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Abstract: Accurate prediction of the liquidus temperature (𝑇𝐿    of alloys remains a challenge despite 

numerous theoretical models. Here, we explore and analyze the degree to which machine learning, ML, strategies 

can be used to predict 𝑇𝐿 . We use established literature data on liquidus temperatures of 85523 binary alloys to 

train ML models using various feature vectors to represent the alloys. While our results are comparable to previous 

studies, the persistent ~8% error underscores the limitations of current ML models for practical usage. The 

suboptimal accuracy leads us to question how well-defined the problem is and to what degree fundamental 

limitations prevent us from attaining more accurate predictions. We identify two major challenges in predicting the 

liquidus temperature of binary alloys through supervised ML algorithms. One challenge is representing the relevant 

characteristics of an alloy that determines liquidus temperature through appropriate features. The other fundamental 

challenge is the discreteness of atoms properties. The difference between two elements and thereby alloy systems 

is significant, which makes it difficult to learn from one alloy system to predict properties of another. We argue 

that these problems can be reduced to some extent, however these challenges are common in complex materials 

science problems and constitute a fundamental challenge in applying supervised ML strategies in this context.  

Keywords: Machine Learning, Liquidus Temperatures, Phase Diagrams, Alloys, Binary Alloy Systems, 

Random Forest, Neural Network. 

 1. Introduction 

For pure elements, at least for the more practical ∼100 elements, essentially all technologically relevant properties 

have been determined. However, in real-world applications, most materials we use are alloys, or combinations of 

these elements [1, 2, 3, 4]. Due to the vast number of alloys that can be formed [5], the fraction of alloy properties 

that have been measured for alloys is dramatically smaller than for pure elements. To address this knowledge gap, 

machine learning methods have emerged a potential tool to explore the vast compositional space of alloys [6, 7, 8, 

9, 10, 11, 12, 13, 14, 15, 16, 17, 18].  

Problems in materials science that have been addressed using ML can be categorized into two classes. The first 

class consists of problems that can be reduced to properties that originate from a small number of atoms. Such 

problems can often be addressed through ab initio approaches: they include predicting elastic constants [19, 20, 21, 

22], band structure [23, 24], diffusion [25, 26], and thermal expansion coefficient [27, 28]. Even though ab initio 

approaches still suffer limitations in representation, synthesizability, and accuracy [29, 30], combining these with 

ML models has been a fruitful area of research. Several examples of accurate predictions at low cost that accelerate 

speed and further led to the discovery of materials at unconventional chemical compositions have been given [31, 

32, 33, 34, 35]. 
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The second class consists of complex materials science problems in which properties and mechanisms originate 

from a large number of atoms. Examples for alloys include their microstructure, glass forming ability, plastic 

deformation, liquidus temperature, and phase diagrams. To address complex problems, models and guiding 

principles have been developed to estimate some of the alloys’ properties [1, 2, 36, 37, 38, 39, 40, 41]. Generally, 

such model predictions are limited in their application range. If predictions are widely applicable, they are at best 

only semi quantitative and typically these models do not allow comparison across alloy systems. Hence, there is a 

strong need to develop prediction methods for alloy properties beyond today’s state-of-the-art. As machine learning 

algorithms have been widely used to predict material properties, we consider ML here to predict the liquidus 

temperature, 𝑇𝐿 , of alloys. We reduce the problem to binary alloys, as for most of the “practical alloy systems,” 𝑇𝐿   

has been determined and hence can be compared with the prediction of the ML models. Hence, this problem is an 

ideal test bed to research if and how ML can be used to predict complex alloy properties. 

Machine learning strategies have been used in the past to address complex materials science problems including 

the prediction of glass formation [11, 17, 42, 43, 44, 45], critical temperature of superconductivity [46], high 

entropy alloy formation [13, 18, 47, 48] and alloy liquidus temperature [14, 49, 50]. Generally, these first attempts 

have concluded that ML is effective in predicting complex materials and properties [43, 44, 46]. However, follow 

up work has often revealed limitations in the ability to truly predict, i.e. extrapolate [17, 49,51, 52] as opposed to 

interpolate [8, 38, 53, 54, 55]. This is also evident by the fact that, despite wide usage of ML in materials science, 

few if any materials developed through ML strategies have been reported as front runners. When using ML to 

predict 𝑇𝐿 , most predictions result in ∼8-10% MAPE (mean absolute percentage error  [14, 49, 50], which is too 

large for practical applications. Some studies report lower errors, however more careful analysis reveals that 

significant information of the predicted alloy has been used in in the training set, hence the predictions have been 

interpolated [55] rather than extrapolated. 

