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Computational methods to study jammed systems

carl f. schreck and corey s. o’hern

1 Introduction

Jammed materials are ubiquitous in nature and share several defining character-
istics. They are disordered, yet solid-like with a nonzero static shear modulus.
Jammed systems typically exist in metastable states with structural and mechanical
properties that depend on the procedure used to create them. There are a number
of different routes to the jammed state, including compressing systems to densities
near random close packing [1], lowering the applied shear stress below the yield
stress [2], and quenching temperature below the glass transition for the material
[3]. Examples of jammed and glassy particulate systems include dense colloidal
suspensions [4], attractive glasses and gels [5], static packings of granular materi-
als [6], and quiescent foams [7] and emulsions [8]. Due to space constraints, we
will limit our discussion to athermal jammed systems in which thermal energy at
room temperature is unable to induce local rearrangements of particles. We note
though that there are deep connections [9] between athermal jammed systems and
thermal, glassy systems [10]. An important open problem in the field of jammed
materials is identifying universal features that are not sensitive to the particular
path in parameter space taken to create them.

In this contribution, we will review the computational techniques used to gen-
erate athermal jammed systems and characterize their structural and mechanical
properties. We will focus on frictionless model systems that interact via soft, pair-
wise, and purely repulsive potentials. (Computational studies of frictional granular
materials will be the focus of Chapter 5.) The methods for generating jammed par-
ticle packings discussed here are quite general and can be employed to study both
two- and three-dimensional systems; both monodisperse and polydisperse systems;
a spectrum of particle shapes, including spheres, ellipsoids, and rods; and a variety
of boundary conditions and applied stress.
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The remainder of the chapter will be organized as follows. In Section 2, we will
review computational methods for creating static particle packings. Many prior
studies of jamming have focused on spherical particles under isotropic compres-
sion. We will therefore describe how packing-generation methods can be general-
ized, with a particular emphasis on grains with nonspherical shapes. This review
will be restricted to completely jammed, mechanically stable (MS) packings, and
thus in Section 3, we will define mechanical stability of particle packings in terms
of the normal modes of the dynamical matrix [11]. In Section 4, we will describe
many of the computational measurements that can be performed to characterize the
structural and mechanical properties of jammed packings, including the pair distri-
bution function, structure factor, translational and orientational order parameters,
correlation functions, spectra of vibrational modes, and elastic moduli.

2 Methods to generate static-particle packings

Computational methods to generate jammed particle packings fall into two general
categories: ‘hard’ [12] and ‘soft’ [13], [14], [15] particle methods. Hard particle
methods strictly enforce the constraint that particles cannot overlap; these include
the Lubachevsky–Stillinger algorithm of binary collisions between elastic particles
coupled with compression [16], single-particle and collective Monte-Carlo moves
with successive compressions, and various geometrical techniques [17], [18], [19].

In this contribution, we will review two soft-particle packing-generation tech-
niques: (1) the isotropic compression method in which we successively compress
or decompress the system followed by energy relaxation until all particles are just
touching and (2) the applied shear method in which we generate just-touching
particle packings at arbitrary values of shear strain. We focus on soft-particle
packing-generation methods for several reasons. First, the structural and mechani-
cal properties can be studied as a function of overcompression φ − φJ , where φJ

is the jamming packing fraction, which allows numerical results to be compared
to experiments on foams, emulsions, and granular materials. Second, features of
hard-particle MS packings can be recovered from soft-sphere packings in the just-
touching limit. Finally, many hard-particle methods yield locally jammed packings,
which are not mechanically stable. In contrast, soft-particle methods, which sat-
isfy the constraints of force and torque balance on all grains, reliably produce
mechanically stable packings.

