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Abstract

Proteins naturally occur in crowded cellular environments and interact with

other proteins, nucleic acids, and organelles. Since most previous experimental

protein structure determination techniques require that proteins occur in ide-

alized, non-physiological environments, the effects of realistic cellular environ-

ments on protein structure are largely unexplored. Recently, Förster resonance

energy transfer (FRET) has been shown to be an effective experimental

method for investigating protein structure in vivo. Inter-residue distances mea-

sured in vivo can be incorporated as restraints in molecular dynamics

(MD) simulations to model protein structural dynamics in vivo. Since most

FRET studies only obtain inter-residue separations for a small number of

amino acid pairs, it is important to determine the minimum number of

restraints in the MD simulations that are required to achieve a given root-

mean-square deviation (RMSD) from the experimental structural ensemble.

Further, what is the optimal method for selecting these inter-residue

restraints? Here, we implement several methods for selecting the most impor-

tant FRET pairs and determine the number of pairs Nr that are needed to

induce conformational changes in proteins between two experimentally deter-

mined structures. We find that enforcing only a small fraction of restraints,

Nr=N ≲ 0:08, where N is the number of amino acids, can induce the conforma-

tional changes. These results establish the efficacy of FRET-assisted MD simu-

lations for atomic scale structural modeling of proteins in vivo.

KEYWORD S
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1 | INTRODUCTION

Knowing the three-dimensional structure of proteins
enables us to understand the biophysical mechanisms
that control protein function, protein–protein interac-
tions, and cell signaling. Nearly all protein structures that
have been determined experimentally to date have been

characterized under idealized, non-physiological condi-
tions. For example, proteins have been crystallized into
non-native, solid phases for x-ray scattering experiments
(Smyth and Martin 2000), and proteins have been dis-
solved into dilute, non-physiological buffers for NMR
spectroscopy or cryo-electron microscopy (Carroni and
Saibil 2016; Williamson et al. 1985). However, proteins
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carry out their functions in cellular environments that
are significantly different from these in vitro conditions.
The cellular environment is crowded with a non-solvent
packing fraction of 0:3�0:4 that includes nucleic acids,
carbohydrates, lipids, organelles, and other components
(Ellis 2001; Fulton 1982; Zimmerman and Trach 1991).
This environment impacts the physical properties of pro-
teins, including the protein's radius of gyration, melting
temperature, and rotational diffusion coefficient (Davis
et al. 2020; Ebbinghaus et al. 2010; Leeb et al. 2020; Wang
et al. 2018). Currently, there are over 200,000 In vitro pro-
tein structures deposited in the Protein Data Bank (PDB)
(Berman et al. 2000), as well as more than 106 computa-
tional models predicted by AlphaFold and RosettaFold
(Humphreys et al. 2021; Jumper et al. 2021). To date,
in vivo structures have been obtained for only three pro-
teins (TTHA1718, GB1, and ubiquitin) using in-cell NMR
(Gerez et al. 2022; Sakakibara et al. 2009; Tanaka
et al. 2019). In-cell NMR is not widely used since it is dif-
ficult to distinguish the isotopic labeled target protein
from its environment, which leads to a low signal-
to-noise ratio and sensitivity (Ikeya et al. 2019; Luchinat
and Banci 2023; Serber and Dötsch 2001). Another exper-
imental method for solving protein structure in vivo is
cryo-electron tomography (Cheng et al. 2023); however,
this technique requires proteins to be confined to a thick-
ness less than 500 nm, which limits this method to only a
subset of cell types and membrane-associated proteins
(Dunstone and de Marco 2017; Hylton and Swulius 2021).
In addition, there have been numerous computational
studies of proteins in vivo. All-atom molecular dynamics
(MD) simulations have investigated protein structure in
the presence of nearly all components of the cell cyto-
plasm (Rickard et al. 2020; Stevens et al. 2023). However,
current force fields have been calibrated to in vitro pro-
tein structures and we do not have accurate potentials for
interactions between proteins and nucleic acids, ribo-
somes, and organelles (Love et al. 2023; Tucker
et al. 2022). Thus, we do not yet have a quantitative,
atomistic-level understanding of protein structure in
cells.

Förster resonance energy transfer (FRET) can be used
to determine the separations between donor and acceptor
chromophores attached to a pair of amino acids in a
given protein by measuring their energy transfer effi-
ciency. The distribution of separations between the two
amino acids can then be deduced by calculating the con-
figuration space volumes sampled by the donor and
acceptor chromophores (Dimura et al. 2016; Kalinin
et al. 2012; Klose et al. 2021). FRET pair labeling is highly
specific and offers high accuracy for the inter-residue sep-
arations with uncertainties less than 2–4 Å (Agam

et al. 2023; Hellenkamp et al. 2018). Additionally,
FRET-labeled proteins can be directly expressed or
injected into cells, enabling single molecule measure-
ments of protein structure, dynamics, and stability
in vivo (Davis and Gruebele 2018; Ebbinghaus et al. 2010;
Feng et al. 2019). However, most FRET experimental
studies only obtain inter-residue separations for a small
number of amino acid pairs in a given protein (Davis and
Gruebele 2018; Ebbinghaus et al. 2010; Wang et al. 2018).
To investigate the atomic scale structure of proteins
in vivo, inter-residue separations obtained from FRET
experiments can be incorporated into molecular dynam-
ics (MD) simulations. Current all-atom MD simulations
of proteins using in vitro solution conditions have been
shown to sample in vitro protein structures obtained
from x-ray crystallography and NMR spectroscopy
(Lindorff-Larsen et al. 2011, 2012). By including a suffi-
cient number of inter-residue restraints from FRET stud-
ies of proteins in vivo into the MD force fields that were
developed for in vitro solution conditions, it may be pos-
sible to sample the in vivo structural ensemble of
proteins.

Several key questions must be answered before
FRET-assisted structural modeling of protein structure
in vivo can be employed. In particular, given the large
number of possible FRET pairs, what is the minimum
number of amino acid pairs for which we need distance
restraints to achieve a given accuracy for the root-
mean-square deviations (RMSD) between the Cα posi-
tions in the restrained simulations and those in the
experimental structures? However, we do not yet have
access to high-resolution in vivo protein structures. Thus,
we will first develop the methodology for carrying out
restrained MD simulations for protein structural model-
ing using proteins that are found in multiple conforma-
tional states in vitro. The hypothesis is that the method
that we use to induce conformational changes in vitro
can also be used to study conformational changes in
in vivo environments. The initial conformational state
will be metastable in the MD force field without
restraints, and we will induce a conformational change
in the protein by incorporating restraints between amino
acid pairs that are satisfied in the target state. To our
knowledge, there have only been a few studies aimed at
identifying the most important restraints for efficiently
moving to the conformational ensemble of the target
state (Dimura et al. 2020). For example, currently we do
not know the minimal number of restraints and which
restraints are necessary to achieve a given RMSD in the
Cα positions from the target state, and how random selec-
tion of given number of restraints compares to other
methods for selecting restraints. To connect the in vitro
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results to those for in vivo conditions, we will also study
one of the few proteins whose structure has been solved
in vivo using in-cell NMR spectroscopy.

