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Under an externally applied load, granular packings form force chain networks that depend on, among
other things, the contact network and stiffness of the grains. In this work, we investigate packings of
variable stiffness particles, where we can direct the force chains by changing the stiffness of individual
particles within the packing on demand. Each variable stiffness particle is made of a silicone shell
that encapsulates a core made of a low-melting point metallic alloy (Field’s metal). By sending
an electric current through a co-located copper heater, the Field’s metal internal to each particle
can be melted via Joule heating, which causes softening of the particle. As the particle cools to
room temperature, the alloy solidifies and the particle recovers its original stiffness. To optimize
the mechanical response of granular packings containing both soft and stiff particles, we employ an
evolutionary algorithm coupled with a discrete element method simulation to predict the stiffness
patterns that will yield a particular force output on the assembly boundary. The predicted stiffness
patterns were built in experiments using a 2D assembly of variable stiffness particles and the force
outputs at different points of the assembly boundary were measured using photoelasticity. This
result is a first step towards making robotic granular metamaterials that can dynamically adapt their
mechanical properties such as force transmission, elastic moduli, and frequency response on demand.

1 INTRODUCTION
Mechanical metamaterials exploit mechanical inputs, such as
forces, pressures, or waves, to achieve programmable shape
transformations, force propagation, and stiffness1–3. Many cur-
rent mechanical metamaterial approaches focus on continuum
solids or linkages/mechanisms with a fixed structure and there-
fore demonstrate only fixed responses. We are interested in me-
chanical metamaterials that can exhibit increased dynamic plas-
ticity, enabling adaptation to different environmental inputs or
task demands by reconfiguring their physical structure. Granu-
lar metamaterials—consisting of discrete particles—offer an ad-
vantageous platform for such dynamic programmability, as indi-
vidual particle properties can be tuned to achieve different bulk
responses4. As an example, one can imagine a granular meta-
material that uses individual particle adaptations to route forces
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around a shielded part of the material so that it can maintain
function after damage (Fig. 1).

Many groups have developed granular metamaterials using
grains that are enclosed within stretchable elastic skins and con-
nected to a vacuum source5–8 or shear9–11 to induce jamming
transitions in these materials. When unjammed, the bulk ma-
terial is compliant, and when jammed, the bulk material can
achieve the stiffness of the hard grains. Prior studies have pro-
duced changes in stiffness between the compliant and jammed
states on the order of 50×, and this jamming technology has been
applied to soft robotics12–16, surgical devices17,18, flexible air-
foils19, and programmable aggregate architecture20. However,
granular metamaterials most often incorporate ordered assem-
blies, as it is much more difficult to predict the material prop-
erties of disordered granular assemblies. Ordered granular meta-
materials have been used for vibration mitigation21–25, acoustic
switches26,27, energy absorption28, modulus and density tun-
ing29,30, and non-reciprocal behaviors31. Most of these prior
studies have confined their approach to granular systems with
inert, rigid grains. Herein, we attempt to expand the dimension-
ality of the parameter space by including variable stiffness parti-
cles, thereby enabling access to a wider set of possible material
responses.

We previously developed Discrete Element Method (DEM) sim-

Journal Name, [year], [vol.],1–10 | 1



Fig. 1 Schematic of a granular packing made of variable stiffness (VS) particles. (Left) An original jammed granular packing. (Middle) We wish to
shield a particle in the middle of the packing from any forces. A damaged particle might need to be shielded if it cannot withstand loads. (Right) By
changing the stiffness of some particles, we can redirect the force network to avoid the shielded area, allowing the system to withstand loads. Soft
and stiff particles are depicted in light and dark green, respectively.

ulations to study the vibrational response of jammed packings
composed of binary mixtures of spherical particles of the same
size, but different masses. In a recent study27, we showed that
2D and 3D granular assemblies can be used to either transmit or
block vibrations with particular frequencies, thereby creating a
mechanical transistor. Expanding upon that result, we then ap-
plied Evolutionary Algorithms (EA) to the DEM simulation to cre-
ate more complex logic gates32–34. Using the same granular sys-
tem, in this work we study the transmission of force chains. By
switching the stiffness of individual particles, we achieve dynamic
modification of the force distribution through a packing in both
simulation and reality.

