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Abstract

The ability to consistently distinguish real protein structures from computa-

tionally generated model decoys is not yet a solved problem. One route to dis-

tinguish real protein structures from decoys is to delineate the important

physical features that specify a real protein. For example, it has long been

appreciated that the hydrophobic cores of proteins contribute significantly to

their stability. We used two sources to obtain datasets of decoys to compare

with real protein structures: submissions to the biennial Critical Assessment of

protein Structure Prediction competition, in which researchers attempt to pre-

dict the structure of a protein only knowing its amino acid sequence, and also

decoys generated by 3DRobot, which have user-specified global root-mean-

squared deviations from experimentally determined structures. Our analysis

revealed that both sets of decoys possess cores that do not recapitulate the key

features that define real protein cores. In particular, the model structures

appear more densely packed (because of energetically unfavorable atomic

overlaps), contain too few residues in the core, and have improper distribu-

tions of hydrophobic residues throughout the structure. Based on these obser-

vations, we developed a feed-forward neural network, which incorporates key

physical features of protein cores, to predict how well a computational model

recapitulates the real protein structure without knowledge of the structure of

the target sequence. By identifying the important features of protein structure,

our method is able to rank decoy structures with similar accuracy to that

obtained by state-of-the-art methods that incorporate many additional features.

The small number of physical features makes our model interpretable, empha-

sizing the importance of protein packing and hydrophobicity in protein struc-

ture prediction.
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1 | INTRODUCTION

It remains a grand challenge of biology to design proteins
that adopt user-specified structures and perform user-
specified functions. Although there have been significant
successes,1–11 the field is still not at the point where we
can robustly achieve this goal for any application.12 An
inherent problem in protein structure prediction and
design is that it is extremely difficult to distinguish
between computational models that are apparently low
energy,13 but which are different from the real, experi-
mentally determined structures.14–16 This problem is
known as “decoy detection.” For example, in recent Criti-
cal Assessment of protein Structure Prediction (CASP)
competitions, in which researchers attempt to predict the

three-dimensional (3D) structure of a protein, based on
its amino acid sequence, many groups produced impres-
sively accurate predictions for certain targets (Figure 1a).
However, for most targets there is a wide spread of pre-
diction accuracy across the submissions from different
groups. (Note that even groups that perform well on aver-
age have a large standard deviation (SD) for their predic-
tions, see Figure S2 in the Supporting Information.)

In recognition of this issue, there is a subcategory in
CASP, estimation of model accuracy (EMA), in which
researchers aim to rank order the submitted models
according to their similarity to the backbone of the target
structure. The challenge is that researchers must develop
a scoring function for determining model accuracy, yet
they do not have access to the target structure.17–23

FIGURE 1 (a) Scatterplot of the Global Distance Test (GDT) score, which gives the average percentage of Cα atoms that is within a

given cutoff distance to the target (averaged over four cutoff distances), versus the number of residues N in the target structure for free-

modeling submissions to CASP11 (blue squares), CASP12 (orange triangles), and CASP13 (red diamonds). (b) GDT plotted versus the root-

mean-square deviations (RMSD) in Å among Cα atoms of core residues defined in the target (Δcore). The symbols represent the average in

each Δcore bin and the error bars represent one SD. (c) Scatterplot of GDT versus N for the decoys generated by the 3DRobot algorithm (gray

inverted triangles). (d) GDT versus Δcore showing the average and SD in each Δcore bin for the 3DRobot decoys. CASP indicates the biennial

Critical Assessment of protein Structure Prediction competition.
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Although EMA methods are improving,24–35 they are still
unable to consistently rank models submitted to CASP in
terms of their similarity to the target structure.23

We used two datasets for protein decoys: predicted
structures submitted to CASP and decoys generated using
3DRobot.36 Protein decoys from CASP were selected for
two important reasons: (a) the decoys represent a large
sampling of the types of decoys created from many differ-
ent protein structure prediction methods and (b) decoys
generated by protein structure prediction methods are
the main test case for the application of decoy detection.
Unfortunately, the CASP dataset is limited in sequence
diversity, compared to the diversity found in experimen-
tally solved protein structures. Therefore, to capture a
larger sampling of sequence space, we generated decoys
from a high-resolution X-ray crystal structure database
using the 3DRobot algorithm.36 The range of sizes of the
proteins and a measure of the backbone accuracy of the
decoys are plotted in Figure 1a,c (see Section 4 for a
detailed description of the computationally generated
decoy datasets). While there are few near-native struc-
tures in the CASP dataset, there are many structures in
the 3DRobot dataset that can be superimposed on the X-
ray crystal target structure with root-mean-square devia-
tions (RMSD) in the Cα positions <0.5 Å.

