
PAPER www.rsc.org/softmatter | Soft Matter
A comparison of jamming behavior in systems composed of dimer- and
ellipse-shaped particles†

Carl F. Schreck,a Ning Xub and Corey S. O’Hernac

Received 18th January 2010, Accepted 25th March 2010

First published as an Advance Article on the web 17th May 2010

DOI: 10.1039/c001085e
We compare the structural and mechanical properties of static packings composed of frictionless

convex (ellipses) and concave (rigid dimers) particles in two dimensions. We employ numerical

simulations to generate static packings and measure the shear stress in response to applied simple shear

strain as a function of the aspect ratio and amount of compression. We find that the behavior near

jamming is significantly different for ellipses and dimers even though both shapes are roughly

characterized by the aspect ratio and possess the same number of translational and rotational degrees

of freedom per particle. For example, we find that ellipse packings are hypostatic (not isostatic as found

for dimers), display novel power-law scaling of the static linear shear modulus and contact number with

the amount of compression, and possess stress-strain relations that are qualitatively different from that

for dimers. Thus, we observe that important macroscopic properties of static packings of anisotropic

particles can depend on the microscale geometrical features of individual particles.
1 Introduction

Significant progress has been made in understanding the

jamming transition that occurs in collections of frictionless

spherical particles with purely repulsive short-range interactions,

where systems transform from liquid- to solid-like states as

a function of increasing packing fraction or decreasing applied

shear stress.1–3 Key findings include the power-law scaling of the

static shear modulus with packing fraction above the onset of

jamming,4,5 the identification of a growing lengthscale as the

system approaches the jamming transition,6 above which the

system can be described as an elastic material,7 and an abun-

dance of low-energy excitations in the density of vibrational

modes.8 Much of this behavior stems from the fact that fric-

tionless, static packings of spherical particles are typically

isostatic since they possess the minimal number of contacts per

particle ziso ¼ 2d, where d is the spatial dimension, required for

mechanical stability.9

However, less progress has been made in understanding the

jamming transition in particulate systems composed of

nonspherical particles, despite the fact that these systems display

striking mechanical10 and rheological11 properties, and are more

relevant for industrial applications and in nature. An important

difference between static packings of frictionless spherical versus

ellipsoidal particles is that the latter are typically hypostatic, not

isostatic, with fewer contacts than required to constrain all of the

translational and rotational degrees of freedom using straight-

forward counting arguments, as shown in recent simulations12–15
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and experiments.16,17 Previous studies have found that for ellipse

packings the contact number at jamming zJ < ziso ¼ 2df, where

df ¼ 3 in two dimensions (2D), over a wide range of aspect ratios

a.12,15 We include similar results from our simulations of static

ellipse packings in Fig. 1(a). zJ < ziso for small aspect ratios, but

slowly approaches a value zJ
* that is only a few percent below the

isostatic value as a increases. In contrast, dimer packings are

isostatic with zJ ¼ ziso for all a. However, the packing fraction at

jamming fJ, shown in Fig. 1(b), possesses a peak for both ellipses

and dimers, which is only a few percent lower than the crystalline

value for spherical particles, near a � 1.4–1.5.12,17 These results

emphasize the point that some structural properties (e.g. zJ) of

jammed packings are sensitive to microscale geometrical features

of individual particles, while others are not (e.g. fJ).
2 Motivation

In this manuscript, we investigate the generality of these results

for the behavior near jamming of frictionless, anisotropic parti-

cles by comparing the structural and mechanical properties of

two classes of nonspherical shapes: convex (ellipses) and concave

(rigid dimers) particles. We find that the behavior near jamming

for rigid dimers can differ significantly from that for ellipses even
Fig. 1 Ensemble averaged (a) contact number zJ and (b) packing frac-

tion fJ at jamming as a function of aspect ratio a for dimers (squares) and

ellipses (circles) for N ¼ 480 particles.
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though both shapes are roughly characterized by the aspect ratio

and possess the same number of translational and rotational

degrees of freedom per particle.

We find several key differences between the structural and

mechanical properties of static packings of dimers and ellipses.

First, our simulations indicate that static packings of dimers are

isostatic (not hypostatic as found for ellipses) with z ¼ ziso

contacts per particle over the full range of aspect ratios studied as

shown in Fig. 1(a). Second, consistent with this, we find that all

degrees of freedom are stabilized by quadratic terms in the

expansion of the potential energy of the system in small

displacements. That is, isostatic dimer packings do not possess

quartic vibrational modes as found for hypostatic ellipse pack-

ings.13 Third, ellipse packings display novel power-law scaling of

the static linear shear modulus G and contact number z� zJ with

f � fJ
13—both scale linearly with f � fJ. In contrast, for dimer

packings G and z � zJ scale as (f � fJ)0.5, which is the same

scaling found for static packings of spherical particles.4 Fourth,

we find that the shear stress-strain relations for packings of

dimers and ellipses are qualitatively different. For example, at

large compressions, the stress response (below the yield stress) to

applied strain depends strongly on aspect ratio for ellipses, but it

is nearly independent of aspect ratio for dimers. Also, at small

compressions, dimer packings display nearly perfect plastic

response in a region of strain where sheared ellipse packings

possess a growing stress response.

