talloy by calculating it from the liquidus temperatures of 
constituent binary pairs, denoted as TAB for the composition A a

a+b
B b

a+b
. 

For example, in the case of a ternary alloy AaBbCc, Talloy is calculated 
as follows: 

Talloy =
(a + b) × TAB + (a + c) × TAC + (b + c) × TBC

2 × (a + b + c)
. (1)   

Note that for the ternary alloy A-B-C system, a, b, and c are the 
compositions of elements A, B, and C, respectively. 
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2. Liquidus temperature reduction, Tr: To determine the reduction in 
liquidus temperature, we normalize Talloy by the mean liquidus 
temperature among the constituent elements, denoted as Tmean. Tr is 
a dimensionless ratio, ranging from 1 (indicating no reduction) to 
0 (indicating total reduction). For the ternary alloy AaBbCc, Tmean is 
calculated as TA × a + TB × b + TC × c. Tr is then expressed as: 

Tr =
Talloy

Tmean
. (2)    

3. Atomic size difference, δ: 

δ = 100% ∗

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑

i
xi(1 − ri/r)2

√

, r =
∑

i
xiri, (3)   

where ri is the atomic radius of the constituent element, and xi is the 
atomic fraction of the element. Here, r is the mean atomic radius among 
the constituent elements.  

4. Atomic size ratio ϕ: 

ϕ = rmax / rmin, (4)   

where rmax represents the largest atomic radius among the constituent 
elements, while rmin is the smallest atomic radius among the constituent 
elements.  

5. Atomic size range Δr: 

Δr = rmax − rmin, (5)   

where rmax is the largest atomic radius among the constituent elements, 
and rmin is the smallest atomic radius among the constituent elements.  

6. Maximum heat of mixing ΔHmax: We first identify the maximum 
absolute binary mixing enthalpy, denoted as |ΔH|, among constitu-
ent binary pairs within the alloy. For this particular pair, we use ΔH 
multiplied by a factor as our feature. For example, for an alloy 
AaBbCc, if |ΔHAB| is the maximum absolute binary mixing enthalpy, 
ΔHmax is calculated as follows: 

ΔHmax =
2 × a × b

a + b
× ΔHAB. (6)  

Here, ΔHAB is obtained from the modified Miedema model [48]. 
The factor 2×a×b

a+b accounts for the fractional number of A-B bonds in 
the alloy. The choice of “2” in 2×a×b

a+b is a normalizing factor. 

Fig. 1. Inoue’s subgrouping of BMGs. The seven subgroups are: (G1) ETM/Ln-LTM/BM-Al/Ga, (G2) ETM/Ln-LTM/BM-Metalloid, (G3) Al/Ga-LTM/BM-Metalloid, 
(G4) IIA-ETM/Ln-LTM/BM, (G5) LTM/BM-Metalloid, (G6) ETM/Ln-LTM/BM, and (G7) IIA-LTM/BM, where ETM, Ln, LTM, BM and IIA refer to early transition, 
lanthanide, late transition, group IIIB–IVB, and group IIA-group metals, respectively. 
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7. Mean heat of mixing ΔHmean: ΔHmean of the alloy represents the 
weighted average binary mixing enthalpy of all constituent binary 
pairs within the alloy. For a ternary alloy AaBbCc, ΔHmean is calcu-
lated as follows: 

ΔHmean =
(a + b) × ΔHAB + (a + c) × ΔHAC + (b + c) × ΔHBC

2 × (a + b + c)
.

(7)   

2.3. Machine learning model 

2.3.1. Random forest classification 
In this study, we employ the random forest ML model to create 

classification models that map features (as described in Section 2.2) to 
the GFA of alloys. Random forest is robust to outliers, versatile, able to 
handle non-linear data and high dimensional data [49]. A random forest 
classification model builds numerous decision trees during training, and 
the model’s prediction is determined by the label chosen by the majority 
of these decision trees. We use the open-source python package 
Scikit-learn to construct the random forest ML model. Grid search has 
been employed throughout the training process to optimize hyper-
parameters for the model, such as the number of decision trees, the 
number of features to choose from at each tree node, and the maximum 
depth of each tree, to obtain the highest classification accuracy. The 
trained model can assess the relative probability of an unknown alloy 
belonging to each GFA category, thus can categorize any new alloy into 
these predefined categories. Therefore, we can utilize the ML model to 
make predictions in the unknown composition space. 