Here, we select four proteins that each can take on
two, distinct conformational states to develop the
restrained MD simulation methodology: T4 lysozyme
(172L/1L69), phosphoglycerate kinase (2XE6/2Y3I), ade-
nylate kinase (4AKE/1AKE), and tick carboxypeptidase
inhibitor (1ZLI/2JTO), where the first and second
PDBIDs indicate the initial and target structures, respec-
tively. We initialize the MD simulations with the crystal
structure of the initial state, add a given number of Cα

distance restraints, and calculate the Cα RMSD relative to
the target structure. For the first three proteins
(T4 lysozyme [T4L], phosphoglycerate kinase [PGK], and
adenylate kinase [AK]) that are metastable in the force
field, we test four methods (normal mode analysis, the
largest Cα separation method, the largest change in pair-
wise separation method, and linear discriminant analy-
sis) for selecting the restraints and compare the Cα

RMSD to the target structure to that obtained from ran-
dom selection of the restraints. We also vary the number
of restraints to determine the minimum number of
restraints needed to achieve a given Cα RMSD from the
target. Two of the methods (normal mode analysis and
the largest Cα separation method) do not use information
about the target structure, whereas the other two
methods (the largest change in pairwise separation
method and linear discriminant analysis) compare the
initial and target structures to identify the most impor-
tant restraints. We find that for T4L, PGK, and AK,
which take on two distinct conformational states in vitro,
we can induce the conformational changes using only a
small fraction of restraints, Nr=N ≲ 0:02, where N is the
number of amino acids in the protein. For the proteins
that we considered, this result corresponds to 1–5
restraints, which is a number that can readily be achieved
in FRET experiments. In addition, we studied one of the
few proteins that has been characterized using in-cell
NMR spectroscopy: the B1 domain of protein G (GB1).
We need a slightly larger fraction of restraints,
Nr=N � 0:08 (or 5 restraints), to change the protein con-
formation from the initial in vitro structure (2N9K) to the
in-cell NMR structure (7QTS). Using our methods to
induce conformational changes from the bound to the
unbound conformations of Tick Carboxypeptidase Inhibi-
tor (TCI) and from the in vivo to the in vitro structures of
GB1, we show that the fraction of restraints required to
induce conformational changes depends on the stability
of the target state in the force field. In general, the largest
change in pairwise separation method, which has infor-
mation about the target structure, yields the lowest

values for the Cα RMSD for a given Nr . If the restraint
selection method does not have information about the
target structure, the Cα RMSD is still lower than that for
random selection. These results establish the feasibility of
FRET-assisted structural modeling of proteins in vivo
using restrained MD simulations, but also emphasize the
need for improved force fields for MD simulations of pro-
teins in vivo.

2 | MATERIALS AND METHODS

2.1 | Selected proteins

We identified three proteins from the Protein Data Bank
(PDB) that can be crystallized into two distinct conforma-
tional states in vitro and can be used to develop the
restrained MD simulation methodology: T4 lysozyme
(T4L), phosphoglycerate kinase (PGK), and adenylate
kinase (AK) (see Table 1) (Lallemand et al. 2011; Müller
et al. 1996; Müller and Schulz 1992; Zerrad et al. 2011;
Zhang et al. 1992, 1995). These proteins have been stud-
ied extensively in the context of protein conformational
changes (Flores et al. 2006). While the selected targets
are in vitro structures, recent studies suggest that the dif-
ferences between the in vivo and in vitro structures for
PGK are largely caused by the hinge motion of the two
domains that occurs between the initial and target
in vitro structures (Davis et al. 2020; Davis and Grue-
bele 2018). Previous studies have also suggested that the
crowded cellular environment can stabilize the target
in vitro structure for AK (Li et al. 2014). For the
restrained MD simulations, we require that the initial
structure is stable and the target structure is at least
metastable over long time scales in MD simulations,
which ensures that the unrestrained dynamics does not
induce the transition from the initial state to the target
(see Figure S1). We also consider one protein that has
both an in vitro and in-cell NMR structure, the B1
domain of protein G (GB1) (Gerez et al. 2022; Ikeya
et al. 2016). We use the first model from the in vitro
NMR bundle as the initial structure and the first model
of the in-cell NMR bundle as the target structure (see
Figure S6). We find similar results for the restrained and
unrestrained MD simulations when we initialize the sys-
tem using the other NMR models. To investigate the
dependence of the restraint selection method on the sta-
bility of the target structure, we study heterodimer, tick
carboxypeptidase inhibitor (TCI) (Arolas et al. 2005a;
Pantoja-Uceda et al. 2008), which is metastable in its
bound conformation, but unstable in its unbound confor-
mation (see Figure S7).
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2.2 | Cα RMSD

To compare the protein structures from the restrained
MD simulations (i.e., structure Si) and the target struc-
ture (i.e., structure Sj), we define the Cα separation vector
for the βth amino acid,

Δ
!

Si,Sj;β
� �¼ r

!
i,β� r

!
j,β, ð1Þ

where r
!

i,β is the position of the Cα atom on amino acid β
in structure Si. We define the root-mean-square deviation
in the Cα positions between two structures Si and Sj as

RMSD Si,Sj
� �¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
β¼1

Δ2 Si,Sj,β
� �vuut : ð2Þ

When comparing two structures Si and Sj, we typi-
cally align them (i.e., rotate one of them) to achieve the
minimum value of the Cα RMSD Si,Sj

� �
for a given Si and

Sj. We can also calculate the Cα RMSD between the
restrained and target structures averaged over an ensem-
ble of restrained structures for each amino acid β,

RMSD Sif g,Sj,β
� �¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Ns

XNs

i¼1

Δ2 Si,Sj,β
� �vuut , ð3Þ

where Ns is the number of protein structures in the
restrained ensemble Sif g and Sj represents the target
structure.

2.3 | Restraint selection methods

Below, we describe the methods that we employ for
selecting the Cα distance restraints. Linear spring
restraints will be added to MD simulations of the initial
protein structure, where the rest lengths are obtained
from the target structure, as discussed below. Three of

the restraint selection methods, random selection, nor-
mal mode analysis, and the largest Cα separation method,
do not use information about the target structure. Two
additional methods, the largest change in pairwise sepa-
ration method and linear discriminant analysis, compare
the initial and target structure to identify the most effec-
tive restraints.

