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Abstract
We compare the structural and mechanical properties of mechanically stable (MS) packings of frictional disks in two spatial 
dimensions (2D) generated with isotropic compression and simple shear protocols from discrete element modeling (DEM) 
simulations. We find that the average contact number and packing fraction at jamming onset are similar (with relative devia-
tions < 0.5% ) for MS packings generated via compression and shear. In contrast, the average stress anisotropy ⟨�̂�

xy
⟩ = 0 

for MS packings generated via isotropic compression, whereas ⟨�̂�
xy
⟩ > 0 for MS packings generated via simple shear. To 

investigate the difference in the stress state of MS packings, we develop packing-generation protocols to first unjam the MS 
packings, remove the frictional contacts, and then rejam them. Using these protocols, we are able to obtain rejammed pack-
ings with nearly identical particle positions and stress anisotropy distributions compared to the original jammed packings. 
However, we find that when we directly compare the original jammed packings and rejammed ones, there are finite stress 
anisotropy deviations 𝛥�̂�

xy
 . The deviations are smaller than the stress anisotropy fluctuations obtained by enumerating the 

force solutions within the null space of the contact networks generated via the DEM simulations. These results emphasize 
that even though the compression and shear jamming protocols generate packings with the same contact networks, there 
can be residual differences in the normal and tangential forces at each contact, and thus differences in the stress anisotropy.

Keywords Granular materials · Jamming · Friction · Shear jamming · Force chains

1 Introduction

Granular materials, which are collections of macroscopic-
sized grains, can exist in fluidized states when the applied 
stress exceeds the yield stress or in solid-like, or jammed, 

states when the applied stress is below the yield stress [1, 
2]. Many recent studies [3–8] have shown that the structural 
and mechanical properties of jammed granular packings 
depend on the protocol that was used to generate them. For 
example, when granular packings are generated via simple 
or pure shear, the force chain networks appear more hetero-
geneous and anisotropic. In contrast, for granular packings This article is part of the Topical Collection: In Memoriam of 
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generated via isotropic compression, the force distribution 
is more uniform [9–13]. This protocol dependence for the 
structural and mechanical properties of jammed packings 
makes it difficult to acccurately calculate, and even properly 
define, their statistical averages.

An important question to address when considering how 
to calculate statistical averages of a system’s structural and 
mechanical properties is to determine which states are to 
be included in the statistical ensemble. For jammed granu-
lar packings, the relevant set of states is the collection of 
mechanically stable (MS) packings [14, 15] with force 
and torque balance on every grain. In addition, the average 
properties of the ensemble of MS packings depend on the 
probabilities with which each MS packing occurs, and the 
probabilities can vary strongly with the packing-generation 
protocol.

We recently investigated how the mechanical proper-
ties of granular systems composed of bidisperse friction-
less disks interacting via pairwise, purely repulsive central 
forces [16] depend on the packing-generation protocol. In 
this case, the relevant ensemble of jammed states is the col-
lection of isostatic MS packings [16–19] with Nc = 2N� − 1 
interparticle contacts, where N� = N − Nr , N is the number 
of disks, and Nr is the number of rattler disks with less than 
3 contacts. We compared MS packings of frictionless disks 
generated via simple or pure shear (i.e. shear jammed pack-
ings) and those generated via isotropic compression (i.e. 
compression jammed packings). We found that compres-
sion jammed packings can possess either positive or negative 
stress anisotropy �̂�xy = −𝛴xy∕P , where �xy is the shear stress 
and P is the pressure of the MS packing. In contrast, shear 
jammed MS packings possess only �̂�xy > 0 and these pack-
ings are identical to the MS packings generated via isotropic 
compression with �̂�xy > 0 . Thus, the ensemble of jammed 
packings generated via shear and isotropic compression is 
the same, but shear (in one direction) selects jammed pack-
ings with only one sign of the stress anisotropy.

In this article, we will investigate a similar question of 
whether exploring configuration space through shear ver-
sus through compression samples the same set of MS 
packings, except we consider the case of jammed packings 
of dry, frictional disks. A key feature of frictional systems 
is that the forces at each interparticle contact must obey 
the Coulomb condition [20, 21], where f t

ij
≤ �f n

ij
 , f n

ij
 and f t

ij
 

are the normal and tangential forces at the contact between 
particles i and j, and � is the static friction coefficient. If 
f t
ij
 exceeds �f n

ij
 , the contact will slide to satisfy the Cou-

lomb condition. Further, the number of contacts for MS 
packings of frictional disks is below the isostatic value 
ziso = 4 , and as a result there are many solutions for the 
normal and tangential forces for each fixed network of 
interparticle contacts. Thus, one can imagine that different 

protocols for generating jammed packings of frictional 
disks can give rise to MS packings with different distribu-
tions of sliding contacts, different force solutions for a 
given contact network, or even different types of contact 
networks.

We carry out discrete element modeling (DEM) simulations 
of bidipserse frictional disks in two dimensions (2D) to com-
pare the properties of MS packings at jamming onset generated 
via simple shear and isotropic compression. We find five sig-
nificant results: (1) The average packing fraction ⟨�J(�)⟩ and 
contact number ⟨zJ(�)⟩ at jamming onset versus friction coef-
ficient � for the ensemble of MS packings generated via iso-
tropic compression and simple shear are similar (with devia-
tions < 0.5% ). In particular, both shear and compression 
jammed packings can possess a range of average contact num-
bers ⟨zJ⟩ between 3 and 4, depending on � . (2) As with fric-
tionless disks, we find that MS packings of frictional disks 
generated via isotropic compression possess both �̂�xy > 0 and 
�̂�xy < 0 , whereas MS packings generated via simple shear pos-
sess only one sign of the stress anisotropy. (3) For each MS 
packing generated via simple shear, we can decompress the 
packing to remove all of the frictional contacts and recompress 
it to generate an MS packing with particle positions that are 
nearly identical to those of the original shear jammed MS 
packing. Similarly, for each MS packing generated via iso-
tropic compression, we can shear it in a given direction to 
unjam it and remove all of the frictional contacts and shear it 
back in the opposite direction to generate an MS packing with 
disk positions that are nearly identical to those of the original 
compression jammed packing. (4) Even though the disk posi-
tions are nearly identical, we find a small, but significant dif-
ference between the stress anisotropy of the shear jammed 
packings and that for the compression rejammed packings. 
Similarly, we find a smaller, but significant difference in the 
stress anisotropy between the compression jammed packings 
and that for the shear rejammed packings. The fluctuations in 
the stress anisotropy between the originally jammed packings 
and the re-jammed packings from the DEM simulations are 
much smaller than the fluctuations obtained by enumerating 
all normal and tangential forces solutions from the null space 
for each fixed contact network. (5) We also show that even 
though we can generate MS packings with nearly identical 
particle positions via the DEM simulations with our rejam-
ming protocols, the packings can possess very different mobil-
ity distributions P(�) , where � = Ft