2.3.2. Within-group and out-of-group tests 
To assess the effectiveness of Inoue’s empirical rules and subgroup-

ing for metallic glasses, we perform two sets of tests. In the first set of 
tests, we train the models on each subgroup and evaluate their perfor-
mance on held-out test datasets within the same subgroup. We compare 
the prediction accuracy of the models trained on each subgroup with the 
models trained on the entire dataset. Such comparison allows us to 
quantify performance differences between the models and specifically 
determine whether physics-informed subgrouping enhances the pre-
diction accuracy. To evaluate model performance, we use the classifi-
cation accuracy as the metric, which measures the percentage of 
correctly classified observations by a given model. 

In another complementary test of the effectiveness of subgrouping, 
we utilize the models trained on each subgroup to predict into other 
subgroups and compare these predictions with predictions made within 
the same subgroup (Fig. 2). To calibrate these results, we conduct a 
parallel experiment in which we randomly divide all data into seven 
subgroups, each of the same size as Inoue’s seven subgroups. We then 
repeat the same process of ML training and prediction. Subsequently, we 
compare the results of this benchmark experiment using random sub-
grouping with those derived from Inoue’s subgrouping. 

3. Results and discussion 

3.1. No subgrouping versus effective subgrouping: quantity versus quality 

We found that the models trained on specific subgroups of data 
outperform the models trained on the entire dataset. Such out-
performance suggests that physics-informed subgrouping enhances 
prediction accuracy. The average test accuracies are 96 ± 2 % for 
models trained on subgroups of data, 81 ± 7 % for models trained on all 
data, and 61 ± 7 % for models trained on all data excluding data from 
the same subgroup (Fig. 3). 

3.2. Within-group tests versus out-of-group tests 

The previous results on the outperformance of the models based on 
subgroup predictions compared to the model trained on all data reveal 
the effectiveness of subgrouping. Further and complimentary evidence 
for the effectiveness of such subgrouping can be seen when comparing 
within-group tests and out-of-group tests. Specifically, high within- 
group prediction and low out-of-group prediction would be indicative 
of an effective subgrouping. As shown in Fig. 4, within subgroups, the 
average prediction accuracy is 97 ± 1 % (diagonal), which is signifi-
cantly higher than the average accuracy of predictions into other groups, 
55 ± 3 % (off diagonal). The ratio of out-of-group accuracy to within- 
group accuracy is 0.57. 

In the benchmark experiment (Fig. 4b), where we randomly group all 
data into seven “subgroups” of the same size as Inoue’s seven subgroups, 
we found no significant differences between within-group predictions 
and out-of-group predictions, with an average accuracy of 88 ± 3 % and 
86 ± 1 %, respectively. The average accuracy of within-group pre-
dictions using random subgrouping is lower than that using Inoue’s 
grouping, i.e., 88 % versus 96 %. The ratio of out-of-group accuracy to 
within-group accuracy is close to unity, 0.98. This ratio, which we define 
as Subgroup Similarity Score (SSS) indicates the specificity and mean-
ingfulness of the grouping strategy. A lower SSS suggests that the pre-
dictions within a subgroup are significantly more accurate than 
predictions into other subgroups. This indicates that the subgrouping 
strategy effectively separates distinct subgroups, making it more 
meaningful for modeling the specific mechanisms within each subgroup. 
On the other hand, a higher SSS implies that there is higher similarity 
between the subgroups, making it challenging to distinguish between 
them. In such cases, the subgrouping strategy may not effectively cap-
ture the variations of underlying physics in material behavior, poten-
tially limiting its usefulness in ML modeling. Values of SSS can range 
from 0 to 1 (approximately), with 0 representing the highest level of 
meaningfulness and distinction whereas 1 indicates the absence of any 
meaningful subgroups. Our results imply that Inoue’s grouping strategy 
has significant physical meaning. 

3.3. Feature importance: different gfa mechanisms in different subgroups 

To further investigate the origin of effective subgrouping, we identify 
and analyze feature importance in our random forest ML models trained 
on different subgroups. Feature importance is a measure of the relative 

Fig. 2. Schematic of out-of-group testing. In the second set of tests proposed in 
this study to evaluate Inoue’s subgrouping, the ML model is trained using data 
exclusively from one subgroup, e.g., G1. The trained model is then used to 
predict into other subgroups (G2, G3, etc.) allowing for a comparison of out-of- 
group prediction accuracies with those obtained from predictions within the 
same subgroup. Additionally, the testing procedure is repeated for a benchmark 
experiment where the data is randomly grouped into seven subgroups, 
following the same methodology described above. 
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importance of each feature in making accurate predictions. We found 
that feature importance varies across groups, indicating distinct and 
subgroup-specific motifs for glass formation (Fig. 5). Notably, each 
subgroup exhibited a different most important feature: Tr for G1, Δr for 
G2, ϕ for G4 and G5, δ for G6, and ΔHmean for G7. 