In general, granular packings are a collection of macroscopic
particles that are densely packed together forming a contact net-
work through which forces are distributed. In frictionless pack-
ings, each grain exerts normal forces at its contacts to prevent the
packing from collapsing. Though the contact network is known to
be easily perturbed by applying a large external load35–39, a large
fraction of the load is often carried by a small fraction of parti-
cles, resulting in the emergence of stable force chains40. Due to
the large number of variables present in a granular system, force
chain dynamics are challenging to study analytically and there-
fore have been studied through contact dynamics simulations41,
DEM42,43, and models based on statistical mechanics44. Though
the unpredictable nature of the force chains is largely a function
of the disordered contact network, individual particle properties,
such as stiffness or density, are known to influence how forces
propagate through the assembly45.

Our instantiation of a granular metamaterial with adaptable
force chains is realized through an assembly of variable stiffness
(VS) particles. While there are many potential approaches to par-
ticle stiffness modulation, we adapt the approach previously used
by Pashine et al.46 to make variable stiffness bonds in an allosteric
metamaterial. Our VS particles are fabricated by incorporating
Field’s metal cores in soft silicone shells. Field’s metal is an alloy
of indium, bismuth, and tin with a low melting point of 62◦C.
While solid, Field’s metal has a Young’s modulus of 9.25GPa47,

which reduces to almost zero at the melting temperature (lim-
ited by the incompressibility of the liquid). Correspondingly, a
VS particle possesses a high stiffness when the Field’s metal core
is solid and a low stiffness when the core is liquid. Using DEM
simulations combined with evolutionary algorithms, we identify
configurations that optimize specific force outputs on the assem-
bly boundary. We then construct these configurations into ex-
periment and show that we can switch the stiffness of individual
particles to adapt the packing’s force chain networks on demand.
Finally, we augment our multi-objective optimization to priori-
tize power efficiency with the assumption that 1) the particles
consume power when softened, as is the case in our present in-
stantiation, or 2) the particles consume power when switching
stiffness, which may be the case in a different instantiation. In
all cases, our simulation-to-reality gap is relatively small. Overall,
this work represents an important step towards dynamic granu-
lar metamaterials that can adapt their properties in response to
changing environments or task demands.

2 Methods

To controllably modify the force network of a packing, we cre-
ated a pipeline that takes a set of objectives (e.g., maximize the
forces on specific particles) and hardware constraints as inputs,
and outputs the configuration of low/high stiffness particles cor-
responding to the objective. Our pipeline has several preamble
steps. First, we must have physical VS particles to characterize
their relevant contact mechanics and corresponding interparticle
force law. Second, we embed the measured particle physics into
our DEM particle simulator, such that the simulator is as repre-
sentative as possible of the physical hardware. With an accurate
simulator in place, we can then begin to define objectives and
employ a multi-objective optimization to design candidate parti-
cle assembly designs, as shown in Fig. 2.

The inverse design problem—designing particle configurations
to match a desired force chain output—would be an arduous
manual task. Without a systematic way of arriving at a certain
force network, we would have to evaluate an exponentially large
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Fig. 2 Simulation to reality (sim2real) pipeline description. (a) We start with a simulation that has been tuned to match our hardware (VS particle)
data. We then define optimization objectives for our packing alongside hardware constraints. (b) Using multi-objective optimization, we can find the
packing that best satisfies our objectives. The algorithm starts with a set of randomly generated configurations in the first generation (Gen 0). During
the optimization process, configurations that better satisfy the objective(s) are replaced in the solution set (Gen n). (c). We can realize this packing
in hardware (d) and use the outcome to define additional hardware constraints that will improve the match between simulations and experiments.

number of configurations to decide which configuration is closest
to the desired network. Finding analytical solutions for arbitrar-
ily complicated packings is unfeasible and therefore much more
suited to be done in simulations. Thus, we use a multi-objective
optimization algorithm to search for solutions that satisfy our ob-
jectives as well as respect any hardware constraints set by the
limitations of our experiments. We can then make the materi-
als obtained from our optimization pipeline and evaluate their
force networks, ensuring that the objectives have been met. By
comparing the results obtained in experiments to the results from
simulations, we can identify important missing properties in our
simulation, thereby closing the loop.