2.3.1 | Random selection

In a protein with N amino acids, there are
Np ¼N N�1ð Þ=2 distinct amino acid pairs. As shown in
Figure 1a, the pair separations between Cα atoms can be
represented using a symmetric distance matrix Rβδ,
where β, δ¼ 1,…,N . To establish a baseline for the perfor-
mance of the restrained MD simulations, we will first
consider random selection of the restraints. In this
approach, we exclude amino acid pairs that are too close
(Rβδ <Rg, where Rg is the radius of gyration), and pairs
for which at least one amino acid is buried with relative
solvent accessible surface area rSASA<0:1 since such
pairs will preclude FRET measurements (Grigas
et al. 2022; Richards 1974), which reduces the pool of
restraints to approximately Np=3 amino acid pairs. For
each number of restraints Nr �Np we consider, we select
100 sets of Nr restraints randomly from the pool of
allowed pairs.

2.3.2 | Normal mode analysis

For this method, we assume that the normal modes of
vibration of the initial structure provide information
about how the protein transitions from the initial to the
target structure. We follow the methodology used in
other recent work aimed at selecting the most effective
FRET pairs for restrained MD simulations of proteins
(Dimura et al. 2020). First, the method constructs a
coarse-grained elastic network from the atomic positions
of the initial protein structure and calculates the normal

TABLE 1 We list the selected proteins including their PDBIDs for the initial and target structures, number of amino acids N , the Cα

RMSD (Equation (2)) between the initial and target structures, and the melting temperature Tm.

Protein Initial structure Target structure N Cα RMSD (Å) Tm (K)

T4 lysozyme (T4L) 172L 1L69 162 3.95 344 (Baase et al. 2010)

Phosphoglycerate kinase (PGK) 2XE6 2X15 413 4.08 327 (Fiorillo et al. 2018)

Adenylate kinase (AK) 4AKE 1AKE 214 5.96 333 (Chang et al. 2021)

B1 domain of protein G (GB1) 2N9K 7QTS 57 2.86 354 (Campos-Olivas et al. 2002)

Tick carboxypeptidase inhibitor (TCI) 1ZLI 2JTO 77 3.82 >343 (Arolas et al. 2005b)

Note: For GB1, the Cα RMSD is calculated between the first model of the in vitro NMR bundle and the first model of the in-cell NMR bundle.
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modes of the network (Ahmed and Gohlke 2006). Then,
the initial structure is displaced by a linear combination
of the 10 lowest frequency modes with amplitudes that
are inversely proportional to the frequency and have pro-
portionality constants �1< ξ<1 that are chosen ran-
domly. The normal modes are then recalculated on the
displaced structure and the structure is perturbed again
using a linear combination of the 10 lowest frequency
modes with amplitudes chosen as before. This process of
successive displacements along the lowest frequency nor-
mal modes is continued until 103 structures are obtained
(Krüger et al. 2012) and then repeated 10 times with
independently generated random mode amplitudes to
yield a total of N ¼ 104 structures. 100 of the structures
for T4L are shown in Figure 1b.

To identify the amino acid pairs that should be
restrained, we seek to minimize the RMSD of the posi-
tions of the Cα atoms (Equation (2)) among the pro-
tein structures in the ensemble, where the weights for
each structure in the ensemble are controlled by the
size of the fluctuations in the amino acid pair separa-
tions among structures. Deviations in the pair separa-
tions between two structures Si and Sj can be
quantified using

χ2 Si,Sj
� �¼ X

β,δð Þf g

ΔRβδ Si,Sj
� �

Ri
βδþRj

βδ

 !2

, ð4Þ

where ΔRβδ Si,Sj
� �¼jRi

βδ�Rj
βδ j, β,δð Þf g is a given set of

amino acid pairs, and Ri
βδ is the distance between Cα

atoms on amino acids β and δ on structure Si. To estimate
the probability of observing a mean-square deviation in
the pair separations larger than χ2 Si,Sj

� �
, we calculate

P Si,Sj
� �¼Z ∞

χ2 Si,Sjð Þ
f Nm,χ

2
� �

dχ2, ð5Þ

where Nm is the number of amino acid pairs in the set
β,δð Þf g and f Nm,χ2ð Þ is the chi-squared distribution with

Nm degrees of freedom. To quantify the average Cα

RMSD over the ensemble, we calculate

RMSDh i¼ 1
N

XN
i¼1

PN
j¼1P Si,Sj

� �
RMSD Si,Sj

� �PN
j¼1P Si,Sj

� � : ð6Þ

To minimize RMSDh i, the structures for which the
selected amino acid pairs have large deviations in their
pair separations (i.e., small P Si,Sj

� �
) should possess large

FIGURE 1 Illustration of several distance restraint selection methods, using T4L as the example protein. (a) The symmetric distance

matrix Rβδ, where the color gradient from dark to light indicates increasing Cα separations between amino acids β and δ. (b) For the normal

mode analysis method, we generate an ensemble of 104 structures (100 structures are shown in green) that have been displaced from the

initial structure along a random superposition of normal modes corresponding to the 100 lowest frequencies. A single amino acid pair that

minimizes the Cα RMSD among structures in the ensemble is highlighted in red and orange in each structure. (c) We identify the amino acid

pairs with the largest Cα separations Rβδ in the initial (green) structure. The pair with the maximum Rβδ is highlighted in red and orange.

(d) We can also select restraints by identifying the largest changes in the pairwise Cα separations between the initial (green) and target (blue)

structures. The Cα atoms of the pair with the maximum ΔRβδ Si,Sj
� �

are shown in red and orange. (e) 20 conformations from unrestrained

MD simulations starting from the initial and target structures are shown in green and blue, respectively. Using linear discriminant analysis,

we identify the collective variable bW that maximizes the cross-correlation of the two ensembles.
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Cα RMSD, and the structures for which the selected
amino acid pairs have small deviations (i.e., large
P Si,Sj
� �

) should possess small Cα RMSD. To select the set
of amino acid pairs that minimize RMSDh i, we add one
pair to the set of optimal pairs at a time. We start with
identifying the single pair β�, δ�ð Þ that minimizes
RMSDh i and use it as the restraint for Nr ¼ 1. We then
consider two possible pairs, but fix one of the pairs to be
β�, δ�ð Þ and find the new pair β��, δ��ð Þ in the set
β�, δ�ð Þ, β��, δ��ð Þf g that minimizes RMSDh i. We use

these two pairs as the set of restraints for Nr ¼ 2. This
process continues until we have Nr ¼ 1,…,Nmax , where
Nmax=N <0:08 for all proteins considered.