For example, when examining alloys in G6 (ETM/Ln-LTM/BM), it is 
difficult to find sufficiently large atomic size difference, especially 
among the predominant transition metals. Consequently, atomic size 
difference (δ) should be expected to be a dominating factor in deter-
mining the GFA within this group and this is indeed the feature with the 
highest feature importance in our analysis. Other features, such as heat 
of mixing (ΔHmax and ΔHmean) and liquidus temperature reduction (Tr) 
are widely available to lead to high GFA, hence do not play such a 
dominant role. 

On the other hand, for alloys in G7 (IIA-LTM/BM), atomic size range 
and ratio are typically large, while the heat of mixing among elements is 
relatively small and similar. Hence, heat of mixing (ΔHmean) is the 
dominating feature, whereas atomic size range (Δr) and ratio (ϕ) are 
much less important. Again, this has also been found in our feature 
importance analysis. 

In summary, the feature importance analysis supports the 

effectiveness of Inoue’s subgrouping. Further the analysis aligns well 
with the fact that a variety of different attributes of an alloy can 
contribute to glass formation, supporting the diverse and rich nature of 
this phenomenon. 

4. Discussion 

The results depicted in Fig. 3 clearly demonstrate that the models 
trained on individual subgroups consistently outperform the model 
trained on the entire dataset. The observed improvement in prediction 
accuracy reflects their large range of constitutive elements and their 
associated attributes in absolute and relative-to-each-other terms, which 
suppresses crystallization in different ways [41,45,46,50-59]. By parti-
tioning the dataset into subgroups based on Inoue’s subgrouping stra-
tegies, we effectively capture the distinct characteristics and underlying 
physics associated with each subgroup. This allows the individual 
models, despite using fewer data for training, to better learn and 
leverage the specific patterns and behaviors exhibited within each alloy 
subgroup. Consequently, when presented with new observations from 
the same subgroup during testing, the models can make more accurate 
predictions. By isolating into subgroups, specific strategies to form 

Fig. 3. Comparison of ML model performance between models trained on all data and models trained on Inoue’s subgroups. (a) Visualization of different data 
partitions. (b) The average test accuracies are 96 ± 2 % for models trained on subgroups of data, 81 ± 7 % for models trained on all data, and 61 ± 7 % for models 
trained on all data excluding data from the same subgroup. The error originates from the variance of prediction accuracies across seven subgroups. 

Fig. 4. Comparison of ML prediction accuracies between within-group predictions and out-of-group predictions using Inoue’s subgrouping and random subgrouping. 
(a) For Inoue’s subgrouping the average prediction accuracy of within-group tests is 97 ± 1 % (diagonal), while the average accuracy of out-of-group tests is 55 ± 3 
% (off diagonal). The Subgroup Similarity Score (SSS), defined as the ratio of out-of-group accuracy to within-group accuracy, is 0.57. (b) For random subgrouping, 
the average prediction accuracy of within-group tests and out-of-group tests are 88 ± 3 % and 86 ± 1 %, respectively, with a SSS of 0.98. 

G. Liu et al.                                                                                                                                                                                                                                      



Acta Materialia 265 (2024) 119590

6

glasses can be revealed that would otherwise be smeared out when 
considering the entire group of metallic glasses. Such subgrouping-based 
models specializing in modeling the specific mechanisms of each sub-
group can be expected to yield higher prediction accuracy. 

To explore why predictions into other subgroups are limited, we 
calculate the confusion matrix for out-of-group predictions (Table 1). 
The confusion matrix goes beyond simple average accuracies and re-
veals specific alloys that result in false positive or false negative classi-
fications. Thus, we can gain insights into how well models perform 
within specific subgroups and identify any patterns of misclassification. 

We first analyzed the characteristics of Inoue’s seven subgroups: G1, 
G5, and G7 BMGs exhibit a tendency where the main alloying element 
possesses the largest atomic radius among all alloying elements and 
forms an atomic pair with the largest negative value of heat of mixing. 
BMGs belonging to G2 and G4 have a main element with an intermediate 
atomic radius, independent of the atomic pair with the largest negative 
heat of mixing. For multicomponent BMGs in G3, the main element can 
either be the larger-sized element in the atomic pair with the largest 
negative heat of mixing or an element within the same group in the 
periodic table. BMGs in G6 are characterized by the main alloying 
element with the smallest atomic radius among the other alloying ele-
ments, while still being an element in the atomic pair with the largest 
negative heat of mixing. 