ij
∕�Fn

ij
 , and numbers of 

sliding contacts. We find that deviations in the stress anisot-
ropy can occur for packings with similar mobility distributions 
(i.e. between compression jammed and shear re-jammed pack-
ings) and for packings with different mobility distributions (i.e. 
between shear jammed and compression re-jammed packings). 
There are thus two key distinct contributions to the stress 
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anisotropy: the width of the distribution of stresses from the 
null space solutions and the distribution of sliding contacts.

The remainder of the article is organized as follows. The 
Methods section (Sect. 2) introduces the Cundall–Strack 
model [22] for static friction between disks, the definitions 
of the stress tensor, shear stress, and stress anisotropy, and the 
details of the isotropic compression and simple shear packing 
generation protocols. In addition, we describe the protocols to 
decompress and then recompress shear-jammed packings and 
shear unjam and then shear jam compression-jammed pack-
ings. The Results section (Sect. 3) describes our findings for 
the average packing fraction and contact number at jamming 
onset versus the static friction coefficient for MS packings 
generated via both protocols. In addition, we show the stress 
anisotropy and mobility distributions for each protocol that we 
use to generate MS packings. In the Conclusion and Future 
Directions section (Sect. 4), we summarize our results and 
describe promising future research directions, e.g. enuerating 
the force solutions for the null space of contact networks gen-
erated via isostropic compression and shear. In addition, we 
include three Appendices. In Appendix 1, we include calcula-
tions of the distribution of normal stress differences in shear 
and compression jammed packings. In Appendix 2, we provide 
the exact form of the jammed packing fraction versus shear 
strain for two bidisperse hard disks to motivate the parabolic 
form for geometrical families. In Appendix 3, we provide a 
sensitivity analysis for how the numerical parameters in the 
packing-generation protocols affect the extent to which shear 
and compression jammed packings can be unjammed and then 
re-jammed to reach the same particle positions and stress ani-
sotropy of the original jammed packing.

2  Methods

We perform DEM simulations of frictional disks in 2D. We 
consider bidisperse mixtures of disks with N/2 large disks and 
N/2 small disks, each with the same mass m, and diameter 
ratio �l∕�s = 1.4 [23]. The MS packings are generated inside 
a square box with side length L and periodic boundary condi-
tions in both directions. The disks interact via pair forces in 
the normal (along the vector ̂rij from the center of disk j to that 
of disk i) and the tangential t̂ij directions (with t̂ij ⋅ r̂ij = 0 ). 
We employ a repulsive linear spring potential for forces in the 
normal direction:

where rij is the separation between disk centers, 
�ij = (�i + �j)∕2 , �i is the diameter of disk i, K is the spring 
constant in the normal direction, and �(⋅) is the Heaviside 

(1)Un(rij) =
K�ij

2

(

1 −
rij

�ij

)2

�

(

1 −
rij

�ij

)

,

step function that sets the interaction potential to zero when 
disks i and j are not in contact.

We implement the Cundall–Strack model [22] for the tan-
gential frictional forces. When disks i and j are in contact, 
f⃗ t
ij
= Ktu⃗

t
ij
 , where Kt = K∕3 is the spring constant for the 

tangential forces and u⃗t
ij
 is the relative tangential displace-

ment. u⃗t
ij
 is obtained by inegrating the relative tangential 

velocity [24, 25], while disks i and j are in contact:

where v⃗ij = v⃗i − v⃗j , v⃗tij = v⃗ij − v⃗n
ij
−

1

2
(�⃗�i + �⃗�j) × r⃗ij , v⃗nij =

(v⃗
ij
⋅ r̂

ij
)r̂

ij
 , and �⃗�i is the angular velocity of disk i. u⃗t

ij
 is set to 

zero when the pair of disks i and j is no longer in contact. 
We implement the Coulomb criterion, f t

ij
≤ �f n

ij
 , by resetting 

|u⃗t
ij
| = ut

ij
= 𝜇f n

ij
∕Kt if f tij exceeds �f n

ij
 . The total potential 

energy is U = Un + Ut  , where Un =
∑

i>j U
n(rij) and 

Ut =
∑

i>j Kt(u
t
ij
)2∕2.

We characterize the stress of the MS packings using the 
virial expression for the stress tensor [16]:

where � , � = x , y, A = L2 is the area of the simulation box, 
fij� is the �-component of the interparticle force f⃗ij on disk 
i due to disk j, and rij� is the �-component of the separation 
vector r⃗ij . We define the stress anisotropy as �̂�xy = −𝛴xy∕P , 
the normal stress difference as �̂�N = (𝛴yy − 𝛴xx)∕2P , and the 
pressure as P = (�xx + �yy)∕2 . We measure length, energy, 
and stress below in units of �s , K�s , and K∕�s , respectively.

We employ two main protocols to generate MS packings: 
1) isotropic compression at fixed shear strain � and 2) simple 
shear at fixed packing fraction � . (See Fig. 1.) For protocol 
1 (isotropic compression), we first randomly place the disks 
in the simulation cell without overlaps. We then increase 
the diameters of the disks according to ��

i
= �i(1 + d�∕�) 

where d𝜙 < 10−4 is the initial increment in the packing frac-
tion. After each small change in packing fraction, we mini-
mize the total potential energy U by adding viscous damping 
forces proportional to each disk’s velocity v⃗i . Energy mini-
mization is terminated when Kmax < 10−20 , where Kmax is the 
maximum kinetic energy of one of the disks.