The protein core has long been known to determine
protein stability and provide the driving force for
folding.37–45 Additionally, in our previous work, we have
found that several features of core packing are universal
among well-folded experimental structures, such as the
repacking predictability of core residue side chain place-
ment, core packing fraction, and distribution of core void
space.46–51 This work suggests that analysis of core resi-
due placement and packing in proteins more generally
should be effective in determining the accuracy of protein
decoys. Indeed, software to assess X-ray crystal structure
model quality often calculates interatomic overlaps,53,54

the RosettaHoles software uses defects in interior void
space to differentiate between high-resolution X-ray crys-
tal structures and protein decoys,52 VoroMQA scores pro-
tein decoys using a statistical potential based on Voronoi
contact areas,34 and many other decoy detection methods
attempt to incorporate predictions of solvent
accessibility.28–30,35,55 Nevertheless, a minimal set of
physical features that can determine protein decoy accu-
racy has not yet been identified.

We demonstrate, that for recent CASP competition
predictions, as well as 3DRobot decoys, we can determine
protein decoy accuracy solely by identifying the struc-
tures that place the correct residues in the protein core.
We also show that only predicted structures that place
core residues accurately, measured using the root-mean-
squared deviation of the Cα atoms of solvent inaccessible

residues (i.e., Δcore < 1 Å), can achieve high Global Dis-
tance Test (GDT) scores (GDT ≳70) (Figure 1b,d), where
GDT ranges from 0 to 100 and 100 is a perfect match to
the target structure.56 Computational models with a
larger GDT are “more native-like,” whereas models with
a lower GDT are “more decoy-like.” Motivated by these
observations, we then analyzed several important attri-
butes of the cores of both experimentally observed and
computationally generated protein structures. We dem-
onstrate that 92% of all structures in the high-resolution
X-ray crystal structure database fall within the packing
feature cutoffs we selected and that a majority of all accu-
rate decoy structures do as well. Using these results, we
developed a decoy detection method based on only six
principal features of protein packing that are indepen-
dent of the target structure. Our method is more effective
than many of the methods in the CASP13 EMA and is
comparable to the other decoy detection methods that we
tested in this work. Moreover, all of the methods used in
the CASP13 EMA employ a far greater number of fea-
tures than we do.57 For example, one of the top per-
forming methods in the CASP13 EMA, ProQ329 uses 336
different features. Similarly, other successful methods,
such as 3DCNN,58 use all of the atomic coordinates of the
protein structures as input features to machine learning
methods for decoy detection. While CASP EMA often
focuses on predicting only the best model in a group,
here we focus on predicting the continuous quantity,
GDT, for computational models as a means of assessing
the importance of protein core packing for determining
the global structure. The effectiveness of the small num-
ber of features in our approach highlights the importance
of core residues, which take up ≲10% of globular proteins
on average, and packing constraints in determining the
global structure of proteins.

2 | RESULTS

First, we identify several key features that distinguish
high-resolution X-ray crystal structures and computation-
ally generated decoys, such as the average core packing
fraction, core overlap energy, fraction of residues posi-
tioned in the core, the distribution of the packing fraction
of hydrophobic residues throughout the protein, and the
average hydrophobicity of the core residues. We then
show how these features can be used to predict the GDT
of CASP submissions and 3DRobot decoys, independent
of knowing the target structure.

The distribution of packing fraction ϕ of core residues
in proteins whose structures are determined by X-ray
crystallography occur over a relatively narrow range,
with a mean of 0.55 and an SD of 0.02.46,48,51 We define
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core residues as those with small values of the relative
solvent accessible surface area, rSASA ≤ 10−3 (see Sec-
tion 4 for a description of the database of high-resolution
protein X-ray crystal structures and definition of rSASA).
In contrast, we find that many of the CASP submissions
and 3DRobot decoys possess core residues with packing
fractions that are much higher than those in experimen-
tally determined proteins structures. One way to achieve
such an unphysically high packing fraction would be to
allow large atomic overlaps. We therefore analyzed the
side-chain overlap energy for core residues, using the
purely repulsive Lennard–Jones interatomic potential,

URLJ =N −1
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where the sum is taken over all side-chain atoms i and all
other atoms not part of the same residue j, Na is the num-
ber of atomic overlaps, ε defines the energy scale,
σij = (σi + σj)/2, σi is the diameter of atom i, rij is the

distance between the centers of spherical atoms i and j,
and Θ(x) is the Heaviside step function, which is 1 when
x > 0 and is 0 when x ≤ 0. For high-resolution X-ray crys-
tal structures, half of core residues have an overlap
energy of zero; the remaining half of the residues have
very small overlap energies with an average value of
URLJ/ε ≈ 10−4 (Figure 2a,c). In contrast, the model struc-
tures in the CASP and 3DRobot datasets include some
extremely high-energy residues, with URLJ/ε � 1016. The
absence of data points in the lower right-hand corner of
Figure 2a,b clearly highlights that artificially high pack-
ing fractions are only found when the overlap energy is
high. Additionally, while large atomic overlaps can lead
to high packing fractions, there are also many cases of
significantly overpacked residues with relatively small
overlap energies near the upper bound of X-ray crystal
structures. Further, there are residues with overlap ener-
gies many orders of magnitude above those for X-ray
crystal structures, but with packing fractions near those
expected for X-ray crystal structures. In Figure 2c, we
show the frequency distribution of packing fractions for

FIGURE 2 Three packing features of high-resolution X-ray crystal structures (black circles) and free-modeling submissions to CASP11

(blue squares), CASP12 (orange triangles), and CASP13 (red diamonds), as well as 3DRobot decoys (gray inverted triangles). (a) Purely

repulsive Lennard–Jones potential energy URLJ that measures the overlap of core residue (rSASA ≤10−3) side-chain atoms versus packing

fraction ϕ comparing CASP decoys and X-ray crystal structures, excluding CYS residues. (b) URLJ versus ϕ comparing 3DRobot decoys and

X-ray crystal structures. (c) Frequency distribution of the packing fraction F(ϕ| URLJ = 0) for core residues with zero overlap energy.