Using the confusion matrix results allow us to conclude for example 
that the presence of metalloid elements gives rise to different mecha-
nisms for glass formation. When we use the ML model trained on G1 
(ETM/Ln-LTM/BM-Al/Ga) to predict into G2 (ETM/Ln-LTM/BM- 
Metalloid), we observe a high false positive rate (FPR) of 73 % (false 
positives refer to non-glass formers wrongly classified as BMGs) and a 
false negative rate (FNR) of 4 %, indicating an overestimation of GFA for 
alloys containing metalloids in G2. This can be explained by the fact that 
metalloid elements have a significantly smaller atomic size compared to 
other elements, resulting in larger differences in atomic size difference, 
ratio, and range within the alloy. The model trained on G1 has primarily 
encountered a limited range (on the smaller end of the spectrum) of 
atomic size difference, ratio, and range during training, on which the 

decision rules for GFA were based on. Consequently, the model over-
estimates GFA in G2, as the values of these features in G2 are likely to 
exceed the thresholds established in the G1 model. 

A similar case arises when using the G4 (IIA-ETM/Ln-LTM/BM) 
model to predict into G2 (ETM/Ln-LTM/BM-Metalloid) where atomic 
size differences are larger due to the existence of metalloid elements in 
G2. The confusion matrix reveals an FPR of 76 % and an FNR of 0 %, 
suggesting an overestimation of GFA. Analogous results and analysis can 
be found when applying the ML model trained on G7 (IIA-LTM/BM) to 
predict into G2 (ETM/Ln-LTM/BM-Metalloid). 

The pairs of groups, G5 (LTM/BM-Metalloid) and G7 (IIA-LTM/BM), 
exhibit intriguing similarities in their characteristics. Both groups share 
the common trait of having the main alloying element with the greatest 
atomic radius among the other alloying elements. Additionally, this 
main element is part of the atomic pair with the largest negative heat of 
mixing. Training on G7 and testing on G5 resulted in an FPR of 80 % and 
an FNR of 0 %. Conversely, training on G5 and testing on G7 yielded an 
FPR of 0 % and an FNR of 89 %. These findings indicate a consistent 
overestimation in one direction (from G7 to G5) and a contrasting un-
derestimation in the reverse direction. Notably, the main element in G7 
is Ca, which possesses one of the largest atomic radii of 0.197 nm. The 
presence of Ca in all of G7 alloys diminishes the significance of the 
"atomic size ratio ϕ" feature, while emphasizing other features related to 
heat of mixing, as depicted in Fig. 5. In contrast, G5 comprises metalloid 
elements such as B, C, P, and Si, which have smaller atomic radii ranging 
from 0.077 to 0.117 nm. Additionally, G5 alloys exhibit relatively higher 
heat of mixing values ranging from − 55 to − 34.5 kJ/mol for combi-
nations between the major elements (Fe, Ni, Co, and Pd) and the met-
alloids (B, C, P, and Si) in the LTM/BM. These distinct characteristics 
and the inherent large negative mixing in most G5 alloys reduce the 
influence of heat of mixing-related features when estimating other 
groups. Consequently, the high importance of the ‘atomic size ratio ϕ’ 
feature leads to an overestimation of GFA for G5 when the model is 
trained using G7, while underestimating the GFA of G7 when trained on 
G5. Similar patterns of reversed FPR/FNR ratios, such as G4-G5, and G2- 
G6, can be explained by employing a similar logic to the G5-G7 pair. 

Fig. 5. Variation in feature importance of ML models suggests different GFA mechanisms are at play in different subgroups. The features are: Talloy, liquidus 
temperature of the alloy; Tr, liquidus temperature reduction; δ, atomic size difference; ϕ, atomic size ratio; Δr, atomic size range; ΔHmax, maximum heat of mixing; 
ΔHmean, mean heat of mixing. G3 exists solely of non-glass formers, hence does not have a feature importance plot. 
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The insights gained from the pairs found in the confusion matrix, 
which demonstrate a consistent overestimation in one direction and 
underestimation in the other direction, highlight the critical importance 
of subgrouping based on the underlying physics. This approach proves 
crucial, not only for accurately predicting the GFA of specific alloy 
groups but also for understanding the role of each individual feature. By 
incorporating the relevant physical characteristics and properties of the 
alloys into the subgrouping and analyzing them using machine learning 
techniques, we can achieve more robust predictions and gain a deeper 
understanding of the underlying mechanisms governing the scientific 
problem at hand. This integration of physics-based subgrouping and 
machine learning methods offers a powerful framework for advancing 
our knowledge in materials science and facilitating the design and 
development of novel materials with tailored properties. 