This manuscript is organized as follows. In section 3 we

describe the computational methods for generating static pack-

ings of ellipses and dimers and then applying quasistatic simple

shear to measure the mechanical response. In section 4, we

present our results for the linear static shear modulus, contact

number, eigenvalues of the dynamical matrix, stress-strain rela-

tions, and particle rearrangement statistics. In section 5, we

discuss our conclusions and identify possible future research

directions to identify the key shape parameters that determine

the structural and mechanical properties of static packings of

particles with anisotropic shapes. We also include five appen-

dices, which provide the details necessary for calculating the

packing fraction for dimers, contact distance between ellipses,

and forces, torques, and stress tensor for anisotropic particles.18

3 Computational methods

We performed computational studies to measure the structural

and mechanical properties of static packings of rigid dimers and

ellipse-shaped particles in 2D. The particle shapes we consider

are shown in Fig. 2. The rigid dimers are formed by fusing

identical disks together. We study aspect ratios a ¼ a/b in the

range 1 # a # 2, where a and b are the lengths of the major and

minor axes, respectively. To inhibit crystallization, we focus on

bidisperse mixtures of particles: 2N/3 particles with minor axis

b and aspect ratio a, and N/3 larger particles with minor axis 1.4b
Fig. 2 Definition of the aspect ratio a ¼ a/b (ratio of the major to minor

axes) for (a) ellipses and (b) dimers.
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and the same a. The particles are enclosed in square simulation

cells with box length L and periodic boundary conditions.

System sizes were varied from 24 # N # 480.

The particles interact via soft, pairwise, purely repulsive linear

spring potentials. The total potential energy is therefore given by

V ¼
X
i . j

V

�
rij

sij

�
¼ 3

2

X
i . j

�
1� rij

sij

�2

Q

�
1� rij

sij

�
(1)

where rij is the separation between particles (or monomers) i and

j, 3 is the characteristic energy scale of the interaction, Q(x) is the

Heaviside function, and sij is the contact distance that in general

depends on the orientation of particles i and j, m̂i and m̂j, and the

direction of the vector r̂ij connecting the centers of particles i and

j. For ellipses, r̂ij is along the line connecting the centers of mass

of ellipses i and j, while for dimers r̂ij is along the line connecting

monomers i and j on distinct dimers k and l.
Contact distance

Determining the interactions between dimers is straightforward:

one can identify overlaps between individual disks (monomers)

on different dimers. Thus, the contact distance between disk i on

a given dimer and disk j on a different dimer is sij ¼ (bi + bj)/2,

and the total potential energy can be obtained by summing up

the contributions V(rij/sij) over all disk-disk interactions for disks

on distinct dimers.

The contact distance sij between ellipses is more difficult to

calculate than that for dimers. We define sij as the distance at

which two ellipses will first come into contact when moved along

their center-to-center direction while their orientations are held

fixed. Fig. 3 illustrates how sij is measured for ellipses i and j with

orientations m̂i and m̂j at separation vector ~rij. We calculate the

contact distances sij analytically in systems of bidisperse ellipses

using the Perram-Wertheim formulation.19–22 Further details are

provided in Appendix B.
Packing-generation algorithm

We generate static, zero-pressure packings of bidisperse dimers

and ellipses using a generalization of the compression/decom-

pression method employed in our previous studies of spherical

particles.23,24 Representative packings of dimers and ellipses at

jamming onset are shown in Fig. 4. We briefly outline the

packing-generation procedure here for completeness.

We begin the packing-generation process by choosing random

initial particle positions and orientations within the simulation
Fig. 3 (a) Ellipses i and j with orientations m̂i and m̂j at center-to-center

separation vector ~rij. (b) The contact distance sij is obtained by identi-

fying the point of contact when the two ellipses are brought together

along~rij at fixed orientation.
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Fig. 4 Snapshots of static packings of N ¼ 240 bidisperse (a) rigid

dimers (fJ ¼ 0.884) and (b) ellipses (fJ ¼ 0.892) with a ¼ 1.5 at jamming

onset.
cell at packing fraction f0 ¼ 0.20 (which is well below the

minimum packing fraction at which frictionless packings of

ellipses and dimers occur in 2D for 1 # a # 2). We successively

increase or decrease the minor axes of the particles while main-

taining the aspect ratio, with each compression or decompression

step followed by conjugate gradient minimization25 of the total

energy (1). The system is decompressed when the total energy at

a local minimum is nonzero—i.e., there are finite particle over-

laps. If the potential energy of the system is zero and gaps exist

between particles, the system is compressed. The increment by

which the packing fraction f is changed at each compression or

decompression step is gradually decreased. The process is

stopped when the total potential energy per particle V/3N � 1.