(d) Probability distribution P(fc) of the fraction of core residues fc (rSASA ≤10−3)
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core residues with URLJ = 0. The differences in peak
heights reflect how much more likely it is for core resi-
dues from X-ray crystal structures of proteins to have
zero overlap energy compared to those in the CASP sub-
missions and 3DRobot decoys. However, the tail of large
packing fractions in Figure 2b is smaller for 3DRobot
structures than that for the CASP datasets.

These results demonstrate that individual core resi-
dues in the computational models submitted to CASP
and generated by 3DRobot are often overpacked (with
packing fractions above those expected for X-ray crystal
structures). We then asked whether core overpacking is
related to the number of residues in the core relative to
the number of residues in the protein. In Figure 2d, we
plot the probability that a structure, either computation-
ally generated or experimentally determined, has a given
fraction of its total number of residues in the core (rSASA
≤10−3). It is clear from this plot that computationally
generated models often have too few residues in the core.
Additionally, the 3DRobot-generated structures are
slightly more likely than the CASP structures to have no
core residues. Thus, the computationally generated
models not only possess cores with unphysically high
packing fraction and overlap energy, but they also, typi-
cally, have a smaller fraction of residues in the core com-
pared to X-ray crystal structures of proteins.

After investigating the packing of amino acids in pro-
tein cores, we then looked at features to describe their
hydrophobicity. Many CASP models and 3DRobot decoys
have too few residues in the core; how does this affect the
distribution of hydrophobic residues outside of the core?
We examined the degree to which the packing fractions

of all hydrophobic residues in a given protein deviate
from the expected distribution from high-resolution X-
ray crystal structures59,60 (see Figure 3a). Specifically, we
measured the Kullback–Leibler (KL) divergence (DKL)
between the overall distribution of packing fractions of
hydrophobic residues from a database of high-resolution
X-ray crystal structures, and each individual structure's
packing fraction distribution for all its hydrophobic resi-
dues in that database61 (see Supporting Information and
Figure S5 for more details). Additionally, we measured
the DKL for all computational models against the distribu-
tion from the database of high-resolution X-ray crystal
structures. We find that the distribution of packing frac-
tions of hydrophobic residues for each individual experi-
mentally observed protein structure is similar to the full
distribution, whereas the distributions for the computa-
tionally generated structures differ significantly from the
experimentally observed distribution.

Finally, we also measured the average hydrophobicity
of core residues (Figure 3b) for the computationally gen-
erated decoys and X-ray crystal structures. As there are
many hydrophobicity scales H for amino acids in the lit-
erature, we considered seven of them, normalized them
between 0 and 1, and took the average for each residue.62

We find that many decoy structures in both the CASP
and 3DRobot datasets have core residues (with
rSASA ≤ 10−3) that are less hydrophobic (with
Hcore < 0.5) than any protein X-ray crystal structure,
which typically have cores with Hcore ≳ 0.6. In the above
discussion, we examined the packing features of free-
modeling submissions to CASP, which are predicted only
from the amino acid sequence. However, we found the

FIGURE 3 Two additional packing features of high-resolution X-ray crystal structures (black circles) and free-modeling submissions to

CASP11 (blue squares), CASP12 (orange triangles), and CASP13 (red diamonds), as well as 3DRobot decoys (gray inverted triangles).

(a) Probability distribution P(DKL) of the Kullback–Leibler divergence DKL from the distribution of the packing fractions of all hydrophobic

residues in high-resolution X-ray crystal structures. (b) Probability distribution of the average hydrophocity Hcore of core residues (with

rSASA ≤10−3)
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same results for CASP structures in the template-based
modeling submissions, which are generated using given
template structures (see Figure S6 in Supporting Informa-
tion). We therefore included both free-modeling and
template-based modeling structures together in the ana-
lyses of CASP data below.

Before developing a predictive model for decoy detec-
tion, we investigated the correlation between the accu-
racy of backbone placement and correct identification of
core residues. In Figure 4, we plot the average GDT ver-
sus the fraction fcorrect of the predicted core residues
(rSASA ≤10−1) that are core residues in the target struc-
ture. This plot shows that there is a strong correlation
between the accuracy of backbone placement and correct
identification of the core residues. In particular, when
fcorrect ! 1, the average GDT ≳ 80. However, one does
not know the correct set of core residues at the time of
the prediction. Yet, the core residues should share the
features shown in Figures 2 and 3. Therefore, we should
be able to predict the GDT of a model based upon how
well the core properties and the distribution of the hydro-
phobic residues match those of high-resolution X-ray
crystal structures.