2.3.3 | Identifying the largest Cα separations
in the initial structures

For this method (i.e., the largest Cα separation method)
for selecting important restraints, we identify the amino
acid pairs with the largest Cα separations, or the maxi-
mum Rβδ over all pairs β, δð Þf g in the initial protein
structure (e.g., in Figure 1c, we show the amino acid pair
with the largest Cα separation in the x-ray crystal struc-
ture for T4L (172L)). After identifying the pair β, δð Þ with
the largest Cα separation, we find the pair β0, δ0ð Þ with
the second largest Cα separation. This process is then
continued to find a set of pairs with the largest Cα separa-
tions. However, we seek to identify a minimal set of amino
acid pairs without redundant structural information. Thus,
we carried out unrestrained MD simulations starting from
the initial structure and determined the Pearson correlation
between the pairwise Cα separations. In particular, we
include β0, δ0ð Þ in the pool of selected pairs if the Pearson
correlation ρ between Rβδ and Rβ0δ0 satisfies j ρ j <0:9. We
also require that the Cα atoms of the new pair are not
already in the pool of selected restraints. Thus, we first
add the pair β, δð Þ with the largest Cα separation to the
pool of restraints (Nr ¼ 1). We add β0, δ0ð Þ with the sec-
ond largest Cα separation to the pool of restraints
(Nr ¼ 2) as long as it is uncorrelated with β, δð Þ and does
not include Cα atom β or δ. If so, we consider the pair
β", δ"
� �

with the next largest separation. We follow this
process until we have sets of restraints with Nr ¼ 1,…,5.

2.3.4 | Identifying the largest change in
pairwise Cα separations between the initial and
target structures

For this method (i.e., the largest change in pairwise sepa-
ration method), we assume that the target structure is
known. We identify the amino acid pair with the largest

change in pairwise Cα separations between the initial
and target structures Si and Sj (i.e., the maximum
ΔRβδ Si,Sj

� �
). (For example, in Figure 1d, we show the

amino acid pair with the largest change in Cα separations
between the initial (172L) and target (1L69) x-ray crystal
structures for T4L. Note that the amino acids with the
largest change in pairwise separation are not the same as
those with the largest Cα separation.) To identify a set of
non-redundant restraints, we successively implement
new restraints in the MD simulations for pairs with the
largest deviation in the pair separation from the target. In
particular, assume that pair β, δð Þ has the largest
ΔRβδ Si,Sj

� �
in the unrestrained MD simulations starting

from the initial structure. We then carry out MD simula-
tions with Rβδ restrained to the target value. We identify
the pair β0, δ0ð Þ with the largest ΔRβδ Si, Sj

� �
and carry

out restrained MD restraints enforcing the target values
for both Rβδ and Rβ0δ0 . We also require that the Cα atoms
of the new pair are not the same as any of the atoms in
the current pool of restraints. We use β, δð Þ as the
restraint for Nr ¼ 1 and use β, δð Þ with β0, δ0ð Þ as the set
of restraints for Nr ¼ 2. This process continues until we
have Nr ¼ 1,…,Nmax , where Nmax=N <0:08 for all pro-
teins we considered.

2.3.5 | Linear discriminant analysis

For the linear discriminant analysis method of selecting
restraints, we also assume that the target structure is
known. We seek to identify the pairwise separation
between Cα atoms that can serve as a collective variable
enabling the protein to move from the initial to the target
structure (Sittel and Stock 2018). The inspiration for this
method is the linear discriminant analysis method that
was used to identify the collective variables for small
molecule conformational changes (Mendels and de
Pablo 2022). Here, we apply the method in the context of
large conformational changes in proteins.

Linear discriminant analysis requires a distribution of
protein structures, not a single structure. Thus, we first
carried out short 20 ns unrestrained MD simulations
starting from both the initial and target structures to sam-
ple an ensemble of structures near the initial and target
structures. In Figure 1e, we show these two distributions
of structures for T4L as an example. In this case, we aim
to find the collective variable that tracks the hinge clo-
sure motion of the two domains. Each protein conforma-
tion can be described by the set of all pairwise
separations between Cα atoms,

X
!¼ Rβδ,Rβ0δ0 ,…

� �T
, ð7Þ
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 1469896x, 2024, 12, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/pro.5219 by C

orey O
H

ern - Y
ale U

niversity , W
iley O

nline L
ibrary on [16/11/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://firstglance.jmol.org/fg.htm?mol=172L
http://firstglance.jmol.org/fg.htm?mol=172L
http://firstglance.jmol.org/fg.htm?mol=1L69


where the length of the vector is the number of distinct
amino acid pairs Np minus the ones that are too close
together (Rβδ <Rg) and the ones where at least one amino
acid is buried. We can describe the distribution of protein
conformations sampled near the initial and target struc-
tures as ρA X

!
A

� �
and ρA X

!
B

� �
, respectively. We aim to

find the direction bW in the space of Cα separations such
that its projection onto the cross-correlation matrix
(between initial and target distributions) is maximized,
while its projection onto the covariance matrix for the
initial or target distributions is minimized. To determinebW , we first calculate the mean separations X

!
A

D E
and

X
!

B

D E
from the distributions of the initial and target

structures. Second, we define the (cross-correlation) scat-
tering matrix

Sb ¼ X
!

A

D E
� X

!
B

D E� �
X
!

A

D E
� X

!
B

D E� �T
, ð8Þ

which quantifies the covariance of the initial distribution
with the target distribution, and define the projection ofbW onto Sb as bWT

Sb bW . We also quantify the covariance of
the initial and target distributions, separately,

ΣA,B ¼ XA,B� XA,Bh ið Þ XA,B� XA,Bh ið ÞT : ð9Þ

We can then calculate the (direct correlation) scatter-
ing matrix,

Sw ¼ΣAþΣB, ð10Þ

with projection bWT
Sw bW . To find the direction bW onto

which the projections of the two distributions ρA X
!

A

� �
and ρB X

!
B

� �
are best separated, we can maximize the

Rayleigh ratio,

ℛ bW� �
¼
bWT

Sb bWbWT
Sw bW , ð11Þ

which is equivalent to solving for the eigenvector bW λ

associated with the largest eigenvalue λ of S�1
w Sb,

S�1
w Sb bW λ ¼ λ bW λ: ð12Þ

We identify the most important pairwise distances as
those that have the largest weights in bW λ. For Nr ¼ 1, we
choose the amino acid pair β, δð Þ with the largest weight.
For Nr ¼ 2, we choose the two amino acid pairs β, δð Þ
and β0, δ0ð Þ with the two largest weights, and so on.