2.1 Isotropic compression

The isotropic compression method for soft particles consists of initializing
the system in a dilute, fluid-like configuration and successively compressing/
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Figure 2.1 Schematic showing the definition of the contact distance σij for two
disks i and j , with diameters ai and aj and center-to-center separation rij . The two
particles overlap when rij < σij , where σij = (ai + aj )/2 is the average diameter.

decompressing the system followed by energy relaxation to the nearest local min-
imum. The method terminates at packing fraction φJ when all particles (except
floater particles that are not locally stable) achieve force and torque balance with
infinitesimal particle overlaps. In these studies, we will employ pairwise, short-
range repulsive interactions between particles. The pair potential V (rij /σij ), where
rij is the center-to-center separation and σij is the contact distance between grains
i and j , is positive if particles are overlapped (rij < σij ) and zero otherwise. Thus,
the packings possess nonzero, but infinitesimal pressure and potential energy at
jamming.

We will focus on two forms for the interaction potential: the repulsive spring
potential Vs in (2.1) and the repulsive Lennard–Jones potential in (2.2):
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where α = 2 (α = 5/2) correspond to the linear (Hertzian) repulsive spring poten-
tial, �(x) is the Heaviside step function, which ensures that particles only interact
when they overlap. For spherical particles, the contact distance is simply the aver-
age of their diameters σij = (ai + aj )/2, as shown in Figure 2.1. The contact
distance σij for nonspherical grains, which depends on r̂ij and the orientations of
grains i and j , will be discussed in detail in Section 2.3.2. The total potential energy
per particle for the system is given by V = N−1 ∑

i,j V (rij ).
The isotropic compression method can be viewed in terms of the potential

energy landscape V (�ξ ) of the system, as shown in Figure 2.2. All possible con-
figurations of N particles, each denoted by �ξ = (�r1, �r2, . . . , �rN ), yield a value of
the potential energy per particle V (�ξ ). Static, force- and torque-balanced packings
correspond to local minima in the potential energy landscape. Jammed packings
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Figure 2.2 Schematic of the isotropic compression method to create jammed
packings. In panels (a)–(c), we show the potential energy landscape V (�ξ ) in the
vicinity of the static granular packings (at point �ξ0 in configuration space) in
panels (d)–(f). If the system exists in a nonoverlapped configuration (panel (f))
with gaps between particles and V = 0, it will be compressed followed by energy
minimization. If the system exists in an overlapped configuration (panel (d)) at
a local potential energy minimum with V > 0, it will be decompressed followed
by energy minimization. When the system switches between the cases displayed
in panels (d) and (f), the compression/decompression increment is decreased. The
process stops when the system exists in a static packing at a local potential energy
minimum that is infinitesimally above zero.

correspond to minima with V (�ξ ) � 0. During the packing-generation process, if
there are significant particle overlaps (Figure 2.2(d)) and the energy of the system
at a local minimum is nonzero (Figure 2.2(a)), the system will be subsequently
decompressed. If the potential energy of the system is zero (Figure 2.2(c)) and
gaps exist between particles (Figure 2.2(f)), the system will be compressed at the
next step. The increment by which the packing fraction φ is changed at each com-
pression or decompression step is gradually decreased. After a sufficiently large
number of steps, a jammed packing with infinitesimal overlaps (Figure 2.2(e)) and
potential energy V � 0 (Figure 2.2(b)) is obtained.

The isotropic compression method for generating jammed particle packings
consists of four basic steps: (1) initialization of particle positions and orientations,
(2) compression or decompression of the system, (3) relaxation of the potential
energy to the nearest local minimum, and (4) repetition of steps (2) and (3) until
a jammed packing with infinitesimal overlaps is obtained. We will describe the
implementation of these steps in detail here:

Step (1) Choose an initial configuration for N particles in the simulation cell. This
is typically accomplished by assigning each particle a random position and orien-
tation, in the case of nonspherical particles, in the simulation cell. For the repulsive
Lennard–Jones interaction potential, random initial configurations without signifi-
cant particle overlaps must be used. If the initial packing fraction, φ0, is well below
the mean jammed packing fraction, 〈φJ 〉, the initial conditions will not bias the
final set of packings. The results obtained for φ0 > 〈φJ 〉 and for φ0 < 〈φJ 〉 only
show small differences for frictionless grains, but these differences are important
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and should be studied in more detail in future studies. When choosing orientations,
directors can be selected randomly from a uniform distribution on the unit disk
(sphere) in 2D (3D).

