
PHYSICAL REVIEW E 95, 022611 (2017)

Effects of cooling rate on particle rearrangement statistics: Rapidly cooled glasses are more ductile
and less reversible
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Amorphous solids, such as metallic, polymeric, and colloidal glasses, display complex spatiotemporal response
to applied deformations. In contrast to crystalline solids, during loading, amorphous solids exhibit a smooth
crossover from elastic response to plastic flow. In this study, we investigate the mechanical response of binary
Lennard-Jones glasses to athermal, quasistatic pure shear as a function of the cooling rate used to prepare
them. We find several key results concerning the connection between strain-induced particle rearrangements and
mechanical response. We show that the energy loss per strain dUloss/dγ caused by particle rearrangements for
more rapidly cooled glasses is larger than that for slowly cooled glasses. We also find that the cumulative energy
loss Uloss can be used to predict the ductility of glasses even in the putative linear regime of stress versus strain.
Uloss increases (and the ratio of shear to bulk moduli decreases) with increasing cooling rate, indicating enhanced
ductility. In addition, we characterized the degree of reversibility of particle motion during a single shear cycle.
We find that irreversible particle motion occurs even in the linear regime of stress versus strain. However, slowly
cooled glasses, which undergo smaller rearrangements, are more reversible during a single shear cycle than
rapidly cooled glasses. Thus, we show that more ductile glasses are also less reversible.

DOI: 10.1103/PhysRevE.95.022611

I. INTRODUCTION

Amorphous solids, including metallic, polymeric, and
colloidal glasses, possess complex mechanical response to
applied deformations, such as plastic flow [1–4], strain
localization [5–9], creep flow [7,10,11], and fracture [12–14].
In crystalline materials, topological defects reflecting the sym-
metry of the crystalline phase govern response to deformation.
In amorphous solids without long-range positional order, it
is more difficult to detect and predict changes from elastic re-
sponse to irreversible behavior [8,15], such as yielding [16,17]
and flow [4,18]. The typical response of the deviatoric stress to
an applied (pure) shear strain for amorphous solids is depicted
in Fig. 1(a). The average stress increases roughly linearly with
strain for small strains, indicating a putative elastic regime. At
larger strains, the stress response softens and becomes anelas-
tic, but it continues to increase with strain. For larger strains
(i.e., near γ ∼ 0.05), the shear stress reaches a peak [whose
height depends on the thermal history, as shown in Fig. 1(c)]
and then begins to decrease until it plateaus at a steady state
value in the plastic flow regime [2,18]. (For this system, we
employed periodic boundary conditions that prevent fracture.)

Several studies have suggested that amorphous solids do
not possess a truly elastic response regime [6,7,9,16,19–21].
For example, both a sublinear increase of stress versus strain
[left inset to Fig. 1(a)] and rapid drops in stress over narrow
strain intervals [right inset to Fig. 1(a)] have been observed at
strains below the nominal yield strain of 2% [16,19,21]. The
rapid drops in stress are caused by particle rearrangements
[Fig. 1(b)], which are often referred to as shear transformation
zones [1,22–25]. We will show below how the energy loss
induced by rearrangements, even in the putative elastic regime,
determines the mechanical response of glasses.

In this article, we build a conceptual framework for the
thermal-history-dependent mechanical response of glasses in
terms of strain-induced particle rearrangements. Our studies
focus on binary Lennard-Jones glasses undergoing athermal,
quasistatic pure shear. The initial glasses are prepared over
a wide range of cooling rates. The cooling rate determines
the fictive temperature, which defines the average energy
of the glass in the potential energy landscape [27,28]. The
fictive temperature significantly affects mechanical properties,
such as ductility [14,29,30], shear band formation [31], and
stress versus strain [2,32]. Prior work has characterized
the disappearance of minima in the energy landscape and
resulting particle rearrangements versus applied strain
[26,33,34]. However, how the particle rearrangement statistics
contribute to the cooling-rate-dependent mechanical response
is not well understood.