In this article, we explore the origins that limit the use of ML for complex materials science problems through the 

example problem of predicting the liquidus temperature of binary alloys. When using standard ML approaches like 

in previous work [14], i.e., random forest or neural network models, where feature representations of the alloys 

include their mixing behavior, we obtain a similar prediction error of MAPE ∼ 8%, which is similar to the 

previously reported MAPE of ∼ 10% [14, 49, 50]. We compare these MAPE values with the results from our 

simplest model that linearly interpolates the melting temperatures of alloys’ constituents. The simplest model yields 

a MAPE of ∼ 13%, which reveals that the effectiveness of the ML models is low. We identify two core reasons for 

the high MAPE. One is that a priori known features to represent the behavior controlling 𝑇𝐿 , only poorly represent 

𝑇𝐿 . The other is much more fundamental and originates from the discreteness of atoms. We confirm and quantify 

the latter by using “artificial atoms” which can continuously, through their features, vary between two real atoms 

or two real alloys. 

 2. Procedures 

2.1. Data 

We consider 55 elements based on their “practicality” (Fig. 1a , which result in (
55
2

) = 1485  possible binary alloy 

combinations. We then identify out of these 1485 combinations all binary systems for which a complete set of  𝑇𝐿  

data is available in the ASM Alloy Phase Diagram Database [56], which totals 429 binary alloy systems. For each 

of these complete 429 binary phase diagrams we extract 𝑇𝐿  for ∼ 201 alloys in each alloy system, and these alloys 

are ∼ equally spaced in composition using WebPlotDigitizer [57] (Fig. 1b . Altogether, we curate such data, 

(𝐴𝑝 𝐵100−𝑝, 𝑇𝐿

𝐴𝑝  𝐵100−𝑝), for 85523 binary alloys from 429 binary alloy systems. 
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Figure 1: Data and data preparation process for considered binary alloys: (a) We selected 55 “practical” elements 

that comprise 429 binary alloy systems with a complete, for all compositions, 𝑇𝐿  line. (b) 𝑇𝐿  is obtained using 

WebPlotDigitizer [57] from the ASM binary phase diagrams [56]. For each binary alloy system, e.g. NiZr, we 

consider ∼ 201 equally spaced compositions. 

2.2. Features 

We consider two fundamentally different feature vector sets. One is the Physically Informed feature vector that 

considers the mixing of the elements. The other is the Elemental Properties feature vector that only considers the 

properties of the constituent elements of the alloy. For benchmarking and comparison, we create Composition 

Fractions (Comp  features which only consider the composition of an alloy but don’t include information about 

the alloys’ properties. As an additional benchmark features, we also consider Random (Rand  features, i.e. random 

numbers that do not reflect any information about the alloy.  Additional details of these different feature vectors 

are provided in the Supplementary Materials B.2. We describe below the seven Physically Informed features which 

constitute the Physically Informed feature vector describing the mixing of the constituent elements in binary alloys 

and its effect on the thermal stability. 

(1  Atomic size difference: 

                    𝛿𝑎𝑡𝑜𝑚𝑖𝑐 𝑠𝑖𝑧𝑒 = √𝑝𝐴 ∙ (1 −
𝑟𝐴

𝑟𝑎𝑣𝑔
)

2

+ 𝑝𝐴 ∙ (1 −
𝑟𝐵

𝑟𝑎𝑣𝑔
)

2

                                     (1  

where 𝑝𝐴 and 𝑝𝐵  are the composition fractions of elements A and B;  𝑟𝐴 and 𝑟𝐵  are their atomic sizes and the 

weighted average of the atomic size is: 

   𝑟𝑎𝑣𝑔 = 𝑝𝐴 ∙  𝑟𝐴 + 𝑝𝐵 ∙  𝑟𝐵  (2  

The atomic size difference has been widely identified as critical in controlling various alloy characteristics 

including solubility limits in solid solutions [1, 58], metallic glass formation [2, 38], and high-entropy alloy 

formation [2, 3, 59, 60]. 

(2  Atomic size range: 

 ∆𝑟 =
|𝑟𝐴− 𝑟𝐵|

𝑝𝐴∙ 𝑟𝐴+ 𝑝𝐵∙ 𝑟𝐵
 (3  

(3  Average melting temperature: 

 𝑇𝑎𝑣𝑔 = 𝑝𝐴 ∙  𝑇𝐴 + 𝑝𝐵 ∙  𝑇𝐵  (3  

Where 𝑇𝐴 and 𝑇𝐵 as the melting temperatures of the elements A and B. 

(4  Difference in melting temperature: 
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 ∆𝑇 =
|𝑇𝐴− 𝑇𝐵|

𝑝𝐴∙ 𝑇𝐴+ 𝑝𝐵∙ 𝑇𝐵
 (5  

 

(5  Heat of mixing [61]: 

 𝐻 = 𝜖𝐴𝐵 ∙ 𝑝𝐴 ∙ 𝑝𝐵  (6  

where 𝜖𝐴𝐵 is calculated using Miedema’s model for the pairs of elements in the alloys [62]. 