Step (2) Compress the system (or increase particle sizes uniformly) if it is below
the jamming point (V < Vtol) or decompress the system (or decrease particle sizes
uniformly) if it is above the jamming point (V > 2Vtol). Vtol is the potential energy
threshold that dictates how close the final packing is to the point at which all particles
are just touching. We typically consider Vtol = 10−16 (where V is normalized by
the energy-scale parameter ε) based on numerical precision. We must choose the
initial packing fraction increment �φ0 to be sufficiently small so that it does not
influence the jammed packing fraction, but also large enough to efficiently generate
jammed packings. Previous studies have used �φ0 = 10−4 [14], [15]. The packing
fraction increment is successively decreased to locate φJ . If the potential energy
of the system at successive compressions or decompressions n − 1 and n satisfy
Vn−1 > 2Vtol and Vn < Vtol or Vn−1 < Vtol and Vn > 2Vtol, the step size is halved.
Otherwise it remains at the current value of �φ.

Step (3) Minimize the total potential energy of the system after each compression or
decompression step to find a local potential energy minimum. The energy minimiza-
tion can be performed in several ways, including (a) numerical energy minimiza-
tion procedures, such as the conjugate-gradient technique [20] and (b) molecular
dynamics (MD) simulations with dissipative forces proportional to velocity. The
conjugate-gradient method is a numerical scheme that begins at a given point in
configuration space and moves the system to the nearest local potential energy min-
imum without traversing any energy barriers [20]. In contrast, molecular dynamics
with finite damping is not guaranteed to find the nearest local potential energy
minimum since kinetic energy is removed from the system at a finite rate. The
system can thus surmount a sufficiently low energy barrier. A comparison of these
two methods provides important geometric information about the width of basins
and heights of energy barriers separating the basins in the energy landscape.

In the molecular-dynamics method, each particle i obeys Newton’s equations of
motion:

m�ai =
∑
j �=i

[
−dV (rij )

drij

− b�vij · r̂ij

]
r̂ij , (2.3)

where �ai is the acceleration of particle i, �vij is the relative velocity of particles
i and j , r̂ij is the unit vector connecting the centers of these particles, and b is
the damping coefficient. In the infinite-dissipation limit, b → ∞, the potential
energy cannot increase during a molecular-dynamics relaxation, and thus the
molecular-dynamics and conjugate-gradient methods should give very similar
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Figure 2.3 Schematic of the isotropic compression method for creating jammed
particle packings. The system is initialized at a packing fraction φ0 below the
jamming onset φJ . After a series of compressions and decompressions of decreas-
ing amplitude, the jamming onset φJ is identified with total potential energy per
particle at a local energy minimum that satisfies Vtol < V < 2Vtol.

results. We note, however, that even in this limit the two methods are not equivalent
because there may be more than one energy minimum accessible from a given
point in configuration space without traversing an energy barrier.

For the conjugate-gradient method, we terminate the minimization process when
either of the following two conditions on the potential energy per particle V

is satisfied: (a) two successive conjugate-gradient steps t and t + 1 yield nearly
the same energy value, (Vt+1 − Vt )/Vt < δ = 10−16; or (b) the potential energy
per particle at the current step is extremely small, Vt < Vmin = 10−16. Since the
potential energy oscillates in time in the molecular-dynamics method, condition
(a) is replaced by the requirement that the relative potential-energy fluctuations
satisfy the inequality 〈(V − 〈V 〉)2〉1/2/〈V 〉 < δ. Stopping criteria based on the rms
or maximum total force on the particles can also be implemented.

Step (4) The packing-generation procedure terminates when the potential energy
at a local energy minimum satisfies Vtol < V < 2Vtol. Using this method, we are
able to locate the jamming threshold in packing fraction φJ to within 10−8 for
each static packing. A schematic of the dynamics of the packing fraction during
the compression method is shown in Figure 2.3. This method can be performed for
many different initial configurations to generate an ensemble of jammed packings.