If U∕N < Utol after minimization, we increase the pack-
ing fraction again by d� and then minimize the total potential 
energy. To eliminate overlaps, we typically set Utol = 10−16 , 
which means that the typical disk overlap is < 10−8 . If after 
minimization, U∕N > 2Utol , the growth step is too large 
and we return to the uncompressed packing of the previous 
step with U∕N < Utol . Instead, we increase the packing frac-
tion by d�∕2 , and minimize the total potential energy. We 

(2)
du⃗t

ij

dt
= v⃗t

ij
−

(u⃗t
ij
⋅ v⃗ij)r⃗ij

r2
ij

,

(3)𝛴
𝛽𝛿

=
1

A

∑

i>j

fij𝛽rij𝛿 ,



 F. Xiong et al.

1 3

  109  Page 4 of 14

repeat this process until the total potential energy satisfies 
Utol < U∕N < 2Utol , at which we assume that the packing 
has reached jamming onset at packing fraction �J . This com-
pression protocol ensures that the system approaches jamming 
onset from below.

For protocol 2, we first prepare the system below jam-
ming onset at 𝜙t < 𝜙J (using protocol 1). We then apply 
successive simple shear strain increments d� by shifting 
the disk positions, x�

i
= xi + d�yi , and implementing Lees-

Edwards boundary conditions, which are consistent with the 
applied affine shear strain. The initial shear strain increment 
is d� = 10−4 . After an applied shear strain increment, we 
minimize the total potential energy. Energy minimization 
is again terminated when Kmax < 10−20 . If U∕N < Utol after 
minimization, we increment the shear strain again by d� and 
minimize the total potential energy. If after minimization, 
U∕N > 2Utol , the shear strain step is too large and we return 
to the packing at the previous strain step with U∕N < Utol . 
Instead, we increment the shear strain by d�∕2 , and mini-
mize the total potential energy. We repeat this process until 
the total potential energy satisfies Utol < U∕N < 2Utol , at 
which we assume that the packing has reached jamming 
onset at total shear strain �J.

Energy minimization is carried out by integrating New-
ton’s equations of motion for the translational and rotational 
degrees of freedom of each disk in the presence of static 
friction and viscous dissipation. For the translational degrees 
of freedom, we have

(4)m
d2r⃗i

dt2
= f⃗ n

i
+ f⃗ t

i
+ f⃗ d

i
,

where f⃗ n
i
=
∑

j f⃗
n
ij
 , f⃗ n

ij
= −dUn∕dr⃗ij , f⃗ ti =

∑
j f⃗

t
ij
 , f⃗ d

i
= −bnv⃗i , 

bn is the damping coefficient, and the sums over j include 
disks that are in contact with disk i. For the rotational 
degrees of freedom, we have

where Ii = m�2

i
∕8 is the moment of inertia for disk i, bt is the 

rotational damping coefficient, and

is the torque on disk i. We chose bn and bt so that the dynam-
ics for the translational and rotational degrees of freedom are 
in the overdamped limit.

After generating MS packings using these two protcols, 
we measure the contact number z = Nc∕N

� , where Nc is the 
total number of contacts in the system, shear stress anisot-
ropy, and normal stress difference of the MS packings. For 
these measurements, we recursively remove rattler disks 
with fewer than three contacts for frictionless disks or fewer 
than two contacts for frictional disks.

3  Results

In this section, we first describe our results for the average 
contact number and packing fraction of MS packings gen-
erated via isotropic compression and simple shear. We then 
explain why the distribution of the shear stress anisotropy 
differs for compression and shear jammed packings. We also 
develop a protocol where we unjam shear jammed packings 
and then re-jam them via isotropic compression and a pro-
tocol where we unjam compression jammed packings and 
then re-jam them via applied shear strain. We then compare 
the contact network and stress anisotropy of the original 
jammed packings and the re-jammed packings, and show 
that the disk positions of the re-jammed packings are nearly 
identical to those for the original jammed packings. We find 
small differences in the stress state of the original jammed 
packings and the rejammed ones, but these differences are 
smaller than the fluctuations obtained by enumerating all of 
the normal and tangential force solutions for a given jammed 
packing consistent with force and torque balance.

3.1  Packing fraction and contact number

In Fig. 2, we show (for N = 128 ) that the contact number 
⟨zJ⟩ and packing fraction ⟨�J⟩ at jamming onset are similar 
for compression and shear jammed packings over the full 
range of friction coefficients � . (The relative deivations are 

(5)Ii
d�⃗�i

dt
= 𝜏i − bt�⃗�i,

(6)𝜏i =
1

2

∑

j

r⃗ij × F⃗t
ij

Fig. 1  An idealized jamming diagram in which the jammed and 
unjammed regions are separated by a parabolic boundary in the pack-
ing fraction � and shear strain � plane. For compression jamming, we 
first apply simple shear strain � at � = 0 (horizontal solid blue lines) 
and then compress the system at fixed � to jamming onset at �J (verti-
cal dashed blue lines). For shear jamming, we first compress the sys-
tem to 𝜙 < 𝜙J (vertical solid black lines) and then apply simple shear 
to jamming onset at �J (horizontal dashed black lines) (color figure 
online)
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less than 0.5% .) The data for ⟨zJ⟩ and ⟨�J⟩ for the isotropic 
compression protocol in Fig. 2a, b were generated at shear 
strain � = 0 . We find the same results when compression 
jammed packings are generated at different values of � . For 
both protocols, we find that z ≈ 4 in the small-� limit and 
z ≈ 3 in the large-� limit, as found previously in numerical 
studies of frictional disks [5]. The average packing fraction 
⟨�J⟩ ≈ 0.835 in the small-� limit and ≈ 0.765 in the large-
� limit. The crossover between the low- and high-friction 
behavior in the contact number and packing fraction again 
occurs near �c ≈ 0.1 for both protocols. This crossover 
value of � is similar to that found previously in compres-
sion jammed frictional disk packings [5, 17].

The average packing fraction at jamming onset is slightly 
smaller for shear jammed packings compared to that for 
compression jammed packings. This small difference in 
packing fraction stems from differences in the compression 
and shear jamming protocols. For each initial condition i, we 
generate a compression jammed packing with �i

J
 . Then, for 

each i, we generate a series of unjammed configurations with 
𝜙
i
𝛼
< 𝜙

i
J
 and shear them until they jam at �J . To obtain ⟨�J⟩ 

for the shear jamming protocol, we average �i
�
 over i and � 

for all systems that jammed. This protocol for generating 
shear jammed packings is thus biased towards finding MS 

packings with packing fractions lower than those found for 
isotropic compression. Despite this, the packing fraction at 
jamming onset ⟨�J(�)⟩ for the two protocols differs by less 
than 0.5% over the full range of �.