(6  Normalized heat of mixing: 

 𝐻 = 𝜖𝐴𝐴 ∙ 𝑝𝐴 + 𝜖𝐵𝐵 ∙ 𝑝𝐵 + 𝐻 (7  

where 𝜖𝐴𝐴 and 𝜖𝐵𝐵 are the cohesive energies of element A, B in eV/atom. Normalized heat of mixing is a 

key indicator of alloys mixing behavior which then effects phase diagram and hence 𝑇𝐿 . As a high-level 

guiding rule, 𝑇𝐿  deviates more from 𝑇𝑎𝑣𝑔 with increasing 𝐻𝐴𝐵, as it deviates more from the ideal mixing 

behavior, where 𝑇𝐿  ~ 𝑇𝑎𝑣𝑔. 

(7  Crystal structure mismatch: 

 𝐶𝑆𝑀 = 𝐶𝑆 ∙ 𝑝𝐴 ∙ 𝑝𝐵  (8  

CS = 0 if the crystal structures of A and B are the same and CS = 1 if the crystal structures of A and B are 

different. CS has been recently identified as a key parameter that controls glass formation under conditions 

far from thermal equilibrium [63]. 

2.3. Models 

We employ three fundamental machine learning (ML  models: linear regressions [64], random forest [65], and 

deep neural networks models [66]. Here, we give a minimal exposition of the methods to familiarize the reader 

and provide more detail in Supplementary B.3. 

To develop the models and optimize hyperparameters, we employ 10-fold cross-validation. We use two 

fundamentally different approaches to separate the data for our problem. The first approach separates the training 

and testing data by the alloy systems (for more details, see Supplementary B.4 . In this case, alloys of one alloy 

system can either be in the training set or in the testing set, but not in both. Alternatively, data are separated by 

alloys. In this case, and for the here used 90/10 split for the cross-validation, statistically ~180 alloys out of the 

201 alloys per alloy system are already in the training set. An example would be that 𝐴50𝐵50, 𝑇𝐿(𝐴50𝐵50) and 

𝐴48𝐵52 , 𝑇𝐿(𝐴48𝐵52)  are in the training data and the ML algorithm would predict 𝐴49𝐵51 , 𝑇𝐿(𝐴49𝐵51)   Hence, 

predicting the missing ∼ 20 alloys of one alloy system is a simple interpolation task. For this reason, we separate 

the data by alloy systems for our main analysis, thereby allowing us to evaluate the extrapolative ability of the ML 

models. In addition to a 90/10 split for the cross-validation, we also use a leave-one-system-out validation method 

(for more details, see Supplementary B.6.1 , where all systems are used to train, except only one into which we 

then predict. 

As a general benchmark model, we compare all predictions to a model that uses linear interpolation of the average 

melting temperature, 𝑇𝑎𝑣𝑔 = 𝑝𝐴 ∙  𝑇𝐴 + 𝑝𝐵 ∙  𝑇𝐵 (Supplementary B.5 . A summary of our methodology including data 

extraction, feature selection, and model development is provide in Fig. 2. 
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Figure 2: Outline of the here applied ML strategies to predict liquidus temperatures of binary alloys. Liquidus 

temperatures used in the training set are from the Alloy Phase Diagram Database (ASM  [56]. Overall, we consider 429 

alloy systems AB and each system comprises of ~ 201 data, where each data comprises of the chemical composition 

𝐴𝑝𝐵100−𝑝 of a binary alloy and its corresponding 𝑇𝐿 . We represent the alloys through Physically Informed feature vector 

(∈ ℝ7 , where we use mixing properties of alloys such as the average atomic size and heat of mixing. We also use 

Elemental Properties feature vector (∈ ℝ66 , which only incorporates composition and elemental properties of the alloys’ 

elements such as their melting temperature or atomic radius. For comparison, to benchmark the feature representation, 

we construct random feature vectors (∈ ℝ7 , which are generated by assigning a random number (∈ {0, 1}  to a feature. 

An additional benchmark feature representation is the Composition Fraction feature (∈ ℝ55  where an alloy is only 

represented by its chemical composition. Using such various feature representations, we train machine learning models 

through a 10-fold cross validation. These models are used to predict “left out data” and their predictability is quantified 

via the mean absolute percentage error (MAPE . 