2.2 Applied shear strain

Athermal jammed systems can also be generated in the presence of applied shear
stress or strain. In fact, recent experimental [21], simulation [22], and theoreti-
cal [23], [24] studies have emphasized that the form of stress correlations in jammed
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Figure 2.4 Schematic diagram of shear-periodic boundary conditions. (a) Static
packing with N = 6 particles confined to a Lx × Ly box with shear strain
γ = �x/Ly = 0. The shading indicates a given particle in the primary cell and
its image. (b) Static packing in a unit cell with γ = 0.2. Note that at arbitrary
γ , a given particle in the primary cell is not directly above (or below) its image.
(c) Static packing at γ = 0.8, which shows that configurations at γ and 1 − γ
are related by an inversion about the vertical (shear-gradient) direction. (d) Static
packing in (a) at γ = 1, which is identical to standard periodic boundary condi-
tions. Thus shear-periodic boundary conditions have unit period. Adapted from
reference [28].

packings created by isotropic compression and shear are fundamentally different,
with longer ranged spatial correlations along the compressive direction in sheared
systems. In experiments, simple shear can be implemented using planar [25] or
Couette geometries [26]. In simulations, bulk planar shear flow can be realized
using Lees–Edwards or shear-periodic boundary conditions [27]. In Figure 2.4, we
show a schematic diagram of shear-periodic boundary conditions implemented in
2D. In each panel, the top (bottom) image cells are shifted by �x = γLy to the
right (left), where γ is the shear strain and Ly is the dimension of the simulation
cell in the shear gradient direction.

Note that shear-periodic boundary conditions are identical at γ = x and 1 − x

and have unit period as shown in Figure 2.4; thus, we only need to study the range
γ = 0 to 0.5 to generate static packings over the full range of shear strain. Prior
studies of jammed systems have focused on isotropically compressed packings at
γ = 0 [13], whereas there are relatively few studies of sheared packings at nonzero
γ [28]. To generate anisotropic static packings, the region γ = [0, 0.5] can be
divided into small shear strain intervals, e.g. �γ = 10−2. At each sampled shear
strain γs , the four-step compression/decompression method discussed in Section 2.1
can be implemented to generate static, just-touching particle packings. That is,
the particles’ positions and orientations are chosen randomly, and the system is
subjected to a sequence of compressions and decompressions with decreasing
amplitude, each followed by energy relaxation at a fixed shear strain, until the
energy of the system falls within a prescribed window. When this procedure is
repeated many times for different γs and independent initial conditions, we can
generate ensembles of packings over a series of discrete strains γs .

To create continuous maps of static packings between sampled shear strains
γs and γs+1, we can apply n successive shear strains to each static packing at
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γs of size δγ = �γ/n, each followed by the compression packing-generation
process described in Section 2.1. Shear strain steps δγ are applied by shifting the
x-coordinate of each particle i according to:

xi → xi + δγyi (2.4)

in conjunction with shear-periodic boundary conditions. A similar procedure can
also be performed to study the continuous set of static packings for shear strains
in the opposite direction between γs and γs−1. Note that this procedure generates a
series of static packings over a range of shear strain at fixed zero pressure, not at
fixed volume as in previous studies of quasistatically sheared Lennard–Jones [29]
and other model glasses [30].

A schematic of the process for generating the continuous set of static packings
between shear strains γs and γs+1 (or γs and γs−1) is shown in Figure 2.5. Panels (a)
and (b) show two possible evolutions of the potential energy landscape following
a shear strain step δγ . In (a), no particle rearrangement event occurs and the local
minimum (1) can be continuously deformed into local minimum (4) by applying
shear strain δγ . The dynamics of the system can be summarized as follows: we
apply a shear strain δγ to the initial static packing with strain γ (1), which shifts
the point in configuration space and the potential energy landscape (2). The energy
is then minimized at fixed shear strain γ + δγ (3), and the system is decompressed
(or compressed, followed by energy minimization) to bring it to a static packing
with infinitesimal overlap (4). The static packings at shear strains γ (1) and γ + δγ

(4) are overlayed in panel (c). Note that the particle contact networks are identical
at γ (gray) and γ + δγ (black).