2.4 | Restrained MD simulations

To assess the performance of the FRET pair selection
methods, we carry out all-atom MD simulations starting
from the initial structure and incorporating the Cα-Cα

separations of the selected pairs from the target structure
as the equilibrium lengths of the linear spring restraints.
We then monitor the RMSD of the Cα atom positions
(Equation (2)) from the target structure as a function of
time. Unrestrained and restrained MD simulations were
performed using the AMBER99SB-ILDN force field (Best
and Hummer 2009; Lindorff-Larsen et al. 2010) in the
GROMACS software package (Abraham et al. 2015).
The MD simulations were carried out in a periodic
dodecahedron-shaped box that is sufficiently large such
that the protein surface is at least 20Å from the box
edges. The simulation box was solvated with water mole-
cules modeled using TIP3P at neutral pH and 0.15M
NaCl (Jorgensen 1981; Mark and Nilsson 2001). Short-
range van der Waals and screened Coulomb interactions
were truncated at 1.2 nm, while long-ranged electrostatic
interactions were tabulated using the Particle Mesh
Ewald summation method. The LINCS algorithm was
used to constrain the bond lengths. We performed two
energy minimization runs to first relax the protein and
then the water molecules and the protein together using
the steepest decent algorithm until the maximum net
force magnitude on an atom is smaller than
500 kJmol�1 nm�1. We perform NVT simulations of the
system for 20 ns at temperature T¼ 300 K using a veloc-
ity rescaling thermostat for sampling the canonical
ensemble (Bussi et al. 2007). The equations of motion for
the atomic coordinates and velocities are integrated using
a leapfrog algorithm with a 1 fs time step.

For the restrained simulations, we employ a linear
spring potential for each restrained amino acid pair β,δð Þ,

Er Rβδ

� �¼ kr
2

Rβδ�R0
βδ

� �2
, ð13Þ

where R0
βδ is the Cα-Cα separation for the β,δð Þ pair in the

target structure and the spring constant kr ¼ 5000
kJ mol�1 nm�2 is chosen so that the averaged root-
mean-square deviation between Rβδ and R0

βδ is <0.2 Å
(see Figure S2).

For the unrestrained MD simulations for each pro-
tein, we ran Ns ¼ 100 simulations for 20 ns starting from
the initial structure, but with different initial velocities
for each atom randomly selected from a Maxwell-
Boltzmann distribution at T¼ 300 K. Using these simula-
tions, we can calculate the average Cα RMSD between
the initial structures and the target structure, which
serves as a baseline for comparison to the results for the

LIU ET AL. 7 of 16

 1469896x, 2024, 12, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/pro.5219 by C

orey O
H

ern - Y
ale U

niversity , W
iley O

nline L
ibrary on [16/11/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



restrained MD simulations. For the random restraint
selection method at each Nr , we randomly select
Ns ¼ 100 sets of Nr amino acid pairs and run one
restrained MD simulation (for 20 ns) for each set of
restraint pairs. For all other restraint selection methods,
we carry out Ns ¼ 50 simulations for each set of Nr

restraints, but with different random initial velocities.
The number of samples Ns is chosen so that average Cα

RMSD converges at large Ns as shown in Figure S3. For
each Nr and for each restraint selection method, we aver-
age the Cα RMSD over all Ns simulations. For the
restrained MD simulations of the in vitro protein struc-
tures, the Cα RMSD converges within the first 5 ns, as
shown in Figure S4. Therefore, we only use the data gen-
erated from 5 to 20 ns for the calculations of the Cα

RMSD. For the in vivo target GB1, we extended the MD
simulations to 50 ns and use the time points from 20 to
50 ns to calculate the Cα RMSD (see Figure S6c).

To determine the ability of the restraints to move the
protein conformation from the initial to the target struc-
ture, we need to measure a reference Cα RMSD
(i.e., RMSDr) that quantifies thermal fluctuations around
the target structure. For the proteins T4L, PGK, and AK,
we determine RMSDr by running unrestrained MD simu-
lations starting from the target structure. We set
RMSDr ¼RMSD Si,Sj

� �
, where Si is the central structure

from the unrestrained MD simulations starting from the
target structure, and Sj is the target structure. We find
the central structure by identifying the structure that has
the largest number of neighboring structures in the
ensemble using a cutoff Cα RMSD of 1Å. If the average
Cα RMSD obtained from the restrained MD simulations
is below RMSDr, the restraints were successful in moving
the initial structure to the target structure since the dif-
ferences are comparable to thermal fluctuations observed
near the target structure. For the in vitro and in-cell
NMR structures of GB1 and the unbound structure of
TCI, we set RMSDr ¼N�1

m

P
i> jRMSD Si,Sj

� �
, where Si

and Sj are distinct models in the in-cell NMR bundle and
Nm is the number of distinct pairs of models.

3 | RESULTS

Does the choice of the amino acid restraints have a signif-
icant impact on whether the initial protein structure can
be moved to the target structure? As an example, we con-
sider two possible choices for single amino acid restraints
in restrained MD simulations of T4L. In Figure 2, we plot
the Cα RMSD Si,Sj

� �
as a function of time, where Si are

the structures sampled in the restrained MD simulations
and Sj is the target structure, for two possible choices for
single amino acid restraints. Although the two restrained

MD simulations start from the same initial structure
(green) in Figure 2a, the Cα RMSD Si,Sj

� �
display differ-

ent time dependence. The Cα RMSD from the MD simu-
lations using the β0, δ0ð Þ restraint rapidly decreases below
the reference value, RMSDr , for the target structure.
When we visualize the final frame from this restrained
MD simulation in Figure 2c, we find that the two subdo-
mains of T4L are now closer together and there is strong
alignment between the final frame (green) and target
structure (blue). In contrast, the Cα RMSD does not
decrease below RMSDr for the MD simulations with the
β,δð Þ restraint, even though the restraint is well-satisfied
during the simulations. This example emphasizes the
importance of the restraint selection method. Below, we
describe the performance of four restraint selection
methods in moving an initial structure toward a target
structure. We compare the performance of restraint selec-
tion methods that have information about the target
structure and those that do not, and benchmark their
performance to random restraint selection. In addition,
we test the methods on moving four proteins from one
in vitro structure to another, one protein from an in vitro
structure to an in-cell structure, and the same protein
from its in-cell structure to its in vitro structure.

3.1 | Performance of restraint selection
methods

To quantify the performance of the four restraint selec-
tion methods in moving the initial structure to the target
structure, in Figure 3, we plot RMSD Si,Sj

� �� �
Si,Ns

aver-
aged over structures Si from the restrained MD simula-
tions and number of samples Ns, where Sj is the target
structure, as a function of the number of restraints Nr for
several restraint selection methods and three proteins.
In Figure 3a, we show the results for T4L. When
Nr ¼ 0 (i.e., unrestrained MD simulations),
RMSD Si,Sj

� �� �
Si,Ns

� 4 Å and the structures sampled in
the MD simulations remain far from the target structure.
When randomly selecting restraints, RMSD Si,Sj

� �� �
Si,Ns

decreases slowly with increasing Nr and does not reach
RMSDr even after five restraints have been included. In
contrast, if we use structural information about the target
to select the restraints (i.e., using linear discriminant
analysis or identifying the largest change in pairwise Cα

separations between the initial and target structures),
RMSD Si,Sj

� �� �
Si,Ns

rapidly decreases to RMSDr after add-
ing only one restraint. The normal mode analysis and
largest Cα separation methods, which do not use informa-
tion about the target, achieve intermediate results;
RMSD Si,Sj

� �� �
Si,Ns

decreases to RMSDr within Nr ¼ 2-3
restraints. Thus, both of these methods (normal mode
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analysis and the largest Cα separation method) are more
efficient than random selection for moving the initial
structure to the target for T4L.