 3. Results 

The considered data originate from 429 binary alloy systems and each alloy system is represented by ∼ 201 

compositions resulting in a total of 85523 binary alloys altogether. ML models are developed for each of the feature 

vectors and their predictions are quantified through MAPE (Fig. 3a . The best predictions, averaged over all alloys, 

are for random forest ML model using PI features with a MAPE = 7.96% ± 0.01%. Using a neural network model 

with the PI features results in a similar 𝑀𝐴𝑃𝐸 = 8.73% ± 0.12%. The benchmark model 𝑇𝑎𝑣𝑔 = 𝑝𝐴 ∙  𝑇𝐴 + 𝑝𝐵 ∙  𝑇𝐵 

gives a MAPE of 12.84%. Using a linear regression model results in MAPE values similar or worse than achieved 

by the benchmark model. Going beyond the average values for the predictions we choose Co-Ti as an example 

binary alloy system (Fig. 3b . We evaluate the effect of four different feature vectors (Random, Comp, EP, PI  

using Random Forest to predict 𝑇𝐿 . These predictions are compared to measured 𝑇𝐿  (considered as the true values  

a linear regression model and the benchmark model. The best prediction, quantified in lowest MAPE of ∼ 4% 

(average MAPE for all composition within this alloy system  is obtained by the random forest model trained on PI 

features. The EP features, without considering mixing of the elements, achieve a slightly higher MAPE of 

approximately ∼ 5%. In comparison, features derived only from composition yield a significantly higher MAPE 

∼ 15% and Random features produce a MAPE of ∼ 12%. For EP and PI feature vectors the predictions mimic to 

various extends the composition dependent of 𝑇𝐿  within this system. This is not the case when using random forest 

model with Random and Composition features, linear regression model (MAPE ≈ 12%  , and the benchmark 

model (MAPE ≈ 20% , which are unable to capture the specifics of this system. 
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Figure 3: Summary of the ML predictions of 𝑇𝐿for binary alloys: (a) Summary of average predictions from linear 

regression, neural network and random forest with 10-fold CV where training/testing data splitting is based on 

alloy systems. The benchmark model (linear interpolation , 𝑇𝑎𝑣𝑔 = 𝑝𝐴 ∙  𝑇𝐴 + 𝑝𝐵 ∙  𝑇𝐵 , is also shown. Standard 

deviations are given over five trials for all models. (b) Random forest predictions of 𝑇𝐿  using four different features 

vectors (Comp, EP, PI, Random  for Co-Ti as an example binary alloy. These predictions are compared to 𝑇𝐿  

obtained from the linear regression and benchmark models. The best prediction, quantified by the lowest MAPE 

of ∼ 4% is obtained using the random forest model trained on PI features. EP features result in a MAPE of ∼ 5%. 

Composition features result in a MAPE of ∼ 15% and random features result in a MAPE of ∼ 12%. (c) Three 

examples are shown of the most accurate and least accurate predictions for an alloy system with Physically 

Informed features, the leave-one-system-out validation method and different models. The best three alloy systems 

prediction are for TbY (MAPE = 0.41%  and ErMg (MAPE = 1.37%  and MgNd (MAPE = 2.25% . The three 

worst predictions for alloy systems are for BRh (MAPE = 44.61% , BPt (MAPE = 44.27%  and AuSb (MAPE = 

38.00% . These worst predictions are even worse than the predictions using the benchmark model. (d) Three 

examples of the most accurate and least accurate Random Forest predictions for an alloy system with different 

features and the leave-one-system-out validation method. The PI features give the best predictions. 

 

We also consider the extremes of the predicted MAPE distribution by considering three examples of the most 

accurate and least accurate predictions for an alloy system, based on the various models using Physically Informed 

features (shown in Fig. 3c with different models . Using the leave-one-system-out validation method and Random 

Forest model with the Physically Informed features, the three alloy systems with the best prediction are for TbY 

(MAPE = 0.41%  and ErMg (MAPE = 1.37%  and MgNd (MAPE = 2.25% . Also, three of the alloy systems with 

the worst predictions are for AuSb (MAPE = 38.00% , BPt (MAPE = 44.27%  and BRh (MAPE = 44.61% . The 

alloy systems with the worst predictions possess even larger MAPE values than the MAPE determined using the 

benchmark model. 

When considering different feature vectors for the best and worst predictions per alloy system with Random Forest 

model, PI features result in smallest MAPE and appear to have the most ‘‘insight”, which is reflected in the shape 
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of the liquidus temperature curve (Fig. 3d . When using Elemental Properties as features, MAPE is higher, which 

is not surprising as mixing is not considered in these features. When using Random features, predication drops 

significantly, to a MAPE > 30% for both the linear regression and random forest ML model. Composition features 

achieve better performance than Random features, as they preserve the continuous elemental fraction information 

of the binary alloys. Random features do not have any physical meaning, and as a consequence, lead to noisy and 

unstructured predictions. 