The simplest approach to test this hypothesis is to fil-
ter the decoy datasets by identifying those predictions
that fall within the range of the packing features sampled
by proteins in the X-ray crystal structure database. In
Figure 5, we plot the fraction fpass of decoy structures
within a given GDT bin whose packing features fall
within the ranges found for X-ray crystal structures for
all five of the packing features. We used the following

cutoffs: 0.5 ≤ hϕi ≤ 0.62, hURLJ/εi ≤ 102, fc ≥ 0.02,
DKL ≤ 15, and Hcore ≥ 0.5. These cutoffs capture 92% of
the X-ray crystal structures, and nearly all of the high
quality predictions in the CASP and 3DRobot decoy
datasets. If this approach provided a perfect classifier,
fpass versus GDT would be sigmoidal with a steep rise at a
given GDT threshold that separates “good” and “bad”
predictions. In the case of the 3DRobot decoys, the curve
is less linear and, for example, only 15% of 3DRobot
structures with a GDT of 40 fall within these cutoffs.
However, in CASP13, nearly 55% of predictions with a
GDT of 40 fall within the cutoffs for the X-ray crystal
structure packing features. Thus, there is an abundance
of CASP predictions with reasonably sized cores con-
taining hydrophobic residues that are well packed with
only small atomic overlaps, but possess the wrong core
residues, resulting in low values for the GDT. Decoys
with well-packed hydrophobic cores that do not contain
the correct core residues from the target do not occur fre-
quently for 3DRobot decoys, which may be expected, as
the 3DRobot algorithm perturbs an existing X-ray crystal
structure that has the correct core residues.

A common test of a classifier is to calculate the
receiver operating characteristic (ROC) curve, which
compares the false positive and true positive rates for
classifying good and bad protein predictions (defined
over a range of GDT thresholds). To do this, we first need
to report the probability that a prediction is either good
or bad. We therefore defined a decoy score by assuming a
Gaussian at the mean values of the packing features
obtained from the X-ray crystal structures with the width

FIGURE 4 The average Global Distance Test (GDT) of

Critical Assessment of protein Structure Prediction (CASP)

predictions that correctly identify each given fraction of near core

residues with rSASA ≤ 10−1, fcorrect, for CASP11 (blue squares),

CASP12 (orange triangles), CASP13 (red diamonds), and 3DRobot

(gray inverted triangles) structures. Error bars represent one SD

FIGURE 5 Fraction of decoys fpass in a Global Distance Test

(GDT) bin that are within the cutoffs for the X-ray crystal structure

packing features for submissions to CASP11 (blue squares),

CASP12 (orange triangles), and CASP13 (red diamonds) and

3DRobot structures (gray inverted triangles). The fraction of X-ray

crystal structures that fall within the packing feature cutoffs is

represented as an x (at fpass = 0.92)
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defined by the SD of the X-ray crystal structure packing
features. Evaluating the Gaussian for each of the five fea-
tures and then averaging over the features provides a
score that ranges from 0 to 1, quantifying how similar a
decoy is to a typical X-ray crystal structure. Additionally,
we need to assign classes for good and bad predictions.
There is no set cutoff of GDT; therefore, we measured the
area under the ROC curve (AUC) over a range of GDT
cutoffs (see Figure S7b in Supporting Information). A
classifier with an AUC of 0.5 offers random discrimina-
tion and a classifier with an AUC of 1 offers perfect dis-
crimination. Averaging the AUC for GDT cutoffs
between 40 and 70 resulted in average AUC values of 0.7
for CASP11, 0.67 for CASP12, 0.8 for CASP13, and 0.83
for 3DRobot, matching the expected performance based
on Figure 5.

Many decoy detection methods employ features that
evaluate side-chain placement to determine the backbone
accuracy. However, the side-chain atoms in the computa-
tional model may not be placed in the optimal conforma-
tion given the placement of the backbone. Therefore,
several decoy detection methods apply collective side-
chain repacking before evaluating decoy structures.28,29,58

Since our method involves features based on side-chain
placement, we also investigated the changes in the fea-
tures after applying collective side-chain repacking using
SCWRL,63 which has been used in other decoy detection
methods.58 Our preliminary results after applying collec-
tive side-chain repacking with SCWRL show no signifi-
cant changes in the packing features or classification
performance in differentiating good from bad computa-
tional models (see Figures S8–S10 in Supporting
Information).