Further details of the packing-generation algorithm are provided

in Appendix C.

The packing fraction fJ, contact number zJ, vibrational mode

spectrum, and shear stress response to applied shear strain are

used to characterize each static packing. The packing-generation

process is repeated at least 100 times at each a to generate

configurational averages. Once the packings at jamming onset

are generated, they can be successively compressed by small

amounts Df, followed by energy minimization at each step, to

yield sets of configurations at fixed f � fJ.
Quasistatic simple shear

To determine the mechanical properties of static packings of

dimers and ellipses, we studied their response to quasistatic

simple shear at fixed area. We first initialized the system with an

unsheared packing at a given f � fJ and successively applied to

each particle i small affine simple shear strain steps dg ¼ dx/L

along the x-direction with a gradient in the y-direction:

xi / xi + dgyi (2)

where~ri ¼ (xi,yi) is the location of the center of mass of particle i.

To be consistent with simple shear, at each strain step, the angle

qi ¼ cos�1(m̂i$x̂) that particle i makes with the x-axis was also

rotated:

qi / cot�1(cotqi + dg) (3)

Each shear strain step was followed by conjugate gradient energy

minimization using Lees-Edwards (shear periodic) boundary
2962 | Soft Matter, 2010, 6, 2960–2969
conditions.26 For most studies, dg ¼ 10�3 with accumulated

strains gt¼ 1. We verified that smaller strain steps yielded similar

results. During the quasistatic shear, we measured the shear

stress (in units of 3/b), contact number, and statistics of particle

rearrangement events, which are described in section 4. Details of

the calculations of the shear stress for anisotropic particles are

provided in Appendices D and E.
4 Results and discussion

We present several measurements of the structural and

mechanical properties of static ellipse and dimer packings as

a function of aspect ratio and compression f � fJ including the

contact number, vibrational mode spectrum, shear modulus,

yield stress, and other features of the shear stress-strain relations.
Contact number at jamming

The contact number is defined by z ¼ 2Nc/(N � Nr), where Nc is

the total number of distinct contacts (interparticle overlaps) in

the packing. Nr is the number of rattler particles with fewer than

three contacts. The contact network is found by identifying all

interparticle contacts, and then recursively removing rattler

particles until there are none remaining in the packing.

In Fig. 1(a) we show results for the contact number zJ at

jamming onset for ellipse and dimer packings. We find that

ellipse packings are hypostatic with zJ < 2df over the range of

aspect ratio 1 # a # 2, while dimer packings are isostatic with zJ

x 2df over the same range of a. The small deviation from iso-

staticity found in Fig. 1(a) arises from packings where isolated

dimers possess only one fully constrained monomer. The

unconstrained monomer allows these dimers to freely rotate

about the constrained monomer. One can account for these

isolated ‘rotational’ rattler particles and obtain an exact isostatic

condition for the contact number.
Vibrational mode spectrum

We showed previously13,22 that hypostatic packings of ellipsoidal

particles possess vibrational modes that are quartically (not

quadratically) stabilized with the number of quartic modes

determined by the deviation from isostaticity, ziso � zJ. In

contrast, we expect that all of the nontrivial vibrational modes

for dimer packings are quadratically stabilized since dimer

packings are isostatic.

To determine the vibrational mode spectrum for each static

packing, we calculate the dynamical matrix

Mmn ¼
v2V

vxmvxn

(4)

where xm ¼ {xm, ym, amqm} and m, n ¼ 1, ., N.27 When (4) is

evaluated for each packing and diagonalized using periodic

boundary conditions, in principle one obtains 3N0 � 2 nontrivial

vibrational eigenmodes, where N0 ¼N�Nr. If we assume that all

particles have the same mass, the square roots of the eigenvalues

of the dynamical matrix give the normal mode frequencies ui

indexed by i. We denote the normalized eigenvector corre-

sponding to ui by êi ¼ {ej¼1
xi ,ej¼1

yi ,ej¼1
qi ,.,ej¼N0

xi ,ej¼N0

yi ,ej¼N0

qi } with the

constraint that ê2
i ¼ 1.
This journal is ª The Royal Society of Chemistry 2010



In Fig. 5(a), we show the sorted vibrational mode spectrum for

packings of bidisperse dimers and ellipses with a ¼ 1.1 and disks

(a¼ 1.0) near jamming onset. For disk packings, all of the modes

with indexes 1 # i/N < 3 are translational in character, and there

are no nontrivial rotational modes. For dimer and ellipse pack-

ings at a ¼ 1.1, the modes from 0 # i/N < 1 are predominantly

rotational and those from 1 # i/N < 3 are predominantly

translational in character. The mode spectra for dimer packings

display two distinctive features: 1) high-frequency translational

modes similar to those for disk packings and 2) rotational modes

that are lower in frequency than the translational modes. The

mode spectra for the ellipse packings possess a third lower

frequency branch that is separated by a gap in frequency from

the modes in region 2 as shown in Fig. 5(a).