Prior results for isotropically compressed packings of 
spheres in three spatial dimensions [5] have shown that 
⟨zJ(�)⟩ and ⟨�J(�)⟩ show qualitatively the same behavior 
as the results for shear and compression jammed disk pack-
ings in Fig. 2. For packings of frictional spheres, ⟨zJ(�)⟩ 
varies between 4 and 6, and ⟨�J(�)⟩ varies between 0.55 and 
0.64, with a transition from frictional to frictionless behavior 
around �c ∼ 0.1.

In Fig. 3, we show the average shear strain ⟨�J⟩ required to 
find a jammed packing starting from an initially unjammed 
packing using the shear jamming protocol as a function of 
packing fraction. In panel (a), we plot ⟨�J⟩ versus � for sev-
eral friction coefficients. The average strain increases with 
decreasing packing fraction and the range of packing frac-
tions over which a shear jammed packing can be obtained 
shifts to lower values with increasing friction coefficient. 
In panel (b), we show ⟨�J⟩ versus � at � = 0.1 and several 
system sizes. We find that the slope d⟨�J⟩∕d⟨�J⟩ increases 

Fig. 2  Average a contact number ⟨zJ⟩ and b packing fraction ⟨�J⟩ at 
jamming onset for MS packings generated via simple shear (filled tri-
angles; dotted lines) and isotropic compression (open triangles; solid 
lines) plotted versus the static friction coefficient � for N = 128 bidis-
perse frictional disks. The averages were calculated over more than 
50 independent MS packings at each � (color figure online)

Fig. 3  Average total shear strain ⟨�J⟩ required to jam a collection 
of disks with a N = 32 as a function of packing fraction � for sev-
eral friction coefficients, � = 0 (black triangles), 0.1 (blue circles), 
and 1.0 (red squares) and for b � = 0.1 and several system sizes, 
N = 16 (black triangles), 32 (blue circles), 64 (red squares), and 128 
(green stars). The vertical dashed line indicates ⟨�J⟩ for compression 
jammed packings with � = 0.1 and N = 64
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with increasing system size. For the � = 0.1 data in panel 
(b), we expect ⟨�J⟩ to become vertical near � ≈ 0.82 , which 
is ⟨�J(�)⟩ for compression jammed packings, in the large-
system limit. The system-size dependence of ⟨�J⟩ is similar 
to that found for packings of frictionless disks [3]. Thus, we 
predict that the range of packing fraction over which shear 
jamming occurs to shrink with increasing system size. In 
particular, we expect shear jamming to occur over a nar-
row range of packing fraction near ⟨�J(�)⟩ obtained from 
isotropic compression in the large-system limit.

3.2  Stress anisotropy of compression and shear 
jammed packings

In previous studies, we showed that a significant differ-
ence between shear and compression jammed packings 
of frictionless disks is that shear jammed packings pos-
sess a non-zero average shear stress anisotropy ⟨�̂�xy⟩ > 0 , 
whereas compression jammed packings possess ⟨�̂�xy⟩ = 0 . 
We find similar behavior for MS packings of frictional 
disks. In Fig. 4, we show the distribution of shear stress 
anisotropy P(�̂�xy) for packings with three friction coeffi-
cients � = 0 , 0.1, and 1.0 using the isotropic compression 
and shear jamming protocols. For the isotropic compres-
sion protocol, P(�̂�xy) is a Gaussian distribution with zero 
mean, whereas �̂�xy > 0 for packings generated via simple 
shear (in a single direction). The stress anisotropy distribu-
tions P(�̂�xy) for simple shear are Weibull distributions with 
shape and scale factors that depend on � [26]. In Fig. 5, 
we show the corresponding averages of the shear stress 
anisotropy distributions. We find that ⟨�̂�xy⟩ = 0 for all � for 

packings generated using isotropic compression. In con-
trast, for packings generated via simple shear, ⟨�̂�xy⟩ ≈ 0.13 
[27] for � → 0 and ⟨�̂�xy⟩ increases with � until reaching 
⟨�̂�xy⟩ ≈ 0.25 in the large-� limit. Since the normal stress 
difference �̂�N does not couple to simple shear strain, P(�̂�N) 
is a Gaussian distribution with an average normal stress 
difference �̂�N = 0 for both compression and shear jammed 
packings for all � . (See Appendix 1.)

We showed in previous studies [15] that MS packings 
of frictionless disks occur in geometrical families in the 
packing fraction � and shear strain � plane. For frictionless 
disks, geometrical families are defined as MS packings 
with the same network of interparticle contacts, with dif-
ferent, but related fabric tensors. The packing fractions of 
MS packings in the same geometrical family are related 
via � = �0 + A(� − �0)

2 , where A > 0 is the curvature in 
the �-� plane, and �0 is the minimum value of the packing 
fraction at strain � = �0 [16]. The parameters A, �0 , and �0 
vary from one geometrical family to another. See Appen-
dix 2 for motivation for the parabolic form of geometrical 
families of disk packings in the �-� plane.

Using a general work-energy relationship for packings 
undergoing isotropic compression and simple shear, we 
showed [19] that for packings of frictionless disks, the 
shear stress anisotropy can be obtained from the dilatancy, 
d�J∕d�:

The isotropic compression protocol can sample packings 
with alternating signs of d�J∕d� (and thus �̂�xy > 0 and < 0 ), 
whereas the shear jamming protocol can only sample pack-
ings with d𝜙J∕d𝛾 < 0 (and thus �̂�xy > 0 ). We expect similar 
behavior for packings of frictional disks, however, it is more 
difficult to identify single geometrical famailies. First, Eq. 7 
does not account for sliding contacts, and thus geometrical 

(7)�̂�xy = −
1

𝜙

d𝜙J

d𝛾
.