We emphasize three key results concerning the
cooling-rate-dependent mechanical response of glasses.
First, we find that the strain-induced energy loss per strain
for more rapidly cooled glasses is larger than that for more
slowly cooled glasses. Second, we show that the cumulative
energy loss before the plastic flow regime can be used to
determine whether glasses exhibit brittle or ductile behavior.
Third, we characterize the degree of irreversibility of particle
rearrangements in response to shear reversal and show that
more rapidly cooled glasses are more ductile and irreversible
compared to slowly cooled glasses.

II. METHODS

We performed constant number, pressure, and temper-
ature (NPT) molecular dynamics simulations of binary

2470-0045/2017/95(2)/022611(8) 022611-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevE.95.022611


MENG FAN et al. PHYSICAL REVIEW E 95, 022611 (2017)

FIG. 1. (a) The von Mises stress σ versus strain γ (solid line) from simulations of binary Lennard-Jones glasses (prepared at cooling rate
Rc = 10−3) with N = 2000 particles undergoing athermal, quasistatic pure shear averaged over 500 samples. Periodic boundary conditions are
employed, which prevent fracture during loading. [The dependence of σ (γ ) on system size is shown in Appendix C.] The affine stress versus
strain in the γ → 0 limit is given by the dashed line. The left inset provides a closeup of the ensemble-averaged σ (γ ), which highlights the
deviation from linear behavior in the range γ = 0.005–0.01. The right inset gives σ (γ ) for a single sample over the same small strain interval.
The circled stress drop indicates the particle rearrangement in (b). The vectors (which have been scaled by a factor of 15) indicate the particle
displacements that caused the stress drop. The participation number P [26] of this event is roughly 18. Blue and red spheres indicate the large
and small particles, respectively, with the largest displacements. (c) σ versus γ for the same system in (a) for several cooling rates Rc = 10−2

(dashed line), 10−3 (solid line), 10−4 (dash-dotted line), and 10−5 (dotted line).

Lennard-Jones mixtures containing 80% large and 20% small
spherical particles by number (both with mass m) in a cubic
box with volume V under periodic boundary conditions.
The particles interact pairwise via the shifted-force version
of the Lennard-Jones potential, u(rij ) = 4εij [(σij /rij )12 −
(σij /rij )6] with a cutoff distance rc = 2.5σij , where rij is the
separation between particles i and j . The energy and length
parameters are from the Kob-Andersen model: εAA = 1.0,
εBB = 0.5, εAB = 1.5, σAA = 1.0, σBB = 0.88, and σAB =
0.8 [35]. Energy, temperature, pressure, and time scales are
expressed in units of εAA, εAA/kB , εAA/σ 3

AA, and σAA

√
m/εAA,

respectively, where kB is Boltzmann’s constant [36].
We first equilibrate systems in the liquid regime at constant

temperature T0 = 0.6 and pressure P = 0.025 using a Nosé-
Hoover thermostat and barostat, a second-order simplectic
integration scheme [37,38], and time step �t = 10−3. We cool
systems into a glassy state at zero temperature using a linear
cooling ramp, T (t) = T0 − Rct over a range of cooling rates
Rc = 10−1–10−6, all of which are above the critical cooling
rate. Thus, all zero-temperature samples are disordered. We
apply athermal, quasistatic pure shear at fixed pressure. To do
this, we expand the box length and move all particles affinely in
the x direction by a small strain increment dγx = dγ = 10−4

and compress the box length and move all particles affinely
in the y direction by the same strain increment dγy = −dγ .
Following the applied pure shear strain, we minimize the total
enthalpy H = U + PV at fixed pressure P = 10−8, where
U = ∑

i>j u(rij ) is the total potential energy. We successively
apply pure strain increments dγ and minimize the enthalpy
at fixed pressure after each increment to a total strain γ . We
studied systems with N = 250, 500, 1000, and 2000 particles
to assess finite-size effects.