While we have shown that many of the predicted
structures submitted to CASP and generated by 3DRobot
do not recapitulate the packing properties of high-
resolution protein X-ray crystal structures, and that draw-
ing ad hoc cutoffs on the packing features based on X-ray
crystal structures offers reasonable discrimination
between good and bad predictions, we have not yet devel-
oped a model that can accurately predict the GDT based
only on a protein's packing features. To do this, we devel-
oped a neural network based on the five packing-related
features in Figures 2 and 3, plus the number, N, of resi-
dues in the protein, to construct the GDT function.
(We included N to account for larger fluctuations in
packing properties that occur for small N46). We
implemented a self-normalizing feed-forward neural net-
work with six layers, dropout, and regularization.64 We
selected the logcosh error in GDT as the loss function
(for more details, see the Supporting Information). We
used submissions from CASP11, CASP12, and a database
of high-resolution X-ray crystal structures,59,60 as well as

a random sampling of 3DRobot structures (where the
number of decoys matched the number of X-ray crystal
structures) as the training data with fivefold cross valida-
tion. The GDT model generated by the neural network
was then tested on CASP13 submissions. Overall, the
training set included 21,019 structures and the test set
included 5,532 structures. Our GDT model achieved a
Pearson correlation of 0.72 ± 0.003, a Spearman correla-
tion of 0.72 ± 0.002, a Kendall Tau of 0.53 ± 0.001, and
an average absolute error of 15.2 ± 0.4 GDT. This model
was then extended to include the same features as above,
as well as the dependence of several of the features (fc,
hϕi, σ(ϕ), hURLJi, Hcore, and σ(Hcore)) on rSASA, that is,
with bins 10−3≤ rSASA <10−2 and 10−2≤ rSASA <10−1 as
well as rSASA <10−3. This new model includes 20 pack-
ing features. Training and testing the neural network in
the same manner as above resulted in slightly improved
statistics for the predicted GDT: a Pearson correlation of
0.75 ± 0.008, a Spearman correlation of 0.76 ± 0.006, a
Kendall Tau of 0.56 ± 0.005, and an average absolute
error of 12.9 ± 0.4.

For comparison, we tested five other methods
(VoroMQA,34 SBROD,27 3DCNN,58 ProQ2,28 and
ProQ329) against CASP13 (see Table 1). There are two
main approaches to decoy detection: Consensus methods
and single-ended methods. Consensus methods take a
pool of models as input and then output a score for each
model, using the consensus of the pool of models to score
the structures, whereas single-end methods take only the
single model as input to generate a score. We developed a
single-ended method, and therefore we only compared
our results to those from other single-ended methods.
Single-ended methods can be grouped into several clas-
ses: (a) methods based on statistical potentials,
(b) machine learning methods based on summarizing
features of the model structures, and (c) machine learn-
ing methods based on the atomic coordinates of the
model structures. Therefore, we tested top-ranking
methods from each of these categories: A machine learn-
ing (ridge regression) score based on backbone orienta-
tion (SBROD), a statistical potential based on Voronoi
contact areas (VoroMQA), a machine learning method
based on summarizing features (ProQ2/ProQ3), and a
machine learning method based on atomic coordinates
(3DCNN). Additionally, even though our model was
trained for regression, the predicted GDT values can be
treated as confidence of the quality of whether a decoy
falls into two classes (i.e., either good or bad). We can
therefore draw an ROC curve and calculate the AUC.
The results for the ROC AUC are plotted over a range of
GDT cutoffs that define the two classes in Figure 6a.
Overall, our model achieves similar results to the other
methods tested. For further comparison, the best absolute
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GDT loss reported in the CASP13 EMA competition was
7 GDT and the average GDT loss across all methods
was 15.57

We also tested the core/near-core packing method on
the 3DRobot decoy dataset. We split the X-ray crystal
structure database into fifths and included four-fifths of
the X-ray crystal structures and their corresponding
3DRobot structures in the training set, along with
CASP11 and CASP12 decoys, and tested on the
remaining 3DRobot structures. This procedure ensured
there were no 3DRobot structures in the test set that were
based on an X-ray crystal structure in the training set,
resulting in five training sets with 44,927 structures each
and test sets with 6,026 structures each. We then per-
formed fivefold cross validation on each of these five sets
of training data. Our core/near-core model with 20 pack-
ing features achieved similar performance on the
3DRobot dataset as it did on the CASP13 dataset with a

Pearson correlation of 0.8 ± 0.008, a Spearman correla-
tion of 0.79 ± 0.008, a Kendall Tau of 0.6 ± 0.008, and an
average absolute error of 13.7 ± 0.6. The results for
VoroMQA, SBROD, 3DCNN, ProQ2, and ProQ3 are
shown in Table 2. The ROC AUC, calculated over a range
of GDT cutoffs, is plotted in Figure 6b for each method.
For scatter plots of the predicted scores versus the true
GDT for both CASP13 and 3DRobot decoy datasets, see
Figures S13 and S14 in the Supporting Information.

Here, we focus on predicting GDT, since we want to
determine whether specifying the key properties of the
protein core is sufficient to determine its global proper-
ties. However, there are several other methods for quanti-
fying a ground truth score of the accuracy of a
computational model. In contrast to global alignment
methods, such as GDT, the Local Distance Difference
Test (LDDT)65 evaluates the local accuracy of distances
between heavy atoms in a given residue and heavy atoms

TABLE 1 Performance of all of the

tested methods on the CASP13 dataset.