2.1 Experimental Design

In the sections below, we describe the design and fabrication of
the VS particles and how force networks are evaluated in VS par-
ticle packings.

2.1.1 Variable Stiffness Particles

We make the variable stiffness (VS) particles using Field’s metal,
an alloy of bismuth, indium, and tin with a melting temperature
of 62◦. We encapsulate a solid cylinder of Field’s metal inside a
soft silicone shell made from Smooth-on Dragonskin™ 10 (Fig-
ure 3A). We place a small copper heater inside the shell that al-
lows us to melt the Field’s metal via Joule heating. The high-
resistance copper heater is separated from the Field’s metal by
a thin layer of silicone to avoid shorting the heater. By running
current (≈1 A) through the heater we can melt the Field’s metal
inside, thereby inducing a substantial change in stiffness.

Next, we measure the interparticle interactions between our VS
particles. Consider two VS particles placed in contact with their
axes parallel to each other. The interparticle force law for two
cylindrical particles with Hertzian interactions is described by48:

d = F̄(V )

(
1+ ln

( 4L2

V F̄D

))
(1)

where d is the total deformation of the particles, F̄ is the nor-
mal force per unit length between the particles, and V =

2(1−ν2)
πE ,

a common measure of the modulus of a two-particle system.
Therein, E is the Young’s Modulus of the material, ν is the Pois-
son’s ratio of the material, D is the diameter of the particles, and
L is the length of the particles (cylinders).

We obtain the value of V in the above equation by compress-
ing single VS particles between two steel surfaces using a ma-
terial testing system (Instron) and fitting the resulting force-
displacement curve to equation 1 (Figure 3B). The VS parti-
cles are much softer than the steel surface we compress them on
(Vsteel << Vparticles). Thus, we can plot the particle compressive
modulus (= 2

πV = E
1−ν2 ) against temperature to show the stiffness

phase transition obtained at temperatures higher than T > 62◦C.

2.1.2 Particle Assembly

We assemble the VS particles in a triangular lattice where each
particle can be actuated (heated) individually using a micro-
controller (Arduino™). However, heat from actuated particles
eventually dissipates into the neighboring non-actuated particles,
causing thermal crosstalk. To mitigate thermal crosstalk, we es-
tablished limits on the actuation power of each VS particle (see
ESI† S1).

We apply a uniform load to the top layer of particles using the
same materials testing system used to characterize the VS parti-
cles. The force propagates through the packing to create a partic-
ular force network that is a function of the positions of the parti-
cles and their individual stiffnesses. Based on the location of the
stiff and soft particles, the force travels differently to the bottom
row of particles, exerting different amounts of force at different

Journal Name, [year], [vol.],1–10 | 3



Fig. 3 Variable stiffness (VS) particle characterization. (A) Rendering of a VS particle next to its real counterpart. (B) Force-displacement plot for
VS particles in their soft and stiff states, with Hertzian fits plotted as dashed lines. (C) Modulus E

1−ν2 plotted as a function of temperature. The
particle modulus decreases above the melting temperature of Field’s metal. The compressive modulus in its heated (soft) state is approximately 2.5×
smaller than in the cooled (stiff) state.

locations on the assembly boundary.
The assembly boundary (or wall) is made of a photoelastic ma-

terial (ClearFlex™ 95) placed between two circular-crossed polar-
izers. We measure the output forces on the boundary by analyz-
ing the stress-induced birefringence39,49,50. When the boundary
is under no stress, no light passes through the polarizers. Any
stress on the boundary rotates the direction of the incoming elec-
tric field, allowing it to pass through the polarizer and visually
present as a fringe pattern. Because different wavelengths of light
will form different patterns at the photoelastic wall, we use a filter
to only observe one wavelength of light (530 nm).