 4. Discussion 

Our results reveal that even the best predictions we can achieve are consistently above ∼ 8% MAPE. These results 

are obtained using the best possible methodologies (i.e. random forest model with the most informative Physically 

Informed feature vectors using leave-one-system-out validation . However, this predictability is only a factor of 

two better than that obtained from the  𝑇𝑎𝑣𝑔 = 𝑝𝐴 ∙  𝑇𝐴 + 𝑝𝐵 ∙  𝑇𝐵. Such, at best, moderate predictability is highly 

surprising. Further, our data reveal that there is not a considerable difference between using a simple nonlinear 

model like a Random Forest and a more complicated model like a well-tuned neural network model. Although this 

may seem surprising, we believe it is a consequence of the fact that the problem of predicting 𝑇𝐿  of binary alloys 

itself has several fundamental limitations that prevent one from obtaining more accurate predictions through 

machine learning. 

We argue that the reason for the poor predictability achieved by machine learning models originate mainly from 

two contributions. One is the suboptimal representation of the alloys through the features to represent 𝑇𝐿  . 

Theoretically, as stated by the universal approximation theorem [67], even a poor presentation of the output label 

(here 𝑇𝐿  through its features can result in high predictability as long as the prediction is over a compact domain 

and sampling can be carried out densely. We argue here, and this is a fundamental limitation of machine learning 

for complex materials science problems that involve discrete combinations of atoms, that the quantity of data 

cannot be arbitrarily increased but instead clustered and reduced to only some locations in the feature space. This 

is because complex problems involve combinations of atoms, which can only lead to some combinations of features, 

but others can never be realized. This is the second contribution, and it originates from the fact that atoms are 

discrete, and hence their feature representations. 

In the following we discuss the feature representation and discreteness of atoms and the resulting accessible feature 

space. 

4.1. Feature Representation 

4 1 1  Feature and Liquidus Line Distance Calculation 

We argue that the poor feature representation can be quantified in two ways. One is reflected in the overall poor 

predictability of 𝑇𝐿  through our models reflected in the high MAPE values (Fig. 3a . The other is the argument that 

a measure of goodness for feature representations in our context should reflect in the following: If the feature 

representations for two alloy systems are similar, then one can conclude that their TL’s must be similar  

Looking at alloys divorced from their system results in information loss and can lead to redundant analysis in our 

case, since intermediate alloy features are synthesized from the alloy system’s constituent atoms. As a consequence, 

and to reduce problem, we will generalize our analysis to the level of alloy systems instead of individual alloys. 

Hence, the measure of goodness changes to: If the feature representations for two alloy systems are similar, then 

one can conclude that their liquidus lines must be similar  

Specifically, we will represent an alloy system AB by a concatenation of the features of its constituent atoms. In 

addition, the PI feature of an alloy system, 𝑿𝑃𝐼  , is in ℝ
201×7 , which consists of 201 alloy compositions, each 

represented by seven features (Details in Section 2.2 . However, we define the feature vector for a binary alloy 

system AB as 𝑿𝐴𝐵 = [
𝑿𝐴

𝑿𝐵
], where 𝑿𝐴 ∈ ℝ7 are the Elemental Properties (EP  vectors of pure elements A and B, and 

𝑿𝐴𝐵 ∈ ℝ14. Since our goal is to build a model that generalizes to unseen alloy systems, we intentionally avoid using 
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Physically Informed (PI  features. The PI feature contains the mixing information, which may cause biases. Instead, 

we extract the EP feature vector 𝑿𝐴𝐵  only from the endpoints of the composition range (the pure elements 𝐴100𝐵0 

and  𝐴0𝐵100 . This approach ensures that the feature vectors are derived solely from elemental properties, 

independent of any knowledge of the system's liquidus behavior. Also, EP feature vectors provide a cleaner and 

more generalizable basis for comparing alloy systems. It allows us to compute distances between systems in feature 

space based only on elemental similarities, without being affected by data artifacts or fitting noise in the PI domain. 

Similarly, we define the liquidus temperature vector for a binary system AB as 𝑻𝐿
𝐴𝐵 ∈ ℝ201 , representing its 

temperature values across the composition range. 

We propose that a good alloy system representation should preserve the continuity of the mapping from features to 

liquidus line. Specifically, if two alloy systems have similar EP feature vectors (i.e., 𝑿𝐴𝐵 ≈ 𝑿𝐶𝐷   , then their 

corresponding liquidus temperature vectors should also be similar (i.e., 𝑻𝐿
𝐴𝐵 ≈ 𝑻𝐿

𝐶𝐷 . In other words, the map from 

feature vectors of an alloy system to its liquidus line has some continuity property. 

Alloy System Feature Correlation with Liquidus Line: To quantify the degree to which the alloy system feature 

space represents the liquidus line space, we first need to define metrics on the spaces of alloy system features and 

liquidus line. For the sake of simplicity to define a distance matrix between feature vectors of each two alloy 

systems, we will use the simple Euclidean ℓ2 distance on the space of features: 

ℓ2(𝑿𝐴𝐵 , 𝑿𝐶𝐷) = √(𝑿𝐴𝐵 − 𝑿𝐶𝐷)2 

𝑿𝐴𝐵 ∈ ℝ14 and 𝑿𝐶𝐷 ∈ ℝ14  represent the feature vectors of the alloy systems AB and CD. 