To determine whether the vibrational modes are quartically or

quadratically stabilized at jamming onset, we perturbed the static

packings along each of the eigendirections of the dynamical

matrix. If~x0 characterizes the centers of mass and orientations of

the original static packing, the perturbed configuration obtained

after a shift by d along eigenmode i and relaxation to the nearest

local energy minimum is ~xi ¼ ~x0 + êi. In Fig. 5(b), we plot the

change in the potential energy per particle, DV1/N h [V(~x1) �
Fig. 5 (a) Sorted vibrational mode spectrum (ui versus index i/N) for

packings of dimers (red) and ellipses (blue) with a¼ 1.1 and disks (black)

(a ¼ 1.0) near jamming onset. The labels 1, 2, and 3 indicate the trans-

lational, quadratic rotational, and quartic rotational mode regions,

respectively, as described in the text. (b) Change in potential energy per

particle DV1/N versus displacement d along ê1 for the lowest nontrivial

mode (indicated by the filled circle) for the same disk, dimer, and ellipse

packings in (a) (solid lines). mu1
2d2 for the lowest mode in each system is

also plotted using dashed lines. The dotted blue line has slope 4. For disks

and dimers, DV1 is quadratic in d. In contrast, for ellipses, DV1 f d2 for

d < dc� 10�5, but f d4 for d > dc. The deviations from quadratic behavior

at small d arise from numerical error.

This journal is ª The Royal Society of Chemistry 2010
V(~x0)]/N, of the disk, dimer, and ellipse packings in Fig. 5(a)

arising from a perturbation along the lowest nontrivial mode as

a function of amplitude d. Fig. 5(b) shows that DV1 scales

quadratically with d for disk and dimer packings. We have also

shown that DVi � d2 for all higher frequency modes for disk and

dimer packings. Thus, static disk and dimer packings possess 2N0

� 2 and 3N0 � 2 quadratic modes, respectively. In contrast, for

ellipse packings, DV1 f d2 for d < dc, but f d4 for d > dc,
13 where

dc � (f � fJ)0.5. Thus, static ellipse packings possess vibrational

modes that are quartically (not quadratically) stabilized as f /

fJ. We showed previously that the number of quartic modes is

determined by ziso � zJ.13

Power-law scaling of linear shear modulus and contact number

One of the hallmarks of the jamming transition in packings of

spherical particles is the power-law scaling of the static linear

shear modulus G and contact number z � zJ with f � fJ. Both

scale as (f� fJ)0.5 for linear repulsive springs, which suggests that

the contact number scaling controls the behavior of the linear

shear modulus.4 In Fig. 6, we plot G as a function of f � fJ for

dimers (filled symbols) and ellipses (open symbols) over a range

of aspect ratios. We again find power-law scaling near jamming,

G ¼ G0(a)(f � fJ)b (5)

where b ¼ 0.5 and G0 is weakly dependent on a for dimers. In

contrast, b ¼ 1 for sufficiently small f � fJ and G0(a) � (a

� 1)�0.44�0.03 for ellipses. The power-law scaling is stronger for

ellipse packings, and thus the ratio of the shear moduli Gellipse/

Gdimer / 0 in the limit f / fJ for all a. This implies that ellipse

packings are much more susceptible to shear in the linear

response regime.

For jammed packings of spherical particles with linear spring

interactions both G and z� zJ scale as (f� fJ)0.5. We find similar

behavior, G � z � zJ, for dimer packings as shown in Fig. 7. For

ellipse packings, we find

z � zJ ¼ z0(a)(f � fJ)b (6)
Fig. 6 Static shear modulus G versus f � fJ for N ¼ 480 ellipses (open

symbols) and 240 dimers (filled symbols) at a ¼ 1.0 (circles), 1.002

(squares), 1.01 (diamonds), 1.05 (upward triangles), 1.1 (leftward trian-

gles), 1.5 (downward triangles), and 2.0 (rightward triangles). The solid

(dashed) line has slope 1 (0.5). The dot-dashed lines have the form G ¼
0.6(f � fJ)/(a � 1)0.44.
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Fig. 7 Deviation in the contact number z from the value at jamming zJ