To measure the forces on the boundary, we consider the inten-
sity image that will be formed by the application of a point force
on an elastic half-space through a polariscope51,52:

Iout = I2
0 sin2 πtK

λ
(σ1 −σ2), (2)

where t is the thickness of the material, K is the material-
dependent stress-optic coefficient, λ is the wavelength of light
used, and σ1 −σ2 is the principle stress difference, which in our
system corresponds to the normal stress measured radially out-
ward from the particle-wall contact. Therefore,

σ1 −σ2 =
∣∣∣ 2
πr

F(cosφsinθ + sinφcosθ)
∣∣∣, (3)

where r and θ denote the distance from the point force and the
angle to the x-axis, respectively, F is the total applied force per
unit length, and φ determines the angle of the force in the normal
and tangential directions.

Using Equations 2 and 3, we can construct an image for a given
input force on a half-plane. By comparing this image to our ex-
perimentally obtained image, we can fit our force using minimum
chi-square least square estimation51. We note that it is difficult to
extract an exact value for K, and we instead fit our curve to the
factor 2tKF , which results in a measure of F up to a normalization
constant (see ESI† S2).

2.2 DEM simulations

We employ a discrete element method (DEM) simulation that
mimics the physical setup used in the experiment. A collection of

two-dimensional, monodisperse, and frictionless particles is as-
sembled in a triangular lattice. We apply a constant force from
the top boundary onto the packing. Each particle interacts with
its neighbors and the wall, assuming a purely repulsive poten-
tial with a Hertzian pressure distribution, as in Equation 1. We
update each particle’s position using modified velocity Verlet in-
tegration scheme assuming a constant damping coefficient and
end the simulation once the net force on all particles < 10−10N.
Noting which of our disks are in contact allows us to construct the
network of inter-particle contacts, as shown in Figure 2c.

There are differences between simulation and experiment. For
example, the simulation does not account for substrate and in-
terparticle friction. We mitigate these effects by applying a thin
layer of cornstarch over each of the variable stiffness particles in
the physical experiment, thus decreasing the effective friction in
our system. Still, slight inconsistencies between the particle sizes
lead to polydispersity in the experiment, while the simulation as-
sumes monodispersity. Further discrepancies between the real
and simulated particle deformations will contribute to imperfect
matching between simulation and reality.

2.3 Optimization Setup

Evolutionary Algorithms (EAs) are a class of population-based
gradient-free optimization methods that are inspired by natural
evolution. The algorithm starts with a population of randomly
generated solutions. At each subsequent step, until reaching the
stopping criteria, the fittest solutions are chosen to reproduce and
survive to the next generation. EAs have been useful in a myriad
of problems in materials science53, robotics54, and more practi-
cal, scheduling and data retrieval applications55. In this work,
we used EAs to find an optimal configuration of soft and stiff par-
ticles to reach a desired contact network or force output on the
particle assembly boundary.

The EA has multiple components including genome represen-
tation, variation operators, and fitness function. We used a direct
encoding scheme for the genome, where the genotype is a binary
string representing the placement of soft and stiff particles on a
triangular grid. Since our objective is to maximize the amount
of force specific particles exert on the bottom assembly wall, we
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use the force as the fitness value when evaluating a configuration
during the evolutionary optimization process.

3 Results

3.1 Feasibility check: maximizing force on a single particle

To verify that the simulation uses the appropriate force law and
that the EA generates reasonable solutions, we initially choose a
simple problem with a predictable outcome. We searched for the
optimal configuration of soft/stiff particles that takes a uniform
input force on the top row of particles and maximizes the output
force by the middle particle in the bottom row on the bottom wall
(Fig. 4A).

During the optimization, each candidate solution is evaluated
by measuring the force the bottom middle particle applies on the
bottom wall at a constant input force of 1 (arbitrary units). Using
Age-Fitness Pareto Optimization (AFPO)56 we can find a config-
uration of particles where this objective is maximized. AFPO was
developed to solve the premature convergence problem where
the algorithm fails to make any progress after converging to a lo-
cal optimum. The algorithm works by tracking the age of each
individual in the population and allowing the newly added indi-
viduals to survive to the next generation before being dominated
by the more fitted solutions. At the last generation of the op-
timization, the algorithm converges to a set of non-dominated
Pareto optimal solutions. AFPO was run with a population size
of 50 for 250 generations and a total of 3 independent trials were
performed each starting with a population of randomly gener-
ated solutions. To achieve more variation across populations, we
implement a bit-flip mutation that randomly switches the stiff-
ness of a grain with a probability of 0.05 (no cross-over operator
was implemented). As we can see in Fig. 4B, the best configura-
tion emerges after only 100 generations. In the histogram plotted
along the y-axis, we find that the best solution found by EA out-
performs the result of a random search with 5000 configurations.