To represent the liquidus line of an alloy system 𝑻𝐿
𝐴𝐵 ∈ ℝ201, we use a 201-dimensional real-valued vector where 

each dimension represents a liquidus temperature for a particular alloy (or composition p  𝑇𝐿

𝐴𝑝𝐵100−𝑝
. To properly 

describe the difference between the liquidus lines of two different alloy systems, we argue that the absolute 

difference and the difference in local slopes must be considered. The absolute difference is quantified through: 

ℓ1(𝑻𝐿
𝐴𝐵 , 𝑻𝐿

𝐶𝐷) = ∑ |𝑇𝐿

𝐴𝑝𝐵100−𝑝 − 𝑇𝐿

𝐶𝑝𝐷100−𝑝|

100

𝑝=0

 (where p = 0, 0.5, 1, …, 100  

𝑻𝐿
𝐴𝐵 ∈ ℝ201 and 𝑻𝐿

𝐶𝐷 ∈ ℝ201 are the liquidus line vectors of alloy systems, AB and CD. 𝑇𝐿

𝐴𝑝𝐵100−𝑝
 and 𝑇𝐿

𝐶𝑝𝐷100−𝑝
 

represent the liquidus temperatures of alloys 𝐴𝑝𝐵100−𝑝 and 𝐶𝑝𝐷100−𝑝. 

The difference in local slopes of the liquidus lines of two different alloy systems is quantified through:  

ℓ1(𝑺𝐿
𝐴𝐵 , 𝑺𝐿

𝐶𝐷) = ∑ |𝑇𝐿

𝐴𝑝𝐵100−𝑝 − 𝑇𝐿

𝐴𝑝−1𝐵101−𝑝 − 𝑇𝐿

𝐶𝑝𝐷100−𝑝 + 𝑇𝐿

𝐶𝑝−1𝐷101−𝑝|

100

𝑝=0

 (where p = 0, 0.5, 1, …, 100  

𝑺𝐴𝐵 , 𝑺𝐶𝐷 ∈ ℝ200 are the local slope vectors of alloy systems AB and CD. 

We propose a weighted linear combination of the ℓ1   difference between two liquidus lines and the local slope 

information between them. We argue that the local slopes are critical as they carry important information about the 

specifics of the alloy system. We define the liquidus line distance as: 

𝑇𝐿dist

(α,β)
(𝑻𝐿

𝐴𝐵 , 𝑻𝐿
𝐶𝐷) = α ⋅ ℓ1(𝑻𝐿

𝐴𝐵 , 𝑻𝐿
𝐶𝐷) + β ⋅ ℓ1(𝑺𝐴𝐵 , 𝑺𝐶𝐷) 

 

where 𝛼, 𝛽 ∈ ℝ are learned fitting parameters and represent the relative importance of the two contributions, 0𝑡ℎ  

and 1𝑠𝑡 order information in constructing the liquidus line metric. 

To obtain the learned α and β parameters we minimize the following mean squared error loss over all pairs of alloy 

systems: 
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ℓ2(𝛼, 𝛽) =
1

(362
2

)
∑ (ℓ2(𝑿𝐴𝐵 , 𝑿𝐶𝐷) − 𝑇𝐿dist

(𝛼,𝛽)
(𝑻𝐿

𝐴𝐵 , 𝑻𝐿
𝐶𝐷))

2

(𝐴𝐵,𝐶𝐷)∈(362
2 ) systems

 

 

(𝛼∗, 𝛽∗) = arg min
𝛼,𝛽

ℓ (𝛼, 𝛽) 

We use EP features and normalize all data by mean and standard deviation (as discussed in Supplementary B.1 . 

We optimized this loss with PyTorch [68] to obtain a converged average mean squared error of 1 34 and the best 

parameters of 𝛼 and 𝛽: 𝛼∗ = 0.0039, 𝛽∗ = 0.7720. We argue these learned values for 𝛼 and 𝛽 are reasonable and 

interpretable: the first order information (slope: 𝛽  between liquidus lines is highly informative as it reflects the 

specifics of the liquidus line. It is reasonable that the slope carries more information than the absolute value. 

Moreover, the mean squared error of the 𝛼 and 𝛽 fitting of 1 34 is reasonably good, given that we normalized all 

features. 