We developed a method to unambiguously determine
whether a particle rearrangement occurs with an accuracy
on the order of numerical precision, which allows us to

detect rearrangements with sizes ranging over more than seven
orders of magnitude. To identify particle rearrangements, at
each strain γ we compare the potential energy per particle
U (γ ) = U(γ )/N during forward shear to U ′(γ ) obtained by
first a forward shear step from strain γ to γ + dγ (and
enthalpy minimization) followed by a backward shear step
from γ + dγ back to γ (and enthalpy minimization). We find
that the distribution of magnitudes of the energy differences
|�U (γ )| = |U (γ ) − U ′(γ )| is bimodal with peaks near 10−14

corresponding to numerical error and 10−3 corresponding to
distinct particle rearrangements. Thus, it is straightforward
to identify particle rearrangements as those with |�U | > Ut ,
where the threshold Ut = 10−10 clearly distinguishes numer-
ical error from particle rearrangements. (See Appendix B
for an expanded description of this method.) We denote
the total number of rearrangements in the strain interval 0
to γ as Nr (γ ). In addition, we calculate the energy lost
after the Nr (γ ) rearrangements in the strain interval 0 to
γ : Uloss(γ ) = ∑Nr (γ )

i=1 |�U (γi)|, where γi indicates strains at
which rearrangements occur. For each cooling rate Rc, we
detect rearrangements of glasses all prepared at Rc and average
Uloss over at least 500 samples. Additional details concerning
the simulation methods are included in Appendix A.

III. RESULTS

In Fig. 2(a), we plot U (γ ) for single configurations, as
well the ensemble-averaged curves, for two cooling rates
(Rc = 10−5 and 10−2). In addition, we show Uloss(γ ) for single
configurations at the two cooling rates. The energy loss grows
more rapidly at small strains and is thus larger for more rapidly
cooled glasses. This behavior is consistent with the dependence
of σ (γ ) on cooling rate in Fig. 1(c). As the cooling rate
decreases, the yield stress and strain increase because fewer
and smaller particle rearrangements occur. However, at large
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FIG. 2. (a) Potential energy per particle U (γ ) versus strain γ

for binary Lennard-Jones glasses with N = 2000 particles prepared
using cooling rates Rc = 10−2 (blue) and 10−5 (green) and subjected
to athermal, quasistatic pure shear. The solid and dashed lines indicate
U (γ ) for single configurations and averaged over an ensemble of
configurations, respectively. The dotted lines indicate the cumulative
energy loss up to strain γ , Uloss(γ ), for single configurations. (b)
Average energy loss per (1%) strain dUloss/dγ versus strain for Rc =
10−2 (plus signs) and 10−5 (circles) and three system sizes: N = 2000
(solid lines), 1000 (dashed lines), and 500 (dotted lines). Ensemble-
averaged data is averaged over at least 500 samples.

strains, beyond the yield strain, σ (γ ), as well as U (γ ), become
independent of cooling rate [2,32].

Previous studies have shown that the number of energy
minima grows exponentially with the average potential energy
[28,39]. The increase in the number of minima for rapidly
cooled glasses makes them more susceptible to particle
rearrangements and increased energy loss [40,41]. Researchers
have also shown that more rapidly cooled glasses are more
loosely packed and less ordered than slowly cooled glasses
[42,43]. (See results for the packing density versus strain for
several cooling rates in Appendix D.) More loosely packed
glasses with reduced short- to medium-range structural order
are more prone to particle rearrangements and energy loss
during shear [16].

In Fig. 2(b), we plot the ensemble-averaged cumulative
energy loss per strain dUloss/dγ versus strain. For rapidly
cooled glasses, the energy loss is roughly proportional to
strain for γ < 0.06. In contrast, for more slowly cooled glasses
(i.e., R = 10−5), the systems only begin losing energy beyond
a characteristic strain γc ≈ 0.02. At large strains γ � 0.09,
dUloss/dγ becomes independent of cooling rate and strain
[32]. Further, we find that dUloss/dγ is roughly independent
of system size over the range of N we consider.