versus f � fJ for N ¼ 480 ellipses (open symbols) and 240 dimers (filled

symbols) at a ¼ 1.0 (circles), 1.002 (squares), 1.01 (diamonds), 1.05

(upward triangles), 1.1 (leftward triangles), 1.5 (downward triangles), and

2.0 (rightward triangles). The solid (dashed) line has slope 1 (0.5). The

dot-dashed lines have the form z � zJ ¼ 6.3(f � fJ)/(a � 1)0.35.
where z0(a) � (a � 1)�0.35�0.1 and b ¼ 1 for sufficiently small f �
fJ. Thus, G and z � zJ have the same power-law scaling with f�
fJ even for hypostatic packings. We showed previously that the

novel power-law scaling exponent for G and z � zJ in ellipse

packings originates from the quartically stabilized vibrational

modes.13
Fig. 9 Same stress-strain relations in Fig. 8 for (a) ellipses and (b) dimers

except the shear stress and strain have been scaled by Sy and Sy/G,

respectively. The inset to (a) gives the average value of the slope (Gint/G)

of the scaled stress-strain relation for shear stresses S < Sy at aspect
Stress-strain relations

The full stress-strain behavior for ellipse and dimer packings is

complex; it is qualitatively different for ellipses and dimers and
Fig. 8 Shear stress Sxy versus shear strain g for packings of (a) ellipses

and (b) dimers at f � fJ ¼ 10�1 for several aspect ratios a ¼ 1.0 (black),

1.05 (red), 1.1 (green), 1.2 (blue), 1.3 (yellow), 1.4 (violet), and 1.5 (cyan).

The dashed horizontal line in (b) indicates the yield stress for dimer

packings at a ¼ 1.3.

xy

ratios a $ 1.1.

Fig. 10 Shear stress Sxy versus shear strain g for packings of (a) ellipses

and (b) dimers at f � fJ ¼ 10�3 for several aspect ratios a ¼ 1.0 (black),

1.1 (green), 1.2 (blue), 1.3 (yellow), 1.4 (violet), and 1.5 (cyan). The insets

show the same data as in the main plots, except over a smaller range of g.
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depends nontrivially on f� fJ and aspect ratio. In Fig. 8 and 10,

we show the shear stress Sxy versus strain g for f� fJ¼ 10�1 and

10�3, respectively. For ellipses at f � fJ ¼ 10�1 (Fig. 8(a)), the

shear stress is roughly linear with strain until the shear stress

plateaus at the yield stress, Sy¼ Sxy(g / N), which only weakly

depends on aspect ratio and is at least a factor of 2 smaller than

that for dimers (cf. Fig. 14(a)). We can achieve an approximate

collapse of the stress-strain data for ellipses at f � fJ ¼ 10�1 for

a $ 1.1 by scaling the shear stress by Sy and strain by Sy/G as

shown in Fig. 9(a). The inset to Fig. 9(a) shows that the average

shear modulus defined over the wide range 0 # Sxy # Sy is

comparable to the linear response value, G, at small strains

(cf. Fig. 6) for a $ 1.1.

The behavior of the stress-strain curves for dimers at f � fJ ¼
10�1 is qualitatively different from that for ellipses as shown in

Fig. 8(b). In particular, the approach of the shear stress to the

yield stress plateau has significant curvature similar to the

behavior found for sheared packings of spherical particles.28 The

scaled stress-strain curve in Fig. 9(b) emphasizes that dimer

packings further strain soften as the aspect ratio increases.

Fig. 10 shows the stress-strain behavior for dimers and ellipses

much closer to the jamming transition at f � fJ ¼ 10�3. At such

small compressions, ellipse packings (Fig. 10(a)) no longer

possess such robust, sustained linear response over the full range

of shear stress, 0 # Sxy # Sy. Instead, the shear stress is first

roughly linear with slope �G, but then stiffens on approach to

the yield stress. However, the most striking feature of the stress-

strain curves at f � fJ ¼ 10�3 is the nearly perfect plastic

response (flat shear stress versus strain) for dimer packings

(Fig. 10(b)) with a $ 1.1. The plastic regime extends for strains

from the end of the linear response regime to gp z 0.1. The

plastic behavior at intermediate strains is clearly shown in

Fig. 11, where we compare the shear stress versus strain curves

for packings of disks and dimers and ellipses at a single aspect

ratio a ¼ 1.5. As demonstrated in the inset to Fig. 11, ellipse

packings do not possess the nearly plastic response at interme-

diate strains. In the regime g < gp, for ellipses the shear stress is

roughly linear with a shear modulus comparable to G. Further-

more, one can clearly identify the dual behavior of dimers. For

small shear strain g < gp, sheared dimer and disk packings
Fig. 11 Shear stress Sxy versus shear strain g for packings of ellipses

(blue) and dimers (red) at a¼ 1.5 and disks (black) at f � fJ¼ 10�3. The

inset shows the same data as in the main plot, except over a smaller range

of g. The end of the intermediate shear strain plastic regime for dimers is

indicated by an arrow at gp z 0.1.
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behave similarly, while for g > gp, sheared dimer and ellipse

packings behave similarly. For g > gp, the shear stress grows

rapidly (with positive curvature) as it approaches the yield stress

for both ellipses and dimers.