4 1 2  Visualizing Explainability of Features: 

 

Figure 4: (a): 362 × 362 feature vector distance matrix when using Elemental Properties features. Each entry 

corresponds to the distance between the alloy systems represented by the 𝑖𝑡ℎ  row and 𝑗𝑡ℎ column. Details about the 

quantification of the distance matrix are given in Section 4.1.1. (b): Liquidus line distance matrix between all 362 

binary alloy systems. (c): The feature distance matrix when random features are used. (d): Schematic of difference 

of EP features and Liquidus lines distances matrix that shows perfect correlation; 𝑿𝐴𝐵 ≈ 𝑿𝐶𝐷 ⇒ 𝑻𝐿
𝐴𝐵 ≈ 𝑻𝐿

𝐶𝐷, i.e. 

a matrix of all zeros. (e): Distance matrix for the correlation of the difference between the EP feature distance 

matrix and the liquidus line distance matrix. (f): Distance matrix for the correlation of the random feature distance 

matrix and the liquidus line distance matrix. 
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Now that we have set up relevant alloy system feature and liquidus line vectors and identified appropriate quantities 

to represent distances, we are able to quantify how “representative” our features are, i.e., how well they codify the 

intuition “𝑿𝐴𝐵 ≈ 𝑿𝐶𝐷 ⇒ 𝑻𝐿
𝐴𝐵 ≈ 𝑻𝐿

𝐶𝐷” (how well our feature distances approximate the liquidus line distances . To 

visualize this, we create distance matrices for the distance of all features and liquidus lines for all the 362 alloy 

systems for which a complete set of liquidus temperatures (all 201  are available (Fig. 4 . Fig. 4a shows the EP 

feature vector distance matrix, where the (𝑖, 𝑗) th element of the matrix represents the ℓ2   distance, which is 

represented as a heat map, between the EP features of the ith alloy system and the jth alloy system. Similar for the 

liquidus line distance matrix, where we use the learned 𝑇𝐿𝑑𝑖𝑠𝑡

(𝛼∗,𝛽∗)
 to compute the distance between liquidus lines of 

alloy systems (Fig. 4b . For comparison, a random feature distance matrix is shown in Fig. 4c. To quantify “𝑿𝐴𝐵 ≈

𝑿𝐶𝐷 ⇒ 𝑻𝐿
𝐴𝐵 ≈ 𝑻𝐿

𝐶𝐷” (Fig. 4e , we subtract the EP feature distance matrix (Fig. 4a  from the liquidus line distance 

matrix (Fig. 4b . A perfect correlation of “𝑿𝐴𝐵 ≈ 𝑿𝐶𝐷 ⇒ 𝑻𝐿
𝐴𝐵 ≈ 𝑻𝐿

𝐶𝐷  ” would result in vanishing values of the 

subtracted matrix (to appear in uniform black in Fig. 4d . The other extreme of no correlation (Fig. 4f  is present 

between the liquidus line distance matrix (Fig. 4b  and random feature vector distance matrix (Fig. 4c . The matrix 

representing the subtraction of feature distance matrix based on Elemental Properties (Fig. 4a  from the liquidus 

line distance matrix (Fig. 4b , shown in Fig. 4e falls in between those two extremes (no correlation vs. perfect 

correlation . Therefore, we can conclude that the EP features represent  𝑇𝐿  to some extent, however not perfectly. 

 

4.2. Atom Discreteness 

We argue that the other, and very fundamental reason that ML models are ineffective to solve complex materials 

science problems (reflected in high MAPE , originates from the discreteness of atoms. Such discreteness reflects 

and can be quantified in the discreteness of their features and prevents that the feature space can be arbitrarily 

sampled, as a fraction of the feature space will not be accessible even in the limit of infinite data. This is very 

different from the classical machine learning setting, where one can in theory sample arbitrarily many points which 

are arbitrarily distributed within the feature space from the underlying distribution. 

If there existed, theoretically, continuous atoms that interpolate between actual atoms, and hence a continuous 

compact space that contains all of our data points, one could always learn a function over this space simply by 

sampling it densely [67]. This is true and a high accuracy can be achieved, as long as a sufficiently large number 

of samples will be used even with a feature representation that represents the data poorly. However, in our physical 

world that is not the case. We will now provide arguments that such discreteness indeed prevents sampling of the 

entire feature space in the limit of infinite training data. 

 

Figure 5: Schematics of a representation of binary alloy systems represented by two features, F1 and F2. Only 

combinations of F1 and F2 that are on the lines connecting in a binary fashion the elements A, B, C, D, E, F exist. 

Additional data are always on these lines, even in the limit of infinite data and the majority of the feature space 

remains unrepresented. 
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Fig. 5 shows that the space of features of binary alloy systems is discrete. That is why, even as the number of data 

points approaches infinity, the MAPE does not approach zero. In the case of 𝑇𝐿  prediction, the features lie along a 

low-dimensional manifold effectively a “line” and increasing the data size only results in denser sampling along 

that line, without providing information beyond it.  