We next connect particle rearrangements to the mechanical
properties of glasses. As shown in Fig. 2, more rapidly cooled
glasses suffer larger energy loss during shear. We propose that
enhanced energy loss through particle rearrangements at small
strains can prevent catastrophic brittle failure, by preventing
stress accumulation and localization [29,31,41,44,45]. This
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FIG. 3. Ratio of shear to bulk moduli G/B versus the cumulative
energy loss Uloss during shear with γ = 0–0.04 below the peaks in
stress versus strain [Fig. 2(c)]. The arrow indicates the direction of
increasing Rc. The inset shows G and B separately versus Rc, both
of which are normalized to 1 at Rc = 10−6.

suggests that more rapidly cooled glasses are more ductile
than slowly cooled glasses [14].

To investigate this hypothesis, we calculate the cumulative
energy loss Uloss due to particle rearrangements [γ = 0–0.04
below the peaks in σ (γ ) as shown in Fig. 2(c)] as a function
of the ratio of the shear to bulk moduli G/B, which correlates
strongly with the ductility of a material [14,44,46,47]. (G
and B were obtained from the slope of the corresponding
stress versus strain for vanishingly small pure and compressive
strains, respectively.) As shown in Fig. 3, the brittleness G/B

decreases as Uloss increases. Moreover, we find that both G

and B decrease with increasing cooling rate, but G decreases
faster (inset to Fig. 3), and thus the ratio G/B, and brittleness,
decrease with increasing Rc.

Whether a material is reversible or not during deformation is
often inferred from the stress-strain curve or other macroscopic
measurements. For example, materials are typically deemed
reversible in the regime where the stress-strain curve is linear,
and irreversible in the regime where plastic flow occurs [48].
Reversibility has been studied experimentally using enthalpy
[18] and strain recovery [19], elastostatic compression [16],
nanoindentation [10], and quality factor measurements [49].
In simulations, reversibility has been studied using cyclic shear
of model glasses [17,50–54]. Though the linear stress-strain
region in Fig. 1 is typically considered reversible, recent mea-
surements have identified irreversible events and anelasticity
on the microscale in this elastic region [6,7,9,16,19–21].

An important open challenge is to determine the onset
[50,51] of microscale irreversibility and understand its con-
nection to irreversibility and plasticity on macroscopic scales.
Above, we defined particle rearrangements as those that led
to local irreversibility of the potential energy [quantified
by |�U (γ )|] after a forward strain increment dγ , followed
by a backward strain increment −dγ . We now characterize
reversibility following a single cycle of a finite-sized strain
using two measures [50]. First, we define state irreversibility
as

D0(γ ) = | �R(0,0) − �R(γ,γ )|/N, (1)
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FIG. 4. (a) Measure of state irreversibility D0 after undergoing
a single athermal quasistatic pure shear cycle with strain amplitude
γmax for several cooling rates: Rc = 10−2 (crosses), 10−3 (squares),
10−4 (triangles), and 10−5 (circles). The curves were averaged over
96 samples with N = 2000. The top left inset shows that the two
measures of irreversibility, D0 and I , are positively correlated.
The bottom right inset shows a schematic of the trajectory of a
single particle during forward shear from total strain 0 to γmax

and backward shear from γmax to 0. The bars connect particle
positions at corresponding strains during the trajectory, �R(γ ′,0) and
�R(γmax,γmax − γ ′). D0 and I are related to the length of the bottom bar

and average length over all bars, respectively. (b) Cumulative energy
loss Uloss(γmax) versus path irreversibility I (γmax) for 0 < γmax <

0.04. Each data point represents a shear cycle with γmax = γi , where
γi are the strains at which rearrangements occur. The dashed curve
gives Uloss = AI 2 with A ∼ 1. The arrow indicates the direction of
increasing γmax.