A possible physical mechanism for the plastic behavior at

intermediate shear strain is an abundance of particle rearrange-

ments in this strain regime for sheared dimer packings. In Fig. 12,

we plot the fraction of particle contacts at strain g that differ

from those at g ¼ 0. We find that the plastic behavior in dimer

packings is accompanied by a large increase in the number of

particle rearrangement events (changes in the contact network)

over the shear strain interval 0 # g # gp. Note that the largest

fraction (and rate of increase over 0 # g # gp) of particle rear-

rangements occurs for dimer packings with a ¼ 1.5, which

possess the most pronounced plastic response. Preliminary

studies indicate that the plastic response corresponds to dimers

sliding along the shape contours of neighboring dimers, but

further work is required to fully elucidate the causative particle-

scale motions.

We have also calculated the nematic order parameter, S ¼
hcos[2(q � q0)]i, where q0 is the average orientation of the

particles, as a function of shear strain for sheared ellipse and

dimer packings as shown in Fig. 13(a) and (b). We find that the

nematic order increases with g up to strains of g z 0.2–0.3,

beyond which it plateaus to a strain independent but aspect ratio

dependent value SN(a). In Fig. 13(c), we show that SN(a) grows

linearly with a, but shows signs of leveling off near a* z 1.4–1.5,

which corresponds to the peak in fJ(a). In both sheared ellipse

and dimer packings, at sufficiently large aspect ratio, the large-

strain nematic order is comparable to that in the nematic phase

for liquid-crystalline systems.30 Thus, we have shown that affine

simple shear applied to amorphous ellipse and dimer packings

can lead to nematic order in 2D for sufficiently large aspect ratio.

In future studies, we will explore the robustness of this result by

studying boundary driven simple and pure shear in 2D and 3D

packings of anisotropic particles.

In Fig. 14, we show the yield stress Sy for dimer and ellipse

packings as a function of aspect ratio at (a) f � fJ ¼ 10�1, (b)

10�2, and (c) 10�3. We find that the yield stress increases with

aspect ratio, which acts as an effective friction coefficient.30

However, Sy begins to level off near a* � 1.4–1.5, which is likely

related to a maximum in the nematic order near a*. In contrast to

the behavior at small shear strains, the yield stress for dimers and

ellipses becomes nearly identical near jamming at f � fJ ¼ 10�3.

Thus, measurements of the jamming packing fraction fJ and
Fig. 12 Fraction fr of the particle contacts at strain g that differ from

those at g ¼ 0 for (a) ellipses and (b) dimers at a¼ 1.05 (red), 1.1 (green),

1.2 (blue), 1.3 (yellow), 1.4 (violet), and 1.5 (cyan).
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Fig. 14 Yield stress Sy as a function of aspect ratio a at (a) f � fJ ¼ 10�1, (b) 10�2, and (c) 10�3 for ellipses (circles) and dimers (squares).

Fig. 15 Examples of smooth, symmetric concave and convex particle

shapes. We show two types of concave shapes, (a) dimers, trimers, and in

general n-mers with contact number at jamming zJ $ ziso and (b) peanut-

shaped particles with zJ < ziso. The key difference between the two types

of concave-shaped particles is that the magnitude of the radius of

curvature |RA| at point A in the notch is larger than that at point B, |RA| >

RB, for peanut-shaped particles, while |RA| < RB for n-mers. For convex-

shaped particles in (d), RA > RB > 0 and zJ < ziso.

Fig. 13 Nematic order parameter S versus shear strain g for sheared (a) ellipse and (b) dimer packings at a ¼ 1.05 (red), 1.1 (green), 1.2 (blue), 1.3

(yellow), 1.4 (violet), and 1.5 (cyan). (c) Large strain limit of the nematic order parameter SN versus a for ellipses (circles) and dimers (squares). The

dashed horizontal lines at SN¼ 0.40 and 0.50 are typical values of S at which the nematic to isotropic phase transition occurs in quiescent, thermal liquid

crystalline systems.
yield stress Sy are relatively insensitive to microscale geometrical

features of individual particles.