Fig. 4  Probability distributions of the shear stress anisotropy �̂�xy for 
packings generated via isotropic compression (open symbols) and 
simple shear (filled symbols). For both packing-generation proto-
cols, we show distributions for N = 64 and friction coefficients � = 0 
(triangles), 0.1 (circles), and 1.0 (squares). The distributions were 
obtained from more than 103 independently generated jammed pack-
ings. The dashed line is a Gaussian distribution with zero mean and 
standard deviation � ∼ 0.1 and the solid lines are Weibull distribu-
tions with scale and shape parameters � ∼ 0.17 and k ∼ 3.0 , � ∼ 0.21 
and k ∼ 3.5 , and � ∼ 0.27 and k ∼ 3.9 from left to right

Fig. 5  Average shear stress anisotropy ⟨�̂�xy⟩ at jamming onset for MS 
packings generated via simple shear (filled triangles) and isotropic 
compression (open triangles) plotted versus the static friction coeffi-
cient � for N = 128 . The error bars indicate the standard deviation in 
P(�̂�xy) for each protocol
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families must be defined over sufficiently small strain inter-
vals such that interparticle contacts do not slide. In addition, 
for each MS packing of frictional disks in a given geometri-
cal family, there is an ensemble of solutions for the normal 
and tangential forces [20], not a unique solution, as for the 
normal forces in packings of frictionless disks. The extent to 
which packings with the same contact networks (and particle 
positions) can possess different shear stress anisotropies will 
be discussed in more detail in Sect. 3.3 below.

3.3  Unjam and rejam compression and shear 
jammed packings

In Sect. 3.1, we showed that compression and shear jammed 
packings have similar contact number ⟨zJ(�)⟩ and pack-
ing fraction ⟨�J(�)⟩ over the full range of � . However, in 
Sect. 3.2, we demonstrated that ⟨�̂�xy⟩ = 0 for compression 
jammed packings and ⟨�̂�xy⟩ > 0 for shear jammed pack-
ings. Does this significant difference in the stress state of 
MS packings occur because the packings generated via iso-
tropic compression are fundamentally different from those 
generated via simple shear?

To address this question, we consider two new proto-
cols—protocol A, where we decompress each shear jammed 
packing, releasing all of the frictional contacts, and then re-
compress each one until each jams, and protocol B, where 
we shear unjam each compression jammed packing, releas-
ing all of the frictional contacts, and then shear each one 
until each jams. The goal is to study protocols that allow the 
system to move away from a given jammed packing in con-
figuration space, removing all of the frictional contacts, and 
determine to what extent the system can recover the origi-
nal jammed packing using either compression or shear. We 
compare the particle positions, shear stress anisotropy, and 
contact mobility for the original and re-jammed packings. 
If there is no difference between the original jammed and 
re-jammed packings, all MS packings can be generated via 
compression or shear. For protocols A and B, we will focus 
on systems with N = 16 and � = 0.1 , but we find similar 
results for systems with larger N and different �.

In Fig. 6a, we illustrate protocol A. We decompress each 
shear jammed packing at fixed � by �� ∼ 10−8 that corre-
sponds to the largest overlap, so that none of the particles 
overlap and all of the tangential displacements are set to 
zero. We then recompress each packing by �� in one step 
and perform energy minimization. In Table 1, we show that 
out of the original 8925 shear jammed packings, protocol 
A returned 99% compression rejammed packings with the 
same contact networks as the original shear jammed pack-
ings and only 1% of the compression rejammed packings 
possessed different contact networks. None of the packings 
were unjammed after applying protocol A. Even though the 

memory of the mobility distribution of the original shear 
jammed configuration is erased using protocol A, we show 
in Fig. 6b that the distributions of the shear stress anisot-
ropy P(�̂�xy) are very similar for the original shear jammed 
and compression rejammed packings. (We do not include 
the small number of rejammed packings with different con-
tact networks and the unjammed packings in the distribu-
tions P(�̂�xy) .) In particular, both the compression rejammed 
packings and the original shear jammed packings possess 
�̂�xy > 0 , and thus the distributions have nonzero means, 
⟨�̂�xy⟩ > 0 . This result implies that there is not a fundamental 
difference between shear and compression jammed configu-
rations, since the isotropic compression protocol can gener-
ate “shear jammed” configurations.

We now consider a related protocol where we shear 
unjam compression jammed packings and then apply sim-
ple shear to rejam them. In Fig. 7a, we illustrate protocol 
B. We first generate an ensemble of compression jammed 
packings. Compression jammed packings can jam on either 
side of the parabolic geometrical families �J(�) ; roughly half 

Fig. 6  a Illustration of protocol A where we first generate a shear 
jammed packing (solid black lines), then decompress the shear 
jammed packing by �� and recompress it by �� to jamming onset 
(blue dashed line). b Probability distribution of the shear stress ani-
sotropy P(�̂�xy) for the original shear jammed packings (leftward filled 
triangles) and those generated using protocol A (open rightward trian-
gles) for systems with N = 16 and � = 0.1 . The solid line is a Weibull 
distribution with scale and shape parameters � ∼ 0.27 and k ∼ 2.5 , 
respectively (color figure online)
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with d𝜙J∕d𝜙 < 0 and half with d𝜙J∕d𝜙 > 0 . For packings 
with d𝜙J∕d𝜙 < 0 , we shear by �� ∼ 10−8 in the negative 
strain direction to unjam the packing. For packings with 
d𝜙J∕d𝜙 > 0 , we shear by �� ∼ 10−8 in the positive strain 
direction to unjam the packing. In both cases, to unjam the 
system, we apply simple shear strain in extremely small 
increments �� = 10−12 , with each followed by energy mini-
mization, until U∕N < Utol . Note that for protocol A, it is 
straightforward to identify the largest particle overlap and 
then decompress the system until there are no overlaps and 
the system becomes unjammed. However, in protocol B, we 
seek to unjam compression jammed packings by applying 
simple shear strain, and we do this by applying simple shear 
strain in small increments to reduce the total potential energy 
below Utol . (The sensitivity of our results on Utol will be 
discussed in Appendix 3.) After unjamming the packing in 
protcol B, we reset the tangential displacements at each nas-
cent contact to zero. We then rejam the packings by applying 

the total accumulated shear strain �� in a single step in the 
opposite direction to the original one, which allows the sys-
tem to return to the same total strain, and perform energy 
minimization.