To estimate an average error for

VoroMQA, SBROD, ProQ2, and ProQ3,

the predicted scores were normalized so

that they ranged from 0 to 1. The AUC

depends on the cutoff that defines a

good versus a bad prediction. Thus, the

AUC values were averaged over GDT

cutoffs from 40 to 70

Method Pearson Spearman Kendall tau Avg error AUC

Cutoffs — — — — 0.7

Core packing 0.72 0.72 0.53 15.2 0.85

Core/near-core packing 0.75 0.75 0.56 12.9 0.89

VoroMQA 0.76 0.78 0.58 17.2 0.9

SBROD 0.8 0.8 0.58 17.24 0.9

3DCNN 0.82 0.82 0.63 12 0.94

ProQ2 0.8 0.82 0.63 27.2 0.93

ProQ3 0.83 0.84 0.63 17.7 0.95

Abbreviations: AUC, area under the curve; CASP, Critical Assessment of protein Structure Pre-
diction; GDT, Global Distance Test.

FIGURE 6 Area under the receiver operating characteristic (ROC) curve (AUC) for different cutoffs of the Global Distance Test (GDT)

that define a good versus bad prediction in the (a) CASP13 and (b) 3DRobot decoy datasets for our core/near-core packing model (average

(black circles) and SD (gray ribbon) from cross-validation), VoroMQA (green X), SBROD (cyan squares), 3DCNN (blue diamonds), ProQ2

(orange inverted triangles), and ProQ3 (red triangles)
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in nearby residues, which can then be averaged to obtain
a global accuracy score. Therefore, we also tested our
method by training on GDT and predicting LDDT and
vice versa, as well as evaluated the other tested methods
against LDDT. Overall, we found very similar results
when testing on LDDT (see Table S1 in the Supporting
Information).

We also investigated the importance of each feature in
the core/near-core packing model. To do this, we randomly
permuted the values of a given feature after training. This
procedure decorrelates each structure with its feature value
to effectively remove that feature from the model. In
Figure 7, we display the Pearson correlation between the
predicted and actual GDT following feature permutations

when tested on CASP13 using the core/near-core packing
model, averaged over the fivefold cross validation. Includ-
ing the near-core (rSASA-dependent) features resulted in
very small changes in the Pearson correlation and therefore
for visualization, only the core features are plotted. The two
largest changes that result from permutation of a single fea-
ture come from permuting either the fraction of core resi-
dues or the KL divergence from the hydrophobic residue
packing fraction distribution, leading to Pearson correla-
tions of 0.62 and 0.44, respectively. Also, permuting both of
these features together leads to the largest pair-wise drop in
the Pearson correlation to 0.24. These results indicate that
the most important pair of features to include in protein
decoy detection are the fraction of core residues and pack-
ing fraction distribution of hydrophobic residues. The pack-
ing fraction and overlap energy of core residues are slightly
less important features. We believe this is because including
the wrong residue in the core will give rise to a low GDT
(Figure 4), even if the packing fraction and overlap energy
of the misplaced residues are typical of those for core resi-
dues in high-resolution protein X-ray crystal structures.

3 | DISCUSSION

We have identified several important features characteriz-
ing protein packing that allow us to distinguish protein
decoys from experimentally realizable structures. We devel-
oped a machine learning model, using a self-normalizing
feed-forward neural network on a small number of packing
features, that is able to predict the GDT of CASP13 and
3DRobot structures with high accuracy and without knowl-
edge of the target structures. In addition to developing a
highly predictive model, this work also demonstrates the
importance of the core and packing constraints for protein
structure prediction and points out potential improvements
to current predictionmethods by properlymodeling protein
cores. In terms of predicting the GDT and differentiating
between good versus bad computationally generated struc-
tures, our model achieved results ranging from slightly

TABLE 2 Performance of all of the

tested methods on the 3DRobot decoy

dataset. VoroMQA, SBROD, ProQ2, and

ProQ3 return scores that do not range

from 0 to 1. To estimate an average

error, the predicted scores were

normalized so that they fall within 0 to

1. The AUC values were averaged over

GDT cutoffs from 40 to 70

Method Pearson Spearman Kendall tau Avg error AUC

Cutoffs — — — — 0.83

Core/near-core packing 0.8 0.79 0.6 13.7 0.9

VoroMQA 0.87 0.87 0.69 14.3 0.95

SBROD 0.81 0.81 0.61 17.6 0.93

3DCNN 0.93 0.93 0.77 18 0.98

ProQ2 0.76 0.78 0.58 14.8 0.91

ProQ3 0.74 0.75 0.55 15.6 0.9

Abbreviations: AUC, area under the curve; GDT, Global Distance Test.

FIGURE 7 Pearson correlation coefficients between the

predicted and actual Global Distance Test (GDT) of CASP13

structures following permutations of single features (along the

diagonal) and pairs of features (for the off-diagonal components).