As shown in Fig. 4C, the resulting configuration contains two
lines of stiff particles that stretch from the top wall to the bottom
wall. This solution is intuitive, as higher forces will be carried
by stiffer particles. Thus, arranging stiff particles such that they
form a path from the input to the output will result in a large
force carried to the bottom particle.

To validate the result obtained by the EA, we recreate the pat-
tern of particles in experiments and characterize the output force
on the wall as a function of the input force. Additionally, we
make two randomly generated patterns in experiments and com-
pare the force outputs to the best-performing solution (Fig. 4D).
We can take the slope of the output vs. input force curve to be our
normalized force output. We can obtain the same metric in sim-
ulation by dividing our output by the input force. This gives us a
unitless number to use as comparison between different configu-
rations in both experiments and simulations. As shown in Fig. 4E,
the best-performing configuration significantly outperforms the
two random configurations.

We observe differences between the simulated and real force
output results: The experiment force output is higher than the
predicted force output in DEM simulation. This difference be-

tween simulation and experiment could be due to a variety of
possible factors. Our particles are a composite of two materials
that have a complicated non-linear elastic behavior which, in the
simulation, is approximated to a Hertzian force response. Addi-
tionally, our DEM simulations does not include important factors
such as substrate friction, polydispersity, or particle deformation.
These factors lead to quantitative differences between the simu-
lations and experimental force values. Despite these quantitative
differences, we observe that the force outputs between the exper-
iment and simulation are in qualitative agreement. A more care-
ful matching between simulations and experiments might give in-
sight into the relevance of each of these factors, which we hope
to understand in detail in future studies.

3.2 Complex cases: maximizing forces on multiple particles
Having confirmed the accuracy of the simulation and the predic-
tive ability of the EA, we apply the pipeline to objectives with
non-intuitive solutions. Furthermore, using our individually ad-
dressable VS particles, we can search for pairs of solutions. That
is, to adapt the packing from one distribution of forces to another,
we can adapt the individual particle stiffnesses. To do the same
with inert particles, one would need to create a packing in one
configuration, then undo it and create a new packing in a second
configuration. With our VS particles, we can change the contact
network without deconstructing the packing.

To test the efficacy of our optimization pipeline towards a solu-
tion pair, we first define the two objective configurations:

• Configuration 1 (C1) is better than random at maximizing
the forces applied by the odd particles on the bottom wall.

• Configuration 2 (C2) is better than random at maximizing
the forces applied by the even particles on the bottom wall.

For each of these configurations, we assign an appropriate algo-
rithmic objective. To find configuration C1, we want to maximize
O1 = F1F3F5, where Fi stands for the force the i-th particle exerts
on the bottom wall (counting from left to right). Similarly, to find
C2 we wish to maximize O2 = F2F4.

3.2.1 Optimal solutions with two objectives

To solve the multi-objective optimization problem of maximizing
forces in configurations {C1,C2}, we use a popular and powerful
EA called Non-dominated Sorting Genetic Algorithm II (NSGA-
II)57. Here, each solution consists of two configurations, each
with 23 particles, that are either soft or stiff. The parameter space
of each solution, or the genotype is a binary string of length 46
that contains the stiffness information of our two configurations.
Our variation operator applies bit-flip mutation with probability
0.8 or one-point cross-over with probability 0.2.