In Table 1, we show that out of the original 1987 com-
pression jammed packings, protocol B returned 96% shear 
rejammed packings with the same contact networks as the 
original compression jammed packings and only 4% shear 
rejammed packings with different contact networks. None of 
the packings generated using protocol B were unjammed. As 
shown in Fig. 7b, the distribution P(�̂�xy) of shear stress ani-
sotropies is nearly identical for the original jammed packings 
and the rejammed packings. In both cases, P(�̂�xy) is a Gauss-
ian distribution with zero mean. This result emphasizes that 
isotropic stress distributions can be generated using a shear 
jamming protocol (when we consider shear jamming in both 
the positive and negative strain directions).

We now compare directly the structural and mechanical 
properties of the original shear jammed packings and those 
generated using protocol A and the original compression 
jammed packings and those generated using protocol B. We 
calculate the root-mean-square (rms) deviations in the par-
ticle positions,

and shear stress anisotropy,

between the original shear jammed (SJ) packings and the 
packings generated using protocol A and the original com-
pression jammed (CJ) packings and the packings generated 
using protocol B. In Fig. 8a, we show the frequency distri-
bution of the deviations in the particle positions �r for sys-
tems with N = 16 and � = 0.1 . ⟨�r⟩ ∼ 2 × 10−12 is extremely 
small, near numerical precision. Thus, the shear jammed 
packings and those generated via protocol A have nearly 
identical disk positions, and the compression jammed pack-
ings and those generated via protocol B have nearly identical 
disk positions.

We perform a similar comparison for the stress ani-
sotropy (for systems with N = 16 and � = 0.1 ) in Fig. 8b. 
Even though the disk positions are nearly identical 
between the shear jammed and compression re-jammed 
packings, the typical rms deviations in the stress anisot-
ropy ⟨𝛥�̂�xy⟩ are finite. The distribution 𝛥�̂�xy for the rms 
deviations in stress anisotropy between shear jammed 
packings and compression rejammed packings has a peak 
near 10−2.5 (open triangles). The stress anisotropy fluctua-
tions are nonzero because packings of frictional disks with 

(8)𝛥r =

√
√
√
√

N−1

N∑

i=1

(
r⃗
A,B

i
− r⃗

SJ,CJ

i

)2
,

(9)𝛥�̂�xy =

√
(
�̂�

A,B
xy − �̂�

SJ,CJ
xy

)2
,

Fig. 7  a Illustration of protocol B where we first generate compres-
sion jammed packigns (solid black lines). The compression jammed 
packings possess either d𝜙J∕d𝛾 < 0 (left) or d𝜙J∕d𝛾 > 0 (right). For 
packings with d𝜙J∕d𝛾 < 0 , we apply simple shear to the left by �� to 
unjam them and then rejam them by applying �� to the right (dashed 
blue lines on the left). For packings with d𝜙J∕d𝛾 > 0 , we apply sim-
ple shear to the right by �� to unjam them and then rejam them by 
applying �� to the left (dashed blue lines on the right). b Probability 
distribution of the shear stress anisotropy P(�̂�xy) for the original com-
pression jammed packings (leftward filled triangles) and those gen-
erated using protocol B (rightward open triangles) for systems with 
N = 16 and � = 0.1 . The solid line is a Gaussian distribution with 
zero mean and standard deviation � ∼ 0.2 (color figure online)
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the same particle positions can have multiple solutions 
for the tangential forces as shown using the force network 
ensemble [28]. We find similar results for the differences 
in the stress anisotropy between the compression jammed 
packings and the shear re-jammed packings, however, 
the fluctuations are an order of magnitude smaller with 
⟨𝛥�̂�xy⟩ ∼ 10−3.5 . In contrast, when � = 0 , we find that 
⟨𝛥�̂�xy⟩ ∼ 10−7 (nearly four orders of magnitude smaller) 
when comparing shear jammed packings and packings 
generated via protocol A with 𝛥r < 10−12.

We also compare the distributions of the mobility at 
each contact � = Ft

ij
∕�Fn

ij
 for the shear jammed packings 

and the compression re-jammed packings, as well as the 
compression jammed packings and the shear re-jammed 
packings. In Fig.  9a, we show that the original shear 
jammed packings have a significant number of contacts 
that are near sliding with � ∼ 1 and a smaller fraction with 
� ∼ 10−3 . However, the compression re-jammed packings 
have essentially no sliding contacts, and instead most con-
tacts possess � ∼ 10−3 . Thus, we find that the jamming 
protocol can have a large effect on the contact mobility 
distribution. We find that applying successive shear strains 

for sufficiently large strains (as is done for shear jammed 
packings) is able to generate many contacts near sliding. 
To our knowledge, our study is one of the first to show that 
shear jammed packings possess more contacts near the 
sliding threshold than compression jammed packings.

In Fig.  9b, we show P(�) for the original compres-
sion jammed packings and the shear re-jammed pack-
ings. These distributions are similar with a small frac-
tion of sliding contacts and an abundance of contacts 
with � ∼ 10−3 . For 𝜇 > 10−2 , previous studies have shown 
that compression jamming does not allow tangential dis-
placements to accumulate so that the tangential forces can 
approach the sliding threshold [29]. For protocol B, where 
we shear unjam the compression jammed packings, and 
then shear re-jam them, the applied strain is sufficiently 
small that the tangential displacements do not accumu-
late and allow the tangential forces to approach the slid-
ing threshold. This result is consistent with the fact that 
the stress anisotropy fluctuations between compression 
jammed and shear re-jammed packings are smaller com-
pared to the stress anisotropy fluctuations between shear 
jammed and compression re-jammed packings.