The color ranges from purple (minimum) to yellow (maximum)

corresponding to the values of Pearson correlation coefficient
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worse to as good as other methods, depending on the evalu-
ation metric and test set, using significantly fewer features.
For example, ProQ3 employs 336 features, VoroMQA and
SBROD include features for each residue in each protein,
and 3DCNN uses all of the protein coordinates as input fea-
tures. Importantly, the machine learning model we devel-
oped can be used to identify protein decoys beyond those
generated by CASP and 3DRobot. For example, molecular
dynamics (MD) simulations are often used to analyze ther-
mal fluctuations in folded proteins. To what extent do the
protein conformations sampled in such MD simulations
recapitulate the packing properties of experimentally
observed protein structures66? The model developed here
can be used in concert with MD simulations to filter out
unphysical conformations, which will have low values of
GDT, without using knowledge of the experimentally
observed protein structure. In future studies, we will
develop guided MD simulations in which we select the
frame with the largest predicted GDT from a given trajec-
tory, spawn a large number of simulations with this initial
structure and random initial velocities, run the trajectories
for a specified time, select the frame with the largest
predicted GDT, and continue this process for a given num-
ber of cycles. This simulation technique is designed to iden-
tify native-like structures, even though the experimental X-
ray crystal structure is not known. Additionally, our model
can be used to assist protein design methods by selecting
designs that are more likely to be experimentally realized.
We also showed that when the correct residues are placed
in the core, the GDT approaches 100. This result suggests
that MD simulations that constrain the correct residues to
be in the core may perform better in protein structure pre-
diction applications.

Our analysis has also identified important differences
between the CASP and 3DRobot decoys. We found that
the CASP datasets include a number of false positives,
that is, decoys with packing features that are similar to
those in X-ray crystal structures, but possess a low GDT.
However, we do not find many false positives for the
3DRobot decoy dataset. This result is emphasized in the
scatter plots in Figure S14 in the Supporting Information,
where there are few structures with a low GDT, but are
predicted to be a good structure by any method. Thus,
the 3DRobot algorithm does not tend to create well-
packed cores with the wrong core residues. Additionally,
we note that the accuracy of all methods tested differs
when tested on the two computationally generated
decoys datasets. For example, VoroMQA, SBROD,
3DCNN, and our packing method all performed better on
the 3DRobot test set than on the CASP13 test set. In con-
trast, for ProQ2 and ProQ3, the performance decreased
when testing against 3DRobot-generated decoys com-
pared to CASP decoys. Thus, future studies are necessary

to understand the important differences between decoy
datasets and also understand why certain methods per-
form differently on different decoy datasets.

We expect future improvements to our basic model
will increase its accuracy. For example, we have shown
that the identification of core residues is one of the most
important aspects for determining a predicted structure's
accuracy. Thus, we will also implement recurrent neural
networks to predict the rSASA values for each resi-
due.67,68 This model can then be concatenated with the
model developed here. Additionally, machine learning
methods can be used to predict the particular fc for each
amino acid sequence to estimate the difference, Δfc,
between the prediction and the actual value. In future
studies, we will employ local machine learning and data
representation techniques, such as graph neural net-
works, to assess the structure of each residue individually
in computational models. It will also be informative to
study in greater depth cases where there are large devia-
tions in GDT. For example, investigating examples of
high-predicted GDT, but low actual GDT (or vice versa)
will provide key insights into native protein structures.

4 | MATERIALS AND METHODS

4.1 | Datasets

In the main text, we show results for the free-modeling
CASP submissions. The corresponding results for
template-based modeling data are provided in the
Supporting Information (see Figure S6). For the decoy
datasets, we examined CASP11 (2014),69 CASP12
(2016),70 and CASP13 (2018)14 downloaded from the
predictioncenter.org data archive. Each target in the com-
petitions has a corresponding experimental structure. We
selected targets with an X-ray crystal structure under a
resolution cutoff. A cutoff of ≤2.0 Å was used in the cases
of CASP11 and CASP12; however, a cutoff of ≤2.7 Å was
used for CASP13, as very few protein targets fell under
≤2.0 Å. These cutoffs resulted in datasets of 6,576 predic-
tions based on 22 target proteins for CASP11, 4,197 pre-
dictions based on 12 target proteins for CASP12, and
5,532 predictions based on 14 target proteins for CASP13.
For the X-ray crystal structure dataset, we compiled a
dataset of 5,123 X-ray crystal structures culled from the
PDB using PISCES59,60 with resolution ≤1.8 Å, a
sequence identity cutoff of 20%, an R-factor cutoff of 0.25,
and lengths greater than 75 residues. The packing fea-
tures of the targets from all three CASP datasets fall
within the range of the features from structures in the
high-resolution X-ray crystal structure database (see Fig-
ures S3 and S4 in Supporting Information).
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While the CASP submissions represent decoys gener-
ated from state-of-the-art folding algorithms, and thus
offer the most important application of decoy detection
methods, there are also algorithms designed to create pro-
tein decoys from a reference structure. These methods are
helpful in decoy detection as they offer an independent
dataset that has the same diversity in target sequences and
structures as the X-ray crystal structure dataset. As
3DRobot only takes a single chain as input, we only gener-
ated 3DRobot decoys from X-ray crystal structures with a
single chain. We generated �14 decoy structures for each
X-ray crystal structure with a constraint on the Cα RMSD
≤10 Å.36 The 3DRobot algorithm generates decoys from a
reference structure by first threading the structure through
a PDB library using TM-align71 and then running Monte
Carlo Replica Exchange simulation using the I-Tasser
Protocol,72 while optimizing for overall compactness and
hydrogen bonding in the structure. We obtained a dataset
of 30,569 3DRobot decoys based on 2,243 target proteins.
The GDT for both the CASP and 3DRobot decoy datasets
was measured using the local–global alignment method.56