In contrast, Figure 2.5(b) shows the evolution of the system when at least one
particle rearrangement occurs following a shear strain step. In this case, a shear
strain δγ is applied to a static packing at shear strain γ (1), and the system moves in
configuration space so that it exists in the basin of a new local minimum (2). Upon
energy minimization at fixed γ + δγ , the system moves to an unjammed packing
(3). Following compression and energy minimization, the system resides in a new
static packing at γ + δγ (4) that is not continuously related to the static packing at
γ . In Figure 2.5(d), we overlay the static packings at γ (gray) and γ + δγ (black)
and show that the particle contact networks are not the same.

For each distinct static packing at γs , we can monitor the particle contact network
as the system evolves toward γs+1 (and γs−1) and identify any changes that occur.
If there are changes in the particle contact network, physical quantities such as
the jamming packing fraction φJ , pressure, and shear stress (and their derivatives)
are discontinuous. For example, in Figure 2.6(b), we show a discontinuity in φJ at
γs < γ ∗ < γs+1, where a particle rearrangement event occurs. δγ can be tuned to
eliminate as many of the particle rearrangement events as possible.
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Figure 2.5 Schematic of the evolution of the potential energy landscape during
quasistatic shear at fixed zero pressure from shear strain γ to γ + δγ . In (a),
the system evolves continuously from the local minimum at shear strain γ (1)
to the one at γ + δγ (4) because there are no particle rearrangement events
during the shear strain interval. In contrast, in (b) the system undergoes particle
rearrangement events during the strain interval δγ , and therefore it resides in a
fundamentally different potential energy minimum at γ + δγ (4) compared to
the one at γ (1). Snapshots of the static packings at shear strain γ (gray) and
γ + δγ (black) are superimposed in (c) and (d), which correspond to the potential
energy landscape dynamics in (a) and (b), respectively. In (d), three of the original
contacts are removed and four new contacts are generated as a result of the
particle rearrangements that occurred during the strain interval δγ . Adapted from
reference [28].

(a) (b)

J J

Figure 2.6 Schematic of the evolution of the jamming packing fraction φJ during
the shear strain interval γs to γs+1. In (a) the particle contact network does not
change from γs to γs+1, while in (b), it does at γ ∗. Adapted from reference [28].

In Figure 2.6(a), we show the continuous evolution of φJ between γs and γs+1

when there are no particle rearrangement events. This continuous evolution of φJ

represents a portion of a ‘geometric family’ of static packings all with the same
particle contact network that exist over a continuous range of shear strain from
γs to γs+1. In Figure 2.7, we show results where we have pieced together these
continuous segments to construct nearly all of the geometric families over the full
range of shear strain for a small N = 10 frictionless granular system [28]. Note
that even though there are an infinite number of static packings over the continuous
range of shear strain, there are a finite number of geometric families that can be
counted.
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Figure 2.7 The solid lines show the jammed packing fraction φJ versus shear
strain γ for different geometric families. The continuous geometric families of
static packings possess the same contact network over a given range of shear
strain. When the solid line breaks, the continuous family becomes unstable and
the particle contact network changes. The families are symmetric with respect
to reflection about γ = 0.5 (dashed vertical line). This figure is adapted from
reference [28].

(a) (b) (c) (d)

Figure 2.8 Snapshots of static particle packings created using the isotropic com-
pression method in Section 2.1 (a) 2 : 1 (fraction of small particles to fraction
of large particles) mixture of bidisperse disks with diameter ratio σl/σs = 1.4,
(b) 2 : 1 mixture of bidisperse ellipses with ratio of major axes al/as = 1.4,
(c) polydisperse mixture of disks with a flat probability distribution for the diam-
eters between σs and 1.4σs , and (d) monodisperse spheres.