To investigate the performance of restraint selection
methods in moving an initial structure to the target struc-
ture for a wider range of proteins, we performed unre-
strained and restrained MD simulations on two larger
proteins, PGK (Figure 3b) and AK (Figure 3c), and find
similar results for the variation of RMSD Si,Sj

� �� �
Si,Ns

with Nr . (Note that for AK, we needed to add a back-
ground of intra-domain restraints to recapitulate the

B-factor in the “unrestrained” MD simulations as shown
in Figure S5.) For example, for random restraint selec-
tion, RMSD Si,Sj

� �� �
Si,Ns

slowly decreases with increasing
Nr , and RMSD Si,Sj

� �� �
Si,Ns

>RMSDr even for Nr ¼ 5.
For PGK and AK, all restraint selection methods (except
linear discriminant analysis) outperform random
restraint selection. Normal mode analysis and the largest
Cα separation method, which do not include information
about the target, achieve lower values of
RMSD Si,Sj

� �� �
Si,Ns

than that for random selection, but
their relative performance depends on the protein. For

FIGURE 2 (a) The top and bottom green images indicate the same starting structures for restrained MD simulations that enforce two

different single restraints: Rβδ ¼R0
βδ (red) and Rβ ,δ ¼R0

β ,δ (orange). The target structures, which are aligned with the starting structures such

that the Cα RMSD values are minimized for residues 92–162, are shown in blue. (b) RMSD Si,Sj
� �

as a function of time during restrained MD

simulations for the restraints in (a), where the Si are structures sampled at each time during the restrained MD simulations and Sj is the

target structure. The black dashed line indicates RMSDr of the target. (c) The final frames at 20 ns from the restrained MD simulations with

Rβδ ¼R0
βδ (top, red) and Rβ ,δ ¼R0

β ,δ (bottom, orange). The structures from the final frames of the restrained MD simulations (green) are

aligned with the target structure (blue) using the same alignment as in (a).

FIGURE 3 The Cα RMSD, RMSD Si,Sj
� �� �

Si ,Ns
, averaged over structures Si from the restrained MD simulations and number of samples

Ns, where Sj is the target structure, is plotted versus the number of restraints Nr for (a) T4L, (b) PGK, and (c) AK. We show results for

several restraint selection methods: random selection (blue circles), normal mode analysis (orange squares), the largest Cα separation

method (green crosses), the largest change in pairwise separation method (red upward triangles), and linear discriminant analysis (purple

stars). The horizontal black dashed line indicates RMSDr for each target. Snapshots of the initial structures are shown for each protein in the

upper right corner of each panel. The error bars give the standard error of RMSD Si,Sj
� �� �

Si
from Ns independent simulations.
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example, RMSD Si,Sj
� �� �

Si,Ns
decreases faster with Nr

for the largest Cα separation method for PGK, whereas
RMSD Si,Sj

� �� �
Si,Ns

decreases faster for the normal mode
analysis method for AK. As expected, the method of iden-
tifying the largest change in pairwise Cα separations
between the initial and target structures is the best per-
forming method with RMSD Si,Sj

� �� �
Si,Ns

�RMSDr after
only a small number of restraints (5 for PGK and 2 for
AK). The performance of the restrained MD simulations
based on the linear discriminant analysis method of
selecting restraints is comparable to that for random
restraint selection even though it incorporates structural
information about the target. This result likely stems
from the fact that a nonlinear method is needed to iden-
tify the collective variables in proteins.

3.2 | Minimum fraction of restraints

These results demonstrate that the addition of a small
number of pairwise distance restraints in restrained MD
simulations can effectively move a protein from an initial
structure to a target structure that is more than 4 Å away.
However, the minimal number of restraints required for
RMSD Si,Sj

� �� �
Si,Ns

�RMSDr depends on the protein.
What controls the minimum number of restraints? To
address this question, we calculate the normalized
Cα RMSD,

RMSD Nrð Þ¼
RMSD Si,Sj

� �� �
Si,Ns

Nrð Þ�RMSDr

RMSD Si,Sj
� �� �

Si,Ns
0ð Þ�RMSDr

, ð14Þ

where RMSD Si,Sj
� �� �

Si,Ns
0ð Þ is RMSD Si,Sj

� �� �
Si,Ns

from
unrestrained MD simulations with Nr ¼ 0. Thus,

RMSD Nrð Þ¼ 1 indicates that the protein samples the
ensemble of initial structures and RMSD Nrð Þ¼ 0 indi-
cates that the protein samples the target ensemble. In
Figure 4, we show that RMSD Nrð Þ collapses for the three
proteins T4L, PGK and AK when plotted versus Nr=N
and using the optimal restraint selection method (i.e., the
largest change in pairwise separation). In this case, only
a small fraction of restraints, less than 1.5% of the protein
size, is required to move between the two in vitro
protein structures. For the normal mode analysis
restraint selection method, which does not consider
information about the target, the collapse of RMSD with
Nr=N is not as complete, but RMSD� 0 for Nr=N ≳ 0:02
for all proteins. Thus, even in the absence of complete
knowledge of the target structure, we can induce changes
in protein structure from an initial in vitro structure to a
target in vitro structure using only a small fraction of
amino acid separation restraints.

3.3 | Moving from initial in vitro
structure to target in-cell structure for GB1

To investigate whether the proposed methodology can
also move an initial in vitro structure to a target in vivo
structure, we also carried out unrestrained and restrained
MD simulations for the B1 domain of protein G (GB1)
(Gerez et al. 2022). We find that inter-bundle
RMSD Si,Sj

� �� �
Si,Sj

� 3:0 Å between the in vitro NMR
models Si and the in-cell NMR models Sj is rather small,
mostly due to small changes in the two top loop regions
shown in Figure 5a. Despite this, the Cα RMSD between
the in vitro and in-cell NMR bundles is larger than both
of the intra-bundle fluctuations. Can we use similar
restraint selection methods to those above to move from

FIGURE 4 The normalized Cα RMSD, RMSD Nrð Þ, is plotted versus Nr=N for T4L (blue circles), PGK (green triangles), and AK (red

squares) using (a) the largest change in pairwise Cα separation method and (b) the largest Cα separation method for selecting the restraints.
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an in vitro structure to an in-cell structure? In contrast to
the in vitro target structures for T4L, PGK, and AK, the
in-cell target structure for GB1 is not a local minimum of
the AMBER99SB-ILDN force field (see Figures S8a,b). As
a result, simulating in-cell protein structures is more
challenging. In Figure 5b, we implement the largest
change in pairwise separation method for identifying
restraints and calculate RMSD Si,Sj