5 Future directions

These studies of static and slowly sheared dimer and ellipse

packings raise a number of interesting questions that will likely

spur new research activity in the area of jamming and glass

transitions. For example, we have shown that the structural and

mechanical properties of packings of anisotropic particles can

depend on the microscale geometric features of individual

particles, even those characterized by the same gross shape

parameter such as the aspect ratio. To emphasize this point, we

studied a single convex particle shape (dimers) and a single

concave particle shape (ellipses). We find that the contact

number near jamming strongly influences the mechanical prop-

erties of the packings. Dimer packings are isostatic with struc-

tural and mechanical properties similar to those of disk packings,

while ellipse packings are hypostatic, possess ziso � zJ quartic

modes, and display novel structural and mechanical properties.

We recognize that the shape comparison of convex versus

concave particles is likely too broad to capture completely the

differences in the mechanical response of packings of anisotropic

particles. However, based on our results, we speculate that all

packings composed of smooth, nonspherical concave particles

will be hypostatic with ziso � zJ quartic modes. Further, we

predict that packings composed of the convex particle shapes

shown in Fig. 15(a) and (b) will possess qualitatively different

mechanical properties. For example, dimers, trimers, and in

general n-mers possess notches with radii of curvature |RA| < RB,

where RB is the radius of each monomer (i.e. disk) that comprises

the n-mer. We have preliminary results that indicate that n-mers

in 2D have zJ $ ziso. In contrast, we expect that static packings
2966 | Soft Matter, 2010, 6, 2960–2969
composed of peanut-shaped particles31,32 (i.e. those in Fig. 15(b))

will be hypostatic with zJ < ziso because |RA| > RB, which allows

only one contact per notch. Thus, for concave particles, the ratio

of the relevant radii of curvature may play an important role in

determining the mechanical response of packings.

However, we have also identified structural and mechanical

properties that are relatively insensitive to microscale geometric

features of anisotropic particles. For example, the jamming

packing fraction fJ and yield stress Sy, which are thought to
This journal is ª The Royal Society of Chemistry 2010



control the glass transition in thermalized systems,33 are very

similar for packings of dimers and ellipses with the same aspect

ratio (at least over the range of a considered). Thus, a compelling

question is whether or not glassy dynamics, caging behavior, and

aging are sensitive to microstructural features of anisotropic

particles. Thus, we encourage reinvigorated studies of atomic,

colloidal, and granular systems to determine under what

circumstances geometrical features of individual particles play an

important role in jamming behavior and glassy dynamics.

A Packing fraction

In our numerical simulations, we consider bidisperse mixtures of

dimers and ellipses in which one-third (Nl ¼ 1/3) of the particles

are large (with a minor axis 1.4 times that of the smaller particles,

i.e. bl¼ 1.4bs) and two-thirds (Ns¼ 2/3) of the particles are small.

When calculating the packing fraction for rigid dimers (fused

disks), we do not double count the overlapping region. Thus, we

define the packing fraction for dimers in 2D as

fdimer ¼ 2Nsp

�
bs

L

�2
 

1þ Nl

Ns

�
bl

bs

�2
!

�
1� 1

p

h
cos�1ða� 1Þ þ ða� 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að2� aÞ

p i� (7)

For ellipses

fellipse ¼ Nspa

�
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L

�2
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�
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bs

�2
!

(8)

B Contact distance

The Perram and Wertheim formulation for calculating the

contact distance sij between ellipses i and j with orientations m̂i

and m̂j and center-to-center direction r̂ij involves the following

minimization procedure:20

sij ¼ minl sðlÞ

¼ minl
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Determining lmin that minimizes s(l) (eqn (9)) involves solving

for the roots of a quartic polynomial in l for 2D bidisperse

systems.22 The polynomials can be expressed analytically in terms

of m̂i, m̂j, r̂ij, and the major and minor axes of particles i and j, and

then solved using Newton’s method.
C Packing-generation algorithm

In section 3, we outlined our procedure to generate static pack-

ings of dimers and ellipses. Here, we provide some of the

numerical parameters involved in the simulations. For the energy

minimization, we employ the conjugate gradient technique.25 The

two stopping criteria for the energy minimization are Vt�Vt�1 <

Vtol ¼ 10�16 and Vt < Vmin ¼ 10�16, where Vt is the potential

energy per particle at iteration t, and the target potential energy

per particle of a static packing is Vtol < V/N < 2Vtol. For the first

compression or decompression step we use the packing-fraction

increment Df ¼ 10�3. Each time the procedure switches from

expansion to contraction or vice versa, Df is reduced by a factor

of 2. Using the packing generation procedure with these

parameters, we are able to locate the jamming threshold in

packing fraction fJ to within 10�8 for each static packing.
D Calculation of forces and torques