Fig. 8  a The frequency distribution p(�r) of the root-mean-square 
deviations in the positions of the disks between shear jammed pack-
ings and those generated using protocol A (triangles) and between 
compression jammed packings and those generated using protocol 
B (circles). b The frequency distribution p(𝛥�̂�xy) of the root-mean-
square deviations in the stress anisotropy between shear jammed 
packings and those generated using protocol A (triangles) and 
between compression jammed packings and those generated using 
protocol B (circles). For the data in both panels, N = 16 and � = 0.1

Fig. 9  a  The frequency distribution of the mobility p(�) , where 
� = f t

ij
∕�f n

ij
 for each contact between disks i and j, for shear jammed 

packings (open triangles) and compression re-jammed packings (open 
circles) with N = 16 and � = 0.1 . b p(�) for compression jammed 
packings (open triangles) and shear re-jammed packings (open cir-
cles) with N = 16 and � = 0.1 . The filled symbols indicate the fre-
quency of contacts that slid with f t

ij
= �f n

ij
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4  Conclusion and future directions

In this article, we used discrete element modeling simula-
tions to compare the structural and mechanical properties 
of jammed packings of frictional disks generated via iso-
tropic compression versus simple shear. We find that several 
macroscopic properties, such as the average contact number 
⟨zJ⟩ and packing fraction ⟨�J⟩ at jamming onset, are similar 
for both packing-generation protocols. For both protocols, 
⟨zJ(�)⟩ varies from 4 to 3 in the low- and high-friction limits 
with a crossover near �c ≈ 0.1 . ⟨�J(�)⟩ varies from ∼ 0.835 
to 0.76 in the low- and high-friction limits with a similar 
crossover value of �c.

The average stress state of mechanically stable (MS) 
packings generated via isotropic compression is different 
than that for MS packings generated via simple shear. The 
average stress anisotropy ⟨�̂�xy⟩ > 0 for MS packings gen-
erated via shear, but ⟨�̂�xy⟩ = 0 for packings generated via 
isotropic compression. Isotropic compression can sample 
MS packings with both signs of �̂�xy , whereas simple shear 
(in one direction) samples packings with only one sign of 
the stress anisotropy.

To investigate in detail the differences in the stress state 
of MS packings generated via simple shear and isotropic 
compression, we developed two additional protocols. For 
protocol A, we decompress shear jammed packings so that 
the frictional contacts are removed and then re-compress 
them to jamming onset. For protocol B, we shear unjam 
MS packings generated via isotropic compression so that 
the frictional contacts are removed, and then shear re-jam 
them. These studies address an important question—to what 
extent can protocols A and B recover the contact networks 
and stress states of the original jammed packings. We find 
that even though protocols A and B can recover the parti-
cle positions (and contact networks) of the original jammed 
packings, the rejammed and original jammed packings have 
small, but signficant differences in the stress anisotropy, e.g. 
𝛥�̂�xy ∼ 10−3.5–10−2.5 for systems with � = 0.1.

To understand the stress fluctuations of frictional pack-
ings with nearly identical particle positions, we carried out 
preliminary studies of the null space solutions for force and 
torque balance on all grains using the contact networks from 
the MS packings generated via isotropic compression [30]. 
For each packing of frictional disks, force and torque 

balance on all grains can be written as a matrix equation 
AlmFm = 0 , where Alm is a 3N × 2Nc constant matrix deter-
mined by the contact network and Fm is a 2Nc × 1 vector that 
stores the to-be-determined normal and tangential force 
magnitudes f n

ij
 and f t

ij
 at each contact. For frictional disk 

packings, the system is underdetermined with 3N < 2Nc . 
Using a least-squares optimization approach [31], we solve 
for the normal and tangential force magnitudes such that 
f n
ij
> 0 , and f t

ij
≤ �f n

ij
.

The stress anisotropy frequency distribution p(�̂�xy) from 
the null space solutions for an example compression jammed 
packing (with N = 16 and � = 0.1 ) is shown in Fig. 10. We 
find that the DEM-generated solutions belong to the set of null 
space solutions, but there are many more. In particular, the 
width of p(�̂�xy) from the null space solutions is much larger 
than the width of the distribution of the stress anisostropy 
obtained for the given compression jammed packing from pro-
tocol B. We performed similar calculations of the null space 
solutions for all compression jammed packings. In Fig. 11, we 
show the frequency distribution of the standard devivations 
𝜎
�̂�xy

 of stress anisotropy from the null space solutions over all 
of the compression jammed packings. We find that the width 
of the fluctuations of the stress anisotropy from the null space 

Table 1  (first row) Comparison of the contact networks (CN) for the original shear jammed (SJ) packings and compression rejammed packings. 
(second row) Comparison of the contact networks for the original compression jammed (CJ) packings and shear rejammed packings

SJ Same CN Different CN Unjammed

8925 8875 50 0

CJ Same CN Different CN Unjammed

1987 1899 88 0

Fig. 10  The frequency distribution of the shear stress anisotropy 
p(�̂�xy) calculated from the null space solutions for a single compres-
sion jammed packing (open triangles). The vertical dashed line at 
�̂�xy ≈ 0.12 is the stress anisotropy of the given compression jammed 
packing and the shaded blue region (with width 5 × 10−3 ) indicates 
the fluctuations in the stress anisotropy obtained by comparing the 
compresssion jammed and shear rejammed packings from the DEM 
simulations



Comparison of shear and compression jammed packings of frictional disks  

1 3

Page 11 of 14   109 

solutions for a given packing are comparable to fluctuations of 
the stress anisotropy over all compression jammed contact 
networks using DEM. In future studies, we will carry out simi-
lar calculations to understand how the fluctuations in the stress 
anisotropy from the null space scale with system size N and 
friction coefficient � . For example, we will investigate over 
what range of N and � are the null space stress aniostropy 
fluctuations larger than the stress anisotropy fluctuations from 
varying contact networks. Addressing this question will allow 
us to predict the differences in the structural and mechanical 
properties of jammed packings of frictional particles that arise 
from the packing-generation protocols, such as isotropic com-
pression and both continuous and cyclic pure and simple shear 
[32].
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Appendix 1: Normal stress difference 
in jammed and rejammed packings

In this Appendix, we describe the results for the normal 
stress difference for jammed packings of frictional disks 
generated via simple shear and isotropic compression. In 
Fig. 12, we show the probability distribution P(�̂�N) of the 
normal stress difference for both shear and comrpession 
jammed packings with N = 64 at � = 0 , 0.1, and 1.0. Sim-
ple shear and isotropic compression do not strongly couple 
to �̂�N and thus we find that P(�̂�N) is a Gaussian distribution 
centered at zero with a width that depends on � . We also cal-
culated 𝛥�̂�N , which is the rms deviation in the normal stress 
difference between the rejammed and original jammed pack-
ings for protocols A and B. In Fig. 13, we show that (as for 

Fig. 11  The frequency distribution p(𝜎
�̂�xy

) of the standard deviation 
of the stress anisotropy from the null space solutions for each of the 
compression jammed packings. The peak in p(𝜎