where �R(γf ,γb) gives the particle coordinates after the system
has been sheared forward by strain γf and backward by strain
γb. D0 characterizes the ability of a sheared system to return to
the original, unsheared configuration after a single cycle. [See
bottom right inset to Fig. 4(a).] In Eq. (1), �R(0,0) gives the
original, unsheared particle coordinates, and �R(γ,γ ) gives the
particle coordinates of the system after it was sheared forward
to strain γ and then sheared backward from γ to 0. D0(γ ) ∼ 0
indicates a type of reversible behavior, where most of the
particles return to their original, unsheared positions after a
single strain cycle of amplitude γ . In contrast, D0 > 0 implies
irreversible behavior that grows in magnitude with increasing

D0. We also define a measure of path irreversibility [50],

I (γ ) = 1

N

√
1

γ

∫ γ

0
| �R(γ ′,0) − �R(γ,γ − γ ′)|2dγ ′, (2)

which gives the average distance between configurations at
corresponding strains during forward and backward portions
of the shear cycle. [See the bottom right inset to Fig. 4(a).]

Even though shear cycles can occur with I > 0 and
D0 = 0, which implies that the system returns to the original,
unsheared configuration at γ = 0 along different forward and
backward shear paths [50], we find that the ensemble-averaged
I becomes nonzero only when D0 begins increasing from zero.
Further, I and D0 are strongly correlated as γmax increases.
[See the top left inset in Fig. 4(a).] In Fig. 4(a), we plot
D0(γmax) for several Rc. We find that slowly cooled glasses
are nearly state reversible over a finite range of strain (up to
γmax ∼ 0.05), while D0 ∼ Aγmax (with slope A) for rapidly
cooled glasses. For intermediate Rc, D0 ∼ B(Rc)γmax for
γmax < γc(Rc) and D0 ∼ Aγmax for γmax > γc(Rc). The slope
B(Rc) increases with Rc, and the crossover strain γc(Rc)
decreases with Rc. The top inset to Fig. 4(a) shows that I and
D0 possess the same Rc dependence. Rapidly cooled glasses
possess higher values of irreversibility because the energy loss
during shear is larger (Fig. 2). Further evidence for this is
provided in Fig. 4(b), where we show that Uloss ∼ I 2.

IV. CONCLUSIONS AND FUTURE DIRECTIONS

In this study, we showed that the energy loss per strain
dUloss/dγ is larger for more rapidly cooled glasses. Further,
we found that the cumulative energy loss can be used to
determine the ductility and degree of irreversibility of glasses.
A future direction of this research is to understand the
separate contributions of the frequency of rearrangements
dNr/dγ and energy loss per rearrangement dUloss/dNr to
dUloss/dγ = (dUloss/dNr )(dNr/dγ ). In Figs. 5(a) and 5(b),
we show that both dNr/dγ and dUloss/dNr are larger for more
rapidly cooled glasses at small strains. However, in the range
0.05 � γ � 0.09, dNr/dγ forms a small peak for small Rc

(increasing above the value for large Rc) before reaching the
cooling-rate-independent, large strain limit. The increase in
dNr/dγ at intermediate strains is associated with the fact that
more slowly cooled glasses develop a large stress overshoot
in this regime, as shown in Fig. 1(c) [2,31]. In contrast,
dUloss/dNr monotonically increases with γ for all Rc studied.

We find that the energy loss per rearrangement is controlled
by the number of particles that move significantly during each
rearrangement, which can be quantified using the participation
number P = ∑N

i=1 (di/dmax)2, where di is the displacement of
particle i and dmax is the maximum di [26]. In the inset of
Fig. 5(c), we show that the ensemble-averaged 〈P〉 increases
with γ and is larger for more rapidly cooled glasses. In
contrast, rearrangements are more localized for slowly cooled
glasses. We also find that the Rc dependence of dUloss/dNr

can be collapsed when dUloss/dNr is plotted versus 〈P〉, which
further emphasizes that the number of particles that move
significantly determines energy loss from rearrangements.