In this appendix, we provide specific details for calculating the

interparticle forces and torques for dimers and ellipses, which are

required to perform energy minimization and evaluate the shear

stress. The forces and torques can be obtained from the inter-

action potential (eqn (1)) using generalizations of ~Fij ¼ dV/d~rij,

where ~Fij is the force on particle i due to particle j.
Dimers

For dimers, the interaction force on monomer ki belonging to

dimer i from monomer kj belonging to a distinct dimer j is

~F ki ;kj
¼ dV

d~rki ;kj

(13)

The total force on dimer i is obtained by summing over all

monomers ki belonging to dimer i, all dimers j different from i,

and all monomers kj belonging to dimer j:

~Fi ¼
X

ki

X
j

X
kj

~F ki ;kj
(14)

The torque on dimer i arising from an interaction between

monomer ki on dimer i and monomer kj belonging to dimer j is

given by

~Tki,kj
¼~rki

� ~Fki,kj
(15)

where ~rki
¼ di(cosqix̂ � sinqiŷ) is the vector from the center of

dimer i to the center of monomer ki, di ¼ bi(a � 1)/2, and qi gives

the orientation of dimer i. The total torque on dimer i, ~Ti, is

obtained by summing ~Tki,kj
over all monomers ki on dimer i, all

dimers j distinct from i, and all monomers kj on dimer j.
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Fig. 17 Comparison of the Love (L) and virial (V) expressions for the

shear stress Sxy as a function of shear strain g for aspect ratio a ¼ 1.1

(red) and 1.5 (blue) at f � fJ ¼ 10�3.
Ellipses

For ellipses i and j, the interparticle force depends explicitly on

how the contact distance sij varies with the vector separation~rij:

Fxij ¼ �
vV

vrij

�
xij

rij

� rij

sij

vsij

vxij

�
(16)

where x ¼ x, y. To calculate the torque, one must specify the

point of contact. For ‘just touching’ ellipses i and j are in contact

at only one point, as shown in Fig. 16(a), the location ~pij of the

point of contact Cij (relative to the center of mass of ellipse i) is

unambiguous and given by

~pij ¼ p0
ij(cos(jij + qi)x̂ + sin(jij + qi)ŷ) (17)

p0
ij ¼

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
cos jij

ai

�2

þ
�

sin jij

bi

�2
s (18)

tan jij ¼
1

a2

tan
�
Qij � qi

�
� s�1

ij

vsij

vbij

1þ s�1
ij tan

�
Qij � qi

� vsij

vQij

(19)

where cosbij ¼ m̂i$r̂ij, cosQij ¼ x̂i$r̂ij. The torque Tij on ellipse i

from j is then

Tij ¼ pxijFyij � pyijFxij (20)

As shown in Fig. 16 (b), upon compression, ellipses are no

longer ‘just touching’, and thus eqn (17) for the point of contact

Cij is no longer exact. In this case, we scale ~pij by rij/sij, which

yields an effective point of contact C0ij that is within the overlap

region of the two ellipses.

E Calculation of shear stress

For systems composed of spherical particles, the correct form for

the stress tensor ŝab in 2D, where a, b ¼ x, y, is the virial

expression:26

Ŝ
V

ab ¼
1

2L2

XN

i . j¼1

�
Fija rijb þ Fijb rija

�
(21)

where Fija is the a-component of the force ~Fij on particle i

arising from an overlap with particle j, rijb is the b-component of
Fig. 16 Definition of the point of contact Cij for ellipses i and j that are

(a) ‘just touching’ and (b) overlapped. ~pij is location of the point of

contact relative to the center of mass of ellipse i. In the overlapped case,

the effective point of contact C0 ij is given by ~p0ij ¼ ~pij(rij/sij).
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the vector ~rij from the center of mass of particle j to that of

particle i.

The correct form for the stress tensor ŝab in 2D for systems

composed of anisotropic particles is the Love expression:18

Ŝ
L

ab ¼
1

2L2

XN

i ; j¼1

�
Fija pijb þ Fijb pija

�
(22)

where pijb is the b-component of the vector from the center of

mass of particle i to the point of contact Cij with particle j. Note

that the Love expression reduces to the virial expression for

spherical particles.

In our studies of simple shear, we focus on the off-diagonal

component of the stress tensor Sxy. Calculating the point of

contact at each shear strain is computationally expensive; we

have therefore used the virial expression SV
xy instead of the Love

expression SL
xy to quantify the shear stress for both dimer and

ellipse packings. As a check, we measured both SL
xy and SV

xy for

dimers as a function of aspect ratio and compression. Fig. 17

shows that they give quantitatively similar results for a¼ 1.1 and

a ¼ 1.5 (for g < 0.2), and qualitatively similar results for a ¼ 1.5

at large strain. In particular, the plastic response of dimer

packings at small compressions is unaffected by the choice of the

definition of the shear stress.
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