� �� �
Si,Ns

as a function
of Nr . We find that the target in-cell structures are sam-
pled for Nr ≥ 5 in restrained MD simulations, which cor-
responds to Nr=N � 8%. Unlike for the in vitro
structures, where RMSD Si,Sj

� �� �
Si,Ns

monotonically
decreases as Nr increases, RMSD Si,Sj

� �� �
Si,Ns

exhibits
non-monotonic behavior with Nr for GB1. To investigate
this effect, we calculate the Cα RMSD between the struc-
tures from the MD simulations and the target for each
amino acid β individually (Equation (3)). As shown in
Figure 5c, the deviations in the structures sampled in the
unrestrained simulations and target structure occur pre-
dominantly in the top two loop regions in Figure 5a with
21≤ β≤ 26 and 47≤ β≤ 52. The deviations between the
initial and target structures can be decreased in the loop
regions to ≲ 2 Å for Nr ¼ 5. However, the structural devi-
ations at amino acid positions adjacent to the loop
regions, for example, 17≤ β≤ 20 and 27≤ β≤ 31, begin to
increase as Nr increases. These results suggest that the
restraints are competing with the force field when
attempting to move the protein to the in-cell structure.
The non-monotonic behavior in RMSD Si,Sj

� �� �
Si,Ns

gives
rise to a higher fraction of restraints that are necessary to
move GB1 from the initial in vitro structure to the in-cell
structure.

3.4 | Relation between minimum
fraction of restraints and stability of target
structure

Several studies have suggested that GB1 is a single-
domain protein, not a two-domain protein as for T4L,
PGK, and AK (Byeon et al. 2003). It is possible that the
larger fraction of restraints needed to induce a conforma-
tional change in GB1 (relative to the fraction needed for
T4L, PGK, and AK) is related to the fact that it behaves
like a single-domain protein. However, the variation in
the minimum fraction of restraints can also be related to
the stability of the target structure in the force field with-
out restraints. To investigate this effect, we calculated the
minimum number of restraints needed to move the
“unstable” in vivo structure of GB1 to its “metastable”
in vitro structure. We carried out restrained MD simula-
tions of GB1 using restraints selected from the largest
change in pairwise separation method. We find that only
� 3% of the restraints are needed to move from the
in vivo to the in vitro structure for GB1 (Figure 6a),
whereas � 8% of the restraints are needed to move from
the in vitro to the in vivo structure. We also studied
another two-domain protein tick carboxypeptidase inhib-
itor (TCI) that undergoes a conformational change upon
binding to its receptor. (The bound and unbound struc-
tures have PDBIDs 1ZLI and 2JTO, respectively.) The
unbound NMR structure is unstable in the AMBER99SB-
ILDN force field as shown in Figure S7. We find that the
fraction of restraints needed to move from the initial
bound state to the target unbound state of TCI is signifi-
cantly higher (� 7%) than the fraction of restraints

FIGURE 5 (a) A ribbon diagram of the initial in vitro structure (green) of GB1 aligned with its in-cell target structure (blue). The gray

arrows indicate the structural changes from the initial structure to the target structure in the two top loop regions.

(b) RMSD Si,Sj
� �� �

Si ,Ns
Nrð Þ plotted as a function of Nr=N for restrained MD simulations of GB1 using the largest change in pairwise Cα

separation between the initial and target structures method (red upward triangles) for selecting restraints. The horizontal black dashed line

indicates RMSDr for the target. (c) RMSD Sif g,Sj,β
� �

(Equation (3)) is plotted versus amino acid index β, where Sif g are structures sampled

in the restrained MD simulations and Sj is the target structure. The color from dark blue to yellow indicates Nr . The two top loop regions in

(a) with 21≤ β≤ 26 and 47≤ β≤ 52 are highlighted in light gray.
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needed to move from the unstable in vivo state to the
stable in vitro state of GB1, even though TCI is a two-
domain protein (see Figure 6b). Therefore, the character-
istic fraction of restraints needed to induce conforma-
tional changes is primarily determined by the stability of
the target state in the force field (without restraints).

4 | DISCUSSION

Numerous studies have emphasized that the in-cell envi-
ronment can strongly influence protein structure and
interactions (Ebbinghaus et al. 2010; Ellis 2001; Ful-
ton 1982; Leeb et al. 2020; Speer et al. 2021). However,
the complete atomic structure for proteins in the cellular
environment has been obtained for only three proteins
using NMR spectroscopy (Gerez et al. 2022; Sakakibara
et al. 2009; Tanaka et al. 2019). FRET has also been
employed to determine a small number of separations
between amino acids in several proteins in vivo (Davis
and Gruebele 2018; Ebbinghaus et al. 2010; Wang
et al. 2018). In contrast, MD simulations, which have
been calibrated to structures in the protein data bank,
can provide the atomic coordinates of proteins in ideal-
ized, in vitro conditions. Properly calibrated force fields
that would allow accurate all-atom descriptions of pro-
tein conformations in vivo currently do not exist. For
example, GTT WW domain and three-helix bundle pro-
tein B (PB) fail to refold in all-atom cytoplasm computa-
tional models (Rickard et al. 2020; Russell et al. 2023),
since the interatomic sticking interactions in current pro-
tein force fields increase the stability of non-native states
in all-atom cytoplasm models (Rickard et al. 2019;

Samuel Russell et al. 2023). The restrained MD simula-
tions of proteins in vivo (using residue separations mea-
sured in FRET experiments) can be carried out using
current force fields, and thus we do not need to wait for
improvements to the force fields in all-atom models of
the cytoplasm.

While current all-atom MD simulations allow us to
sample in vitro protein structures that match the x-ray
crystal or NMR structures, we want to capture the
all-atom conformational dynamics of in vivo protein
structures. To do this, we can start with an initial in vitro
protein structure, and add inter-residue distances mea-
sured by FRET as restraints in the MD simulations. How-
ever, an important question is how do we determine
which amino acid pairs should be measured in the FRET
experiments and then incorporated into the restrained
MD simulations? In particular, what is the minimal num-
ber of restraints needed to achieve a given Cα RMSD to
the target structure and what is the optimal method to
select these restraints? To answer these questions, we
first develop the methodology of restraint selection for
proteins with multiple conformational states in vitro. To
connect the in vitro results to those for in vivo conditions,
we studied GB1, which is one of the few proteins whose
structure has been solved in vivo using in-cell NMR spec-
troscopy. We selected the in vitro structure as the initial
structure and the in vivo structure as the target structure.
We employed four methods for selecting the restraints,
varied the number Nr and type of restraints that are
incorporated into the restrained MD simulations, and
compared the performance (i.e., Cα RMSD relative to the
target structure) of the restraint selection methods to ran-
dom selection.