The above discussion revealed the need and power of physical in-
sights (physics-informed subgrouping and features). Obviously, the 
question arises whether there are ML or data science strategies that 
reveal such subgrouping or features without using physical insights. In 
other words, are physical insights necessary for building accurate ML 
models? To test whether subgrouping (and hence ML models based upon 
such groups) without physical insights is at least as useful as physical 
insights, we employ clustering or subgroup discovery strategies that are 
based solely upon the characteristics of the features of the data. Note 
that while these features (described in Section 2.2) are derived from 
physical principles, we will use only these features to group the alloys 

and will not consider whether such features result in the formation of 
glass or not. 

One widely used strategy to group data into subgroups is k-means 
clustering in which k, the number of averages, is specified and then data 
points are grouped into k clusters or subgroups according to the dis-
tances of their features from these average values. In the next compu-
tational experiment, we show that simply using the features alone 
(without additional physical insights) with the k-means clustering al-
gorithm is not as effective in building predictive ML models as the 
physically derived groups, although such clustering is better than 
random grouping. 

We run k-means clustering for k = 7 on the data (Section 2.1) and 
generate seven subgroups. We perform the same within-group and out-of- 
group prediction experiments (as described in Section 2.3.2) using the k- 
means clusters. Fig. 6 shows the within-group predictions and the out-of- 
group predictions. We find that the within-group predictions are worse for 
the k-means cluster than for Inoue’s groups (especially on G2, G3, and 
G5), albeit a bit better on G1, G4, and G6. Interestingly, the out-of-group 
predictions are considerably higher for the k-means clusters than for 
Inoue’s groups, suggesting that this subgrouping does not separate or 
distinguish amongst the subgroups nearly as well. Specifically, the 
average prediction accuracy of within-group tests is 96 ± 1 % and that of 
out-of-group tests is 63 ± 3 %, resulting in a SSS of 0.66, higher than 
Inoue’ grouping with a SSS of 0.57. The k-means subgrouping is reason-
ably effective at prediction but not effective at revealing underlying 
structure nor as useful for revealing physical mechanisms that might drive 
glass formation for different types of alloys. 

The k-means algorithm clusters data based on their features alone, 
without taking into account any labels. Obviously, when labels are not 
considered, no conclusions can be drawn about the feature importance 
and, thus, k-means clusters do not reflect the contribution of features. In 
cases where there are different underlying mechanisms and physics 
defining the GFA, clustering analysis alone cannot be efficient in iden-
tifying subgroups that would be statistically correlated with different 
labels. Therefore, the effectiveness of clustering analysis that does not 
make use of any other information depends on whether the data has the 
same feature importance and underlying mechanisms for the specific 
problem being studied. 

We argue that to generate a physically meaningful clustering of al-
loys into subgroups, the labels (e.g., if a certain feature vector is 

Table 1 
Confusion matrix for out-of-group predictions using Inoue’s subgrouping. The 
table illustrates a confusion matrix summarizing the results of GFA prediction in 
out-of-group tests. The matrix provides a breakdown of true positives (TP), true 
negatives (TN), false positives (FP), and false negatives (FN), presented in per-
centages, where "positive" indicates BMG, and "negative" denotes non-glass 
formers. Additionally, it provides key metrics such as the false positive rate 
(FPR), false negative rate (FNR), and overall accuracy (ACC).  