The solutions in the Pareto front set at the end of the optimiza-
tion loop are shown in Fig. 5A. We refer to these solutions as C0

1
and C0

2 . For the solution that maximizes the force applied by the
odd particles, C0

1 , we find lines of stiff particles going from the
force input on the top row of particles to the output sites, remi-
niscent of the type of pattern that formed in our prior example.
Similarly, for the solution that maximizes the force applied by the
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Fig. 4 Optimization assessment. (A) Schematic of the defined objective: maximize the force output from the middle particle in the bottom row
given a uniform force input onto the top row. (B) Fitness of the best solution found and the average fitness of the whole population, as a function
of evolution time (number of generations). Results are averaged over three independent trials. The result of the evolutionary algorithm outperforms
a random search of over 5000 configurations (left). (C) The best solution found by the evolutionary algorithm. Soft and stiff particles are plotted
in light and dark green, respectively. (D) Experimental realization: The first column shows three configurations with the predicted contact network
in simulation. The second column shows thermal images of the experimental packing. The third column shows the fringe patterns formed on the
photoelastic boundary. The three rows represent three different configurations. (E) Output force on the bottom wall under the middle particle as a
function of input force on the top row of particles, for each of the configurations shown in (D). Error clouds represent ±1 standard deviation across
three trials. The slope (S) of a linear fit is written adjacent to the curves.

even particles, C0
2 , we observe that the assembly side walls reflect

the force back into the packing. We can switch between these two
configurations using our VS particles.

We then translated C0
1 and C0

2 into physical experiments. By
least-squares fitting of the photo-elastic pattern on the bottom
boundary of the assembly, we find the resulting force distribution
for a given input force on the top wall. Similar to Figure 4E, we
take the input force versus output force for each of the particles
on the bottom boundary. In Figure 5B, we plot the slope of that
curve as our normalized force measurement for all the bottom
particles.

The plots in Figure 5B show the predicted normalized force
by each particle on the bottom boundary in simulations, as well
as the corresponding experimental measurements. We find that
the resulting force distribution is very similar to the distribution
predicted by our simulations. Odd particles in C0

1 and even par-
ticles in C0

2 have a higher force output than the other particles
on the bottom boundary. While we observe a high level of agree-
ment between experiment and simulation, the output forces in
experiments (O0

1 and O0
2) are higher than those predicted by the

simulation. A continuous transition from packing C0
1 to C0

2 can be
found in Movie S1 (ESI †).

3.2.2 Optimal solutions with three objectives

3.2.2.1 Minimizing soft particles. Our VS particle instantia-
tion consumes energy to soften and remain softened. That is, the
co-located heater must keep the embedded FM above its melt-
ing temperature for a particle to exhibit softening. Therefore, we
exercised our optimization pipeline using the same two config-
urations and objectives {C1,C2;O1,O2} with an added objective:
we aim to minimize the total number of soft particles. We formal-
ize this third objective as: O3 = (1+NC1)× (1+NC2), where NC1

and NC2 are the number of soft particles in configurations C1 and
C2, respectively. Minimizing the total number of soft particles in
either configuration corresponds to a minimized energy expendi-
ture, while still fulfilling O1 and O2.

We ran the optimization using NSGA-II with a population size
of 100 for 800 generation in 5 independent trials. The algorithm
converged to a set of non-dominated Pareto optimal solutions.
The best solution was selected by ranking the Pareto-optimal so-
lutions using the Technique for Order of Preference by Similarity
to Ideal Solution (TOPSIS) method58.

For the first configuration (C1), we find the best solution that
maximizes {O1,O2} and minimizes O3, is the same as the solution
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Fig. 5 Multi-objective optimization assessment. (A) A two-objective optimization. Solution sets were evolved to maximize forces on the odd particles
(O1) and even particles (O2) in the bottom row. Pareto Front of the last generation of the evolutionary algorithm is plotted with random searches
plotted adjacent to their axes. (B) The solution plotted in red is shown schematically on the right and defined as {C0

1 , C0
2}. Underneath the {C0

1 , C0
2}

schematics are the corresponding normalized force measurements from the experiment (blue) and simulation (orange). (C, D) Maximizing O1 and
O2, while minimizing O3, which is the number of particles that switch stiffness between configurations 1 and 2. The two-dimensional Pareto Front is
shown by plotting O3 versus O1O2. (E, F) Maximizing O1 and O2, while minimizing O4, which is the number of soft particles in configurations 1 and
2. The two-dimensional Pareto Front is shown by plotting O4 versus O1O2

that only maximizes {O1,O2} (C0
1). The second configuration,

(C2) has many fewer soft particles compared to C0
2 (Figure 5B).