�̂�xy
) is 𝜎

�̂�xy
≈ 10−2

Fig. 12  Probability distribution of the normal stress difference P(�̂�N ) 
for jammed packings generated via isotropic compression (open sym-
bols) and simple shear (closed symbols) for N = 64 and friction coef-
ficients � = 0 (triangles), 0.1 (circles), and 1.0 (squares). The distri-
butions were obtained from more than 103 independently generated 
jammed packings. The solid lines are Gaussian distributions with 
zero mean and standard deviations � ≈ 0.091 , 0.093, and 0.114 for 
� = 0 , 0.1, and 1.0, respectively

Fig. 13  The frequency distribution p(𝛥�̂�N ) of the root-mean-square 
deviation in the normal stress difference between shear jammed pack-
ings and those generated using protocol A (triangles) and between 
compression jammed packings and those generated using protocol B 
(circles)
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the stress anisotropy), the rms deviation in the normal stress 
difference 𝛥�̂�N is typically larger between shear jammed 
packings and compression rejammed packings, compared 
to that between compression jammed packings and shear 
rejammed packings. 

Appendix 2: Parabolic geometrical families

Geometrical families are collections of jammed packings 
that share the same interparticle contact network at different 
values of the packing fraction at jamming onset �J and either 
pure or simple shear strain � . In this Appendix, we present 
a derivation of the relation between �J and � for a simple 
example of jammed packings of two hard disks (one small 
disk with diameter �s and one large disk with diameter �l ) 
undergoing pure shear strain � = ln

(
Lx

Ly

)
 in a box with side 

walls with lengths Lx and Ly in the x- and y-directions. We 
first express the box lengths Lx = �ls(1 + cos �) and 
Ly = �ls(1 + sin �) in terms of the angle � between the hori-
zontal axis of the box and r⃗ij connecting the centers of the 
disks. See Fig. 14a. Thus, the pure shear strain satisfies

In addition, we can write the jammed packing fraction as

where

Using Eqs. B1 and B2, we can eliminate the dependence on 
� and write �J in terms of �:

Equation B4 is similar to a parabola, which can be seen 
by expanding it in powers of � − �0 about the minimum at 
�0 = 0 and retaining terms up to (� − �0)

2:

where �0 = (6 − 4
√
2)�1 and A =

�
1 −

√
2

2

�
�1 . We carried 

out discrete element method simulations to generate jammed 
packings at each value of the pure shear strain � for two 
bidisperse hard disks. The DEM results for �J(�) agree with 
the analytical result as shown in Fig. 14. For small systems, 
a single geometrical family can exist over a wide range of 
strain. Also, for pure shear in small systems, the parabolic 
geometrical family is centered on � = 0 . In contrast, for sim-
ple shear of two hard bidisperse disks (in fixed wall bound-
ary conditions), the parabolic geometrical family is not cen-
tered on � = 0 as shown in Fig. 15. 

(B1)� = ln

(
1 + cos �

1 + sin �

)
.

(B2)�J =
�1

(1 + cos �)(1 + sin �)
,

(B3)�1 =
�(�2

s
+ �

2

l
)

(�s + �l)
2
.

(B4)�J = �1

�√
2 − 2 cosh

�
�

2

��2
.

(B5)�J = �0 + A(� − �0)
2,

Fig. 14  a Illustration of a jammed packing of two bidisperse disks i 
and j in a simulation cell with side lengths Lx and Ly in the x- and 
y-directions  and periodic boundary conditions. � gives the angle 
between the center-to-center separation vector r⃗ij and the x-axis. b 
The packing fraction at jamming onset �J versus the pure shear strain 
� for packings of two bidisperse disks obtained from Eq.  B4 (solid 
blue line) and DEM simulations (open triangles). The jammed pack-
ing fraction �0 and pure shear strain �0 at the minimum and the curva-
ture A of the parabola are given in the main text (color figure online)

Fig. 15  The packing fraction at jamming onset �J versus the sim-
ple shear strain � for packings of two bidisperse disks obtained from 
DEM simulations (open triangles). We also show a fit to a para-
bolic form, �J = �0 + A(� − �0)

2 , where �0 ≈ 0.49 , A ≈ 0.34 , and 
�0 ≈ 1.03 (solid blue line) (color figure online)
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Appendix 3: Sensitivity of results 
on numerical parameters 
of packing‑generation protocols

In this Appendix, we investigate how the ability to generate 
the original jammed packing from the rejamming protocols 
A and B depends on parameters associated with the packing-
generation protocols. When determining the packing fraction 
at jamming onset, we seek particle configurations for which 
the total potential per particle U/N is nonzero, but small, i.e. 
Utol < U∕N < 2Utol and Utol = 10−16 for the results provided 
in the main text. To better understand the sensitivity of our 
results on Utol , we calculate the frequency distribution for rms 
deviations in the positions between shear jammed packings 
and compression rejammed packings as a function of Utol . For 
Utol = 10−16 , p(�r) is narrow with a peak near �r ≈ 10−12 as 
shown in Fig. 16. However, for Utol = 10−14 and 10−12 , p(�r) 
broadens dramatically, with non-zero probability between 
�r = 10−11 and 10−7 . These results emphasize that it is more 
difficult to recover the original jammed packing for packings 
that are over-compressed because over-compressed packings 
are further from the unjammed state, increasing the likeli-
hood that the system can find a pathway to another jammed 
configuration during the re-jamming process.

Does the stress anisotropy for shear jammed and com-
pression re-jammed packings (or for compression jammed 
and shear re-jammed packings) differ for systems at � = 0 ? 
In general, the stress anisotropy distributions are similar for 
jammed and re-jammed packings, but the precise values of 
the stress anisotropy can differ for each original jammed 
packing and its rejammed counterpart. We find that the aver-
age value of the stress anisotropy difference ⟨𝛥�̂�xy⟩ ≈ 10−5 
(between shear jammed and compression re-jammed pack-
ings) for � = 0.1 , but ⟨𝛥�̂�xy⟩ ≈ 10−7.5 is much lower for 
� = 0 . (See Fig. 17.) In contrast to the results for 𝜇 > 0 , 

⟨𝛥�̂�xy⟩ for � = 0 scales to zero with the degree to which the 
simulations can maintain force balance. 
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