 

Figure 6: (a) Example of discreteness of features space considering average melting temperature and heat of 

mixing for some selected elements. Only a small fraction of the features space is available. Some elements and 

their binary combinations have similar features. (e.g. CoFe and CoNi  whereas others are very different from all 

other considered (e.g. MgYb . (b) The impact on the prediction of a ML model of such discreteness of the available 

features and their distribution in feature space can be observed when comparing the ML models trained on alloy 

systems from which some are removed. Either the most similar systems are removed (most-similar  (Section 4.1.1 

shows how to find the most similar systems , or random systems are removed (Random . The values plotted are 

average out over all test systems. 

Experimental evidence suggesting such discreteness can be obtained when selectively eliminating systems from 

the training set (Fig. 6 . We argue, and Fig. 6a provides examples, that such discrete feature values reflect in the 

quality, here similarity to the alloy system left out for predicting. When we randomly select and eliminate an alloy 

system from the training set and train a RF-ML model, the prediction is essentially (statistically  unaffected (Fig. 

6b . However, if we selectively choose the most similar alloy system to the one left out for prediction, the prediction 

rapidly worsens. This result not only shows the importance of a meaningful feature representation, systems with 

similar features are indeed more informative for prediction, but also implicitly reflects the role of atomic 

discreteness. As only a discrete set of alloy systems is available, removing similar systems leads to abrupt 

performance drops, underscoring the limitations imposed by the inherent discreteness of the dataset. 
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Figure 7: Effect of adding artificial atoms to the training data. (a) Left: Add artificial data but do not approach the 

testing system, BD. Right: Add artificial data and approach the testing system, BD. (b) Effect of the number of 

artificial atoms added to the training set on MAPE. Just adding artificial atoms but not approaching the left-out 

system does not affect predictability. Only if we approach the left-out system, the accuracy of the prediction 

increases. 

To provide further evidence that the discreteness of atoms leads to discreteness in phase diagrams, and their 

corresponding feature representation fundamentally limits predictability of ML models to predict the liquidus 

temperature of alloys, we use artificial atoms and alloy systems to simulate a continuous alloy, alloy system and 

corresponding feature representation scenario. Specifically, we define artificial atoms and describe them as linear 

interpolations of the feature vectors of neighboring real atoms (see supplementary D.2 . 

We make the following important differentiation. At first (Fig. 7a, left , artificial atoms in between atoms are 

created in between atoms (and their features  in the training set but do not approach the left-out system (BD in Fig. 

7a . Essentially, we add feature density in the training set but don’t specifically approach the left-out system. Such 

adding of data has essentially no effect on the MAPE (Fig. 7b . Here we argue that generally, when we add features 

to the training set away from the left-out system, such feature carries insignificant information as they only 

interpolate between already know information and are too different from the left-out system (see also Fig. 6b . An 

improvement in predictability is only possible when adding features directly approaching the left-out system. In 

that case, information of the left-out system is in the training set. Such approaching of the left-out system would 

naturally happen in a world of continuous atoms when increasing the number of test data. In such a world, in the 

limit of infinite data the predictability would be perfect. However, in the existing world of discrete atoms to truly 

predict, hence not approaching, and incorporating information from the alloy system into which one predicts,  just 

adding artificial atoms interpolating between atoms in the training set has essentially no effect on the predictability 
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of a machine learning model, hence highlights the severeness of atom discreteness limiting machine learning 

approaches.   

 5. CONCLUSIONS 

When using machine learning strategies to predict the liquidus line of a binary alloy system, considering 85523 

alloys for training, which are represented through various feature vectors, we find that our predictions are limited 

to an error of ∼ 8%, comparable to previously reported results. Such suboptimal predictability, unsatisfactory for 

these models to be of practical use, suggests two limitations of supervised machine learning strategies to predict 

the liquidus line of an alloy system. One originates from the challenge of representing the relevant characteristics 

of an alloy system that determines liquidus line through features. The other deeply fundamental challenge is the 

discreteness of atoms. The difference between two elements and thereby alloy systems is significant and hence 

makes it generally challenging to learn from one alloy system to predict another. We argue that these challenges 

are common in complex materials science problems and constitute a fundamental challenge in applying supervised 

ML strategies in this context. To reduce such limitations, one must develop more accurate descriptions of the 

complex problem, often related to its mixing behavior to achieve better feature representations. This is what the 

metallurgical community has been doing over the last century. To mitigate the discreteness problems, reducing the 

problem through subgrouping into more similar systems is one strategy. The trade off is that predictions become 

less general as the application space of the models are reduced. Another strategy may be to use model systems and 

alloys, for example in MD simulations, where the discreteness of atoms is lifted and arbitrarily continuous 

interactions which approximate atoms and alloys can be synthesized. Such modeling relies on faithful atom 

representations through potentials, where the simulation community has been making significant progress in the 

last decades. 
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