Train Test Total 
# 

TP 
% 

TN 
% 

FP 
% 

FN 
% 

FPR 
% 

FNR 
% 

ACC 
% 

G1 G2 394 30 19 50 1 73 4 49 
G1 G3 33 0 70 30 0 30 n/a 70 
G1 G4 264 52 14 28 6 67 10 66 
G1 G5 355 9 44 37 10 45 54 53 
G1 G6 191 28 39 12 21 23 43 67 
G1 G7 119 87 1 10 3 92 3 87 
G2 G1 724 38 20 32 10 62 20 58 
G2 G3 33 0 42 58 0 58 n/a 42 
G2 G4 264 26 16 26 32 62 55 42 
G2 G5 355 10 50 32 9 39 49 59 
G2 G6 191 43 11 40 5 79 11 54 
G2 G7 119 76 7 4 13 38 14 83 
G4 G1 724 39 28 24 8 46 17 67 
G4 G2 394 31 16 52 0 76 0 48 
G4 G3 33 0 85 15 0 15 n/a 85 
G4 G5 355 18 41 40 1 49 3 60 
G4 G6 191 16 41 10 32 19 67 58 
G4 G7 119 32 10 1 57 8 64 42 
G5 G1 724 24 47 6 23 11 49 71 
G5 G2 394 1 61 8 30 11 96 62 
G5 G3 33 0 85 15 0 15 n/a 85 
G5 G4 264 26 39 3 32 8 55 65 
G5 G6 191 29 41 10 19 19 40 71 
G5 G7 119 18 11 0 71 0 80 29 
G6 G1 724 19 50 2 28 4 59 70 
G6 G2 394 1 69 0 31 0 98 69 
G6 G3 33 0 85 15 0 15 n/a 85 
G6 G4 264 10 32 10 47 24 82 42 
G6 G5 355 2 74 7 17 8 88 77 
G6 G7 119 38 6 5 51 46 58 44 
G7 G1 724 47 1 52 0 98 0 48 
G7 G2 394 31 0 69 0 100 0 31 
G7 G3 33 0 0 100 0 100 n/a 0 
G7 G4 264 55 13 30 2 71 4 68 
G7 G5 355 19 9 72 0 89 0 28 
G7 G6 191 47 3 49 2 95 4 49  

Fig. 6. ML prediction accuracies between within-group predictions and out-of- 
group predictions using k-means clustering subgrouping strategy. The average 
prediction accuracy of within-group tests is 96 ± 1 % and the average predic-
tion accuracy of out-of-group tests is 63 ± 3 %, resulting in a SSS of 0.66. 
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associated with a glass or not) must be considered. In theory, the best 
subgrouping could be determined through an optimization process. This 
optimization process would find the m disjoint, non-empty groupings for 
the n data points by maximizing the within-group accuracy and mini-
mizing the out-of-group accuracy. The search space of all possible 
groupings is exponentially large (it is of size roughly nm/(m!) for each 
possible value of m [60]) . For 1000 alloys, the number of groupings of 
size 7 is approximately 2 × 1017, already far too large for us to optimize 
over. Indeed, all subgroup discovery algorithms define some form of 
objective function (i.e., quantity that one wishes to optimize) and then 
restricts in some ad hoc fashion the size of the search space (from 
exponential to hopefully a polynomial-sized space in n and m to generate 
an algorithm which runs in a reasonable amount of time). This is the idea 
behind all subgroup algorithms [61–64]. We emphasize that all such 
approximations or restrictions are ad hoc and data-driven, rather than 
physically motivated. 

As a result of the k-means experiment and the discussion above, we 
seek a middle ground or a compromise between the solely data-driven 
clustering (or more generally, the ad hoc restriction of the subgroup-
ings) and the ‘hand crafted’ groupings of Inoue. We advocate using both 
algorithmic heuristics plus physical principles or insights to guide the 
development of effective ML models in material science. 

5. Conclusion 

In conclusion, this study underscores the pivotal role of effective 
subgrouping in enhancing ML predictions for complex materials science 
phenomena, particularly in the context of metallic glass formation. By 
applying Inoue’s subgrouping approach, which are based on physical 
insights, we have demonstrated that such subgrouping significantly 
improves prediction accuracy. Moreover, our results highlight the po-
tential of ML and data science strategies to quantitatively assess guiding 
principles utilized in materials science, allowing for a rigorous evalua-
tion of empirical rules like Inoue’s. Additionally, our investigation un-
veils the existence of diverse mechanisms and contributions controlling 
GFA within these subgroups. These subgroup-specific behaviors 
emphasize the importance of subgrouping based on underlying physics 
and chemical attributes, as it allows for a more accurate modeling of the 
specific mechanisms governing BMG formation in each subgroup. 

This study advocates a synergistic approach that combines algo-
rithmic heuristics with physical insights to advance our understanding 
of complex materials science and improve the predictive capabilities of 
ML models. Such an integrated framework has the potential to unlock 
new insights into material composition-property relationships and 
accelerate materials discovery in a wide range of applications beyond 
metallic glass formation. 
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