FIGURE 6 RMSD Si,Sj
� �� �

Si ,Ns
plotted as a function of Nr=N for restrained MD simulations of (a) GB1 and (b) TCI using the largest

change in pairwise Cα separation between the initial and target structures method (red upward triangles) for selecting restraints. The

horizontal black dashed lines indicate RMSDr for the targets. Ribbon diagrams of the initial structures (blue) aligned with the target

structures (green) for GB1 and TCI are shown in the upper right corners of (a) and (b), respectively.
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We found that for T4L, PGK, and AK, which pos-
sess two distinct conformational states that have been
solved in vitro and are both stable in the force field
without restraints, it only takes a small fraction of
restraints (Nr=N <2%) to induce the conformational
changes. The results emphasize that only a limited
amount of information about pairwise distances between
amino acids is needed to induce protein conformational
changes from an initial structure to a target structure.
The largest change in pairwise separation method, which
uses the target structure information, gives the lowest
values of Cα RMSD at each Nr . The normalized
RMSD Nrð Þ for the largest change in pairwise separation
method collapses for these three proteins when plotted
versus Nr=N , and reaches zero at a small fraction of
restraints (Nr=N <1:5%). The linear discriminant analy-
sis, which also uses the target structure information,
exhibits inconsistent performance, sometimes compara-
ble to and sometimes better than random selection. The
normal mode analysis and the largest Cα separation
method, which do not need target structure information,
give lower values of Cα RMSD compared to random
selection. The performance of these two methods varies
slightly for different proteins. Specifically, for the normal
mode analysis, RMSD Nrð Þ reaches zero when
Nr=N >2%, which is significantly lower than the fraction
of restraints used in previous studies of FRET-assisted
protein structural modeling (between 5% and 12%)
(Dimura et al. 2020). This result is significant since it
shows that it is possible to determine the complete pro-
tein structure, using information from only � 2% of the
Cα separations.

The studies described here provide proof of principle
that FRET-assisted MD simulations can improve our
understanding of the atomistic structure of proteins
in vivo since only a small fraction of restraints are
required to lock-in the target structures. We have shown
that the characteristic fraction of restraints needed to
induce conformational changes is determined by the sta-
bility of the target state in the force field without
restraints. Since the in vivo structures are not stable min-
ima of the current MD force fields, additional restraints
are necessary to reach a given Cα RMSD and the depen-
dence of the Cα RMSD on Nr is non-monotonic. There-
fore, an important future direction is to develop force
fields for which the in vivo structures are potential
energy minima. However, this goal requires a large num-
ber of high-quality, all-atom in vivo protein structures. In
the absence of many in vivo protein structures, we can
also develop in-cell mimetic systems whose crowding and
surface sticking interactions have been calibrated to the
in vivo studies (Davis et al. 2020; Davis and
Gruebele 2018).

The linear discriminant analysis approach of using
the direction that maximizes the differences in the initial
and final state projections has been used successfully to
identify the key pairwise separations that distinguish the
initial and target states of small molecules (Mendels and
de Pablo 2022). However, while we find that linear dis-
criminant analysis outperforms random selection only
for T4L (N ¼ 162 amino acids), it performs worse than
random selection for PGK (N ¼ 413) and AK (N ¼ 214).
This result suggests that as the number of amino acids
increases, the dimensionality of the conformation space
increases to such an extent that the linear method cannot
capture the key pairwise distances that describe the struc-
tural transition. Therefore, nonlinear methods, such as
the nudged elastic band method, are needed to calculate
the minimum energy pathway between the initial and
final states and identify the most important pairwise dis-
tances along the pathway (Ghoreishi et al. 2019; J�onsson
et al. 1998).

The largest change in pairwise separation method
that identifies a minimal set of amino acid pairs without
redundant structural information gives the lowest values
of Cα RMSD to the target structures. Note that one should
not imagine a set of unique, optimal restraints, but an
optimal pool of similar restraints that can induce struc-
tural changes (see Figure S8). However, this method
requires information about both the initial and target
structures, and thus it cannot be used to predict an
in vivo structural ensemble that has not yet been deter-
mined. Given that there are several NMR structures for
proteins in cellular environments available, this selection
method can be used in restrained MD simulations to ver-
ify that the simulations can correctly sample the confor-
mational dynamics for these proteins in vivo. In contrast,
if we aim to predict the in vivo structure of proteins, we
have shown that normal mode analysis, which assumes
that the normal modes of vibration of the initial structure
provide information about how the protein transitions
from the initial structure to the target structure, can be
used to select the FRET-pair labeling positions that will
enable the restrained MD simulations to sample the tar-
get in vivo structure. In this work, which considers large-
scale domain motion in proteins, we showed that the
normal mode analysis is a successful restraint selection
method. However, it is not yet clear whether such motion
is relevant for proteins in vivo. Thus, if the normal mode
analysis is not efficient in inducing a change from the ini-
tial to the target in vivo structure, the largest Cα separa-
tion method, or a hybrid method that couples normal
mode analysis and the largest Cα separation method, can
also be implemented (see Figure S9).

It is important to note that there are several experi-
mental limitations for selecting amino acid pairs for
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FRET labeling. For example, the labeled dye molecules
should not perturb the protein structure. Thus, in this
study, we did not select amino acid pairs that occur
within the core. FRET-labeling core amino acids would
likely lead to changes in protein structure. In addition,
optimal efficiency for FRET-labeling is achieved when
the distance d between donor and acceptor molecules is
comparable to the characteristic Förster distance R0 for
each dye pair. For most common FRET chromophores,
50Å<R0 < 60Å, which is larger than Rg for the proteins
we considered in this work. Thus, we excluded amino
acid pairs that are separated by d<Rg.

As mentioned above, we showed in this study that
the normal mode analysis selection method (and larg-
est Cα separation method) can identify a small number
of important Cα-Cα distance restraints that can effec-
tively move an initial in vitro structure to a target
in vivo structure. However, since the FRET energy
transfer efficiency reports on the ensemble of distances
between dye molecules (not Cα-Cα distances), quantita-
tive FRET-assisted protein structural modeling requires
the mapping between dye–dye distances and Cα-Cα dis-
tances (Klose et al. 2021). Therefore, in future studies, we
will identify the mapping by incorporating atomic-scale
modeling of the dye molecules into the restrained MD
simulations.

Finally, our current analysis of restraint selection
methods focuses on monomeric, globular proteins. In
future studies, we can expand the application of our
restraint selection methods to intrinsically disordered
proteins (see Figure S10), membrane proteins,
protein–protein and protein-nucleic acid complexes.
Another interesting future direction is to develop
restraint selection methods for triple restraints (co-
restraints between 3 residues), using the inter-residue
distances obtained from a 3-color FRET experiments
(Yoo et al. 2020).
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