The LDDT for both CASP and 3DRobot decoy datasets
was measured using the OpenStructure framework.65 See
https://github.com/agrigas115/core_packing_score for a
full list of all structures used in this study. Hydrogens were
added to all structures using Reduce.73

4.2 | rSASA

To identify core residues, we measured each residue's sol-
vent accessible surface area (SASA). To calculate SASA,
we use the Naccess software package,74 which imple-
ments an algorithm originally proposed by Lee and
Richards.75 To normalize the SASA, we take the ratio of
the SASA within the context of the protein (SASAcontext)
and the SASA of the same residue extracted from the pro-
tein structure as a dipeptide (Gly-X-Gly) with the same
backbone and side-chain dihedral angles:

rSASA=
SASAcontext

SASAdipeptide
: ð2Þ

Core residues are classified as those that have
rSASA ≤ 10−3. In Figure 4, “near-core” residues are those
with rSASA ≤ 10−1.

4.3 | Packing fraction

A characteristic measure of the packing efficiency of a
system is the packing fraction. The packing fraction of
residue μ is

ϕμ =
νμ
Vμ

, ð3Þ

where νμ is the nonoverlapping volume of residue μ and
Vμ is the volume of the Voronoi cell surrounding residue
μ. The Voronoi cell represents the local free space around
the residue. We calculate the nonoverlapping residue vol-
ume with a grid-based volume estimation. To calculate
the Voronoi tessellation for a protein structure, we use
the surface Voronoi tessellation, which defines a Voronoi
cell as the region of space in a given system that is closer
to the bounding surface of the residue than to the
bounding surface of any other residue in the system. We
calculate the surface Voronoi tessellations using the Pom-
elo software package.76 This software approximates the
bounding surfaces of each residue by triangulating points
on the residue surfaces. We find that using �400 points
per atom, or �6, 400 surface points per residue, gives an
accurate representation of the Voronoi cells and the
results do not change if more surface points are included.
Large overlaps between particles can make it difficult to
calculate Voronoi tessellations for collections of non-
spherical particles. Therefore, we compared the core
packing fraction for X-ray crystal structures and compu-
tational decoys using the surface as well as the radical
Voronoi tessellation.77 We found that for X-ray crystal
structures, the packing fractions obtained using the two
methods deviate by ≲1%. While there are larger devia-
tions in the packing fraction between the two methods
for the computational models, the deviations are less
than 6%, and the volume of the Voronoi cells is not
double-counted (see Figure S11 in Supporting
Information).

4.4 | Other decoy detection methods

To compare the performance of our model that focuses
on packing features to other models, we implemented
several other single-ended decoy detection methods.
VoroMQA34 is a statistical potential based on Voronoi
contact areas (Accessed: http://bioinformatics.ibt.lt/
wtsam/voromqa/help/standalone), SBROD27 is a
machine learning score (ridge regression) on backbone
orientation (Accessed: https://gitlab.inria.fr/grudinin/
sbrod), 3DCNN58 is a Convolutional Neural Network that
uses extracted voxels based on atomic coordinates as fea-
tures (Accessed: https://github.com/ishidalab-titech/
3DCNN_MQA), and ProQ228 and ProQ329 are Support
Vector Machine methods that use the secondary struc-
ture, solvent accessibility, Rosetta energy terms, and
atomic coordinates as features (Accessed: https://
bitbucket.org/ElofssonLab/proq3/src/master/).
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SUPPORTING INFORMATION
Additional supporting information may be found online
in the Supporting Information section at the end of this
article.

How to cite this article: Grigas AT, Mei Z,
Treado JD, Levine ZA, Regan L, O'Hern CS. Using
physical features of protein core packing to
distinguish real proteins from decoys. Protein
Science. 2020;29:1931–1944. https://doi.org/10.
1002/pro.3914

1944 GRIGAS ET AL.

https://doi.org/10.1002/pro.3914
https://doi.org/10.1002/pro.3914

	Using physical features of protein core packing to distinguish real proteins from decoys
	1  INTRODUCTION
	2  RESULTS
	3  DISCUSSION
	4  MATERIALS AND METHODS
	4.1  Datasets
	4.2  rSASA
	4.3  Packing fraction
	4.4  Other decoy detection methods

	  AUTHOR CONTRIBUTIONS
	REFERENCES