An important topic of future research is to characterize the
system size dependence of dNr/dγ and dUloss/dγ , separately,
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FIG. 5. (a) Rearrangement frequency dNr/dγ and (b) energy
loss per rearrangement dUloss/dNr plotted versus strain γ for Rc =
10−1 (crosses), 10−2 (plus signs), 10−3 (squares), 10−4 (upward
triangles), 10−5 (circles), and 10−6 (downward triangles). (c) Energy
loss per rearrangement dUloss/dNr plotted parametrically against
participation number 〈P〉 for all data in (a) and (b). The inset shows
〈P〉 versus γ for the same Rc in (a) and (b). All data is obtained by
averaging over 500 samples for N = 2000.

as a function of strain γ . Previous studies [55–57] have shown
that the rearrangement frequency displays power-law scaling
with system size, dNr/dγ ∼ N−β , with an exponent β whose
magnitude varies strongly as the strain is increased above
the yielding transition. Beyond yielding in the steady-state
regime, β reaches a plateau value that is insensitive to cooling
rate [55], similar to the behavior for σ (γ ) and dUloss/dγ .
In contrast, the system size dependence of dUloss/dγ over
the full range of strain is not well studied, and will be
characterized in future studies. The goal of our research in this
area is to use the statistics of rearrangements (i.e., frequency
and energy loss per rearrangement) to build a quantitatively
accurate theoretical framework for the cooling-rate-dependent
mechanical response of glasses.
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APPENDIX A: ATHERMAL, QUASISTATIC PURE SHEAR
AT FIXED PRESSURE

In this Appendix, we provide additional details concerning
the preparation and shearing of zero-temperature glasses. We
prepared zero-temperature glasses by cooling the systems from
an initial temperature T0 = 0.6 in the liquid regime to zero
temperature at fixed pressure P = 0.025 using a linear cooling
ramp. In this case, the temperature as a function of time t obeys
T (t) = T0 − Rct with cooling rate Rc. We then minimized
the enthalpy H = U + PV , where U is the total potential
energy and V = LxLyLz is the volume, to set the pressure
P0 = 10−8 by moving the particles and adjusting the length
of the box Lz in the z direction (by less than 0.1%). We then
applied athermal, quasistatic pure shear at fixed low pressure
P0 = 10−8 to the zero-temperature glasses. To implement
pure shear, we expand the box by a small strain increment
dγx = ln(1 + �Lx/Lx) = dγ = 10−4 and move all particles
affinely in the x direction by the same amount. At the same
time, we compress the box by a small strain increment dγy =
ln(1 − �Ly/Ly) = −dγ and move all particles affinely in the
y direction by the same amount. After each strain step, we
use an iterative process to minimize the enthalpy at fixed P0.
We first minimize H at fixed V . We then either compress or
expand the system (in the z-direction) by a small amount to
move toward the target pressure P0. We iteratively repeat these
two steps until P is sufficiently close to P0. The minimization
procedure terminates when the magnitude of force on each
particle falls below a small tolerance, fmax < ftol = 10−10,
and the deviation in the calculated pressure from the target
value is small, |P − P0|/P0 < 10−4.

APPENDIX B: IDENTIFICATION OF PARTICLE
REARRANGEMENTS

In many prior studies, somewhat arbitrary thresholds in
either energy or nonaffine displacements have been employed
to identify particle rearrangement events during athermal,
quasistatic shear [1,8,52]. In this study, we developed a particle
rearrangement detection method that identifies particle rear-
rangements with accuracies that approach numerical precision.
To identify particle rearrangements, at each strain γ we com-
pare the total potential energy per particle U (γ ) = U(γ )/N
from simulations undergoing forward shear to the potential
energy per particle U ′(γ ) obtained by first a forward shear
step from strain γ to γ + dγ (and enthalpy minimization)
followed by a backward shear step from γ + dγ back to γ

(and enthalpy minimization). [See the inset to Fig. 6(b).] We
find that P (|�U (γ )|) is bimodal with strong peaks near 10−14

corresponding to numerical error and 10−3 corresponding to
distinct particle rearrangements [Fig. 6(a)].