This result indicates an algorithmic preference for minimizing the
number of soft particles in the second configuration. We visualize
the resulting Pareto Front in two dimensions by plotting O3 vs the
product O1 ×O2. Although all solutions in the Pareto Front have
gone through the selection process and are therefore optimized,
we pick the configurations with the desired trade-off between the

multiple objectives to translate to experiments using TOPSIS.

3.2.2.2 Minimizing particle stiffness switches. With a dif-
ferent VS particle instantiation, it could be that energy is con-
sumed to switch the stiffness of the particle, but not to hold it
in either a softened or stiffened state. In that case, energy min-
imization would be the distance between two configurations in
the solution space. We therefore introduce a corresponding ob-
jective: we aim to minimize the number of particles that switch
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stiffness between C1 and C2. Formally, this fourth objective is
defined as: O4 = NC1→C2 , which is the number of particles that
switch stiffness between the configurations. We then re-engage
our multi-objective optimization while maximizing {O1,O2} and
minimizing O4.

The Pareto front is shown for O4 vs the product O1×O2 (Figure
5E). One “best” optimized solution set was selected using TOPSIS
for this multi-objective optimization, and is shown in Fig. 5F. In
this solution, the second configuration, C2 is the same as the ear-
lier solution C0

2 . To satisfy the additional constraint imposed by
O4, the only stiffness switches between C1 and C2 occur in the
bottom row of particles. Intuitively, the particles that are most
important in determining the forces on the bottom boundary are
the particles on the bottom wall. Translating this solution set to
experiments, we observe qualitative agreement between simula-
tion and experiment.

4 Conclusions
The heterogeneity of a force network in a granular material is tied
to the disordered nature of the constituent contacts. In this work,
we showed variability and controllability of the force network us-
ing particle stiffness variations, rather than positional changes.
Variable stiffness particles were realized by embedding a Field’s
metal core in silicone particles. By running a current through a re-
sistive heater co-located with the low-melting-temperature alloy
core, we achieved a drop in stiffness (∼2.5×) when the particles
are heated above the melting temperature of Field’s metal. Al-
though this stiffness change is substantial and has allowed us to
qualitatively measure differences in force networks, an optimized
particle design could induce a more dramatic particle stiffness ra-
tio and thus more dramatic changes to the force networks in a VS
particle packing.

To efficiently sample force networks, we used a discrete
element-based simulation that reasonably captures the force law
between particles, which we empirically derived. However, the
simulator is a simplified model of the physics in the experiment.
Our experimental system consistently exhibits a stronger response
than what the simulation predicted, which inspires us to build
more realistic simulations to understand the relevance of various
design parameters in our system. Increased simulation-to-reality
matching would improve design outcomes and potentially allow
us to discover additional physical mechanisms to control force
networks. Finally, although we have only chosen to replicate one
solution on the Pareto-Front using the TOPSIS selection criteria,
every solution on the Pareto-Front is a valid and optimized solu-
tion. In future studies, we will inspect the other solutions on the
Pareto Front and evaluate their advantages and shortcomings for
different applications.

Finally, our results serve as a proof-of-concept for primitive
logic in granular materials. Instilling intelligence in granular ma-
terials through stiffness changes allows the material to completely
change its response. Although no traditional form of logic has
been shown in this system, we believe that the framework pre-
sented in this work serves as a universal tool that shows how to
optimize a material to perform desirably. Previous works have
shown logic capabilities within granular materials59, but they

have relied only on the embedded capabilities of the granular ma-
terial rather than optimizing for a desired response. Similarly, al-
though there have been several numerical studies at making gran-
ular logic using this fundamental principle60,61, our results rep-
resent a first experimental instantiation. We intend to continue
building upon the results herein to realize granular metamateri-
als that can adapt their property states and force distributions to
changing use cases and environments, as well as adapt their logic
gates for next-generation mechanical computation.
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