We also quantified rearrangements by calculating the
nonaffine displacement per particle D(γ ) between the
configurations at successive strain steps γ and γ + dγ

[1]: D(γ ) = | �R(γ + dγ ) − �R(γ )JJJ (γ )|/N , where �R(γ ) =
(�r1,�r2, . . . ,�rN ) gives the 3N particle coordinates at strain γ ,
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is the affine transformation matrix

describing pure shear in the x-y plane and compression
or expansion along the z axis (depending on the sign of
dε = ln[V (γ + dγ )/V (γ )]) to maintain fixed pressure.
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FIG. 7. The von Mises stress σ versus strain γ for zero-
temperature glasses prepared at cooling rate Rc = 10−3 and several
system sizes: N = 250 (solid line), 500 (dashed line), 1000 (dash-
dotted line), and 2000 (dotted line). The curves were averaged over
500 samples.

We show a scatter plot of |�U (γ )| versus D(γ ) in Fig. 6(b)
for glasses prepared at Rc = 10−5 and two system sizes
N = 250 and 2000. We find a large gap in the values
of the energy differences between true particle rearrange-
ments (|�U | > Ut = 10−10) and spurious energy differences
caused by numerical precision (|�U | < Ut ). In contrast,
we find that true and spurious particle rearrangements (as
identified via |�U |) share a continuous range of values for
the nonaffine displacements [10−3 < D(γ ) < 10−2], which
makes it difficult to set a nonarbitrary cutoff for defining

γ
0 0.02 0.04 0.06 0.08 0.1 0.12

ρ
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1.198

1.2

1.202

1.204

1.206

1.208

1.21

FIG. 8. Reduced number density ρ = Nσ 3
AA/V of binary

Lennard-Jones glasses containing N = 2000 particles prepared using
cooling rates Rc = 10−2 (solid curve), Rc = 10−3 (dashed curve),
Rc = 10−4 (dash-dotted curve), and Rc = 10−5 (dotted curve). These
systems undergo athermal quasistatic pure shear at constant pressure
P = 10−8 as a function of strain γ . Each curve is averaged over 500
independent samples.
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particle rearrangements using D(γ ). For |�U | > Ut , we find
that the energy differences grow with increasing nonaffine
displacement D(γ ).

APPENDIX C: VON MISES STRESS

In Fig. 1, we show the von Mises stress versus strain during
the athermal, quasistatic pure shear deformation of binary
Lennard-Jones glasses. The 3 × 3 stress tensor is given by

�λδ = 1

V

∑
i>j

fijλrijδ, (C1)

where fijλ is the λ = x,y,z component of the pairwise force
�fij that particle j exerts on particle i, and rijδ is the δ = x,y,z

component of the center-to-center distance vector �rij between
particles i and j . The von Mises equivalent stress σ is given
by the second invariant of the stress tensor:

σ =
√

3

2
Tr(��� + PIII )2, (C2)

where III is the identity tensor and P = −1/3Tr(���) is the
pressure [2]. We remove the residual stress σ (0) from σ (γ )
so that the stress-strain curves are initialized to zero at γ = 0.
In Fig. 7, we show the variation of stress versus strain [σ (γ )]
with system size from N = 250 to 2000. For large N > 1000,
σ (γ ) is nearly independent of system size.

APPENDIX D: NUMBER DENSITY AS A FUNCTION OF
STRAIN AND COOLING RATE

The cooling rate dependence of the particle rearrangement
statistics in our study is consistent with the fact that more
slowly cooled glasses are more densely packed (and possess
lower potential energy) than rapidly cooled glasses. In Fig. 8,
we confirm that the density increases with decreasing cooling
rate. In addition, the packing density decreases with strain
for all cooling rates. In general, amorphous binary Lennard-
Jones glasses with higher packing densities possess lower
total potential energy since more pair interactions can be
accommodated in the minimum of the pair potential.
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