2.3 Other important variables

The packing-generation methods described in Sections 2.1 and 2.2 can be general-
ized to study packings as a function of a number of important variables that affect
their structural and mechanical properties. These parameters include the dimen-
sion (2D, 3D, and higher dimensions) [31], particle size distribution [32], boundary
conditions [28], and particle shape [16]. In Figure 2.8, we show several different
types of static granular packings that we generated in prior studies, including (a)
bidisperse (2N/3 small and N/3 large) disks with diameter ratio σl/σs = 1.4 [13],
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(b) bidisperse (same composition as in (a)) ellipses with ratio of the major axes
al/as = 1.4 [33], (c) polydisperse disks with a uniform distribution of particle sizes
with width 0.4σs and mean 1.2σs [34] (labeled polydispersity p = 1.4), and (d)
monodisperse spheres [13].

Important control variables for the particle size include the diameter ratio and
relative number of large and small particles for bidisperse, tridisperse, or other
systems with discrete particle species, and properties of the particle size distribution
for continuously polydisperse systems, i.e. the mean and rms width for uniform,
normal, and log-normal size distributions.

The packing-generation procedures we discussed in Sections 2.1 and 2.2 employ
periodic boundary conditions at either fixed zero pressure (Section 2.1) or fixed
shear strain (Section 2.2). However, it is straightforward to generalize these meth-
ods to systems with smooth or rough fixed walls [2], constraints imposed at the
boundaries, such as constant stress [35], and gravity [36].

In addition, particle shape is a key variable that significantly affects the jamming
transition in particle packings. Introducing nonspherical shapes does not signifi-
cantly alter the steps in the packing-generation procedures in Sections 2.1 and 2.2.
However, even for simple anisotropic shapes, such as ellipses, the calculation of
the contact distance between grains i and j is nontrivial since it depends on r̂ij and
grain orientations.

2.3.1 Particle shape

Recent studies have suggested that particle shape strongly influences the nature of
the jamming transition [33], [37]. Specifically, the scaling of the shear modulus
with packing fraction and the shape of the vibrational spectrum are fundamen-
tally different from that for spherical particles. Thus, the ability to create jammed
packings of nonspherical particles and study the effects of particle shape on the
jamming transition are clearly timely and important research efforts.

Particle shape is an enormous parameter space. In this discussion, we will
focus on three relevant shape variables, all of which are captured in Figure 2.9:
(1) convex (a) versus concave (b)–(d) shapes, (2) rigid anisotropic grains with
different degrees of symmetry constructed by fusing spherical particles together
(b)–(d), and (3) ellipsoidal particles (a). The jamming behavior of convex vs.
concave particle shapes can be contrasted by studying ellipsoidal vs. rigid linear
n-mers, where n is the number of spherical particles that have been fused together.
Fused colloidal silica spheres can now be made reliably in a variety of shapes,
including dimers and trimers. The benefit of studying rigid anisotropic particles
formed from fusing spherical particles together, such as linear n-mers, asymmetric
n-mers, and nonlinear n-mers, is that the contact distance, forces, and interaction
energy between grains i and j can be calculated by assuming that the grains are



P1: SFK/UKS P2: SFK Trim: 247mm × 174mm Top: 14.762mm Gutter: 18.98mm

CUUK1151-02 CUUK1151-Olafsen 978 0 521 11590 2 March 28, 2010 6:20

36 Experimental and Computational Techniques
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Figure 2.9 The packing-generation methods described in Section 2 can be
employed in systems with anisotropic particle shapes, such as ellipsoids, linear
n-mers, asymmetric n-mers, and nonlinear n-mers. Examples of geometric param-
eters that can be tuned are the aspect ratio α = L/D, asymmetry s = D2/D1 for
asymmetric dimers, and bending angle c = h/L for nonlinear trimers.

composed of a series of spherical particles. The calculation of the contact distance
and all other quantities is trivial for spherical particles. In contrast, ellipsoidal par-
ticles have simple nonspherical shapes, yet the calculation of the contact distance,
interaction forces, and other quantities is quite complicated.

The packing-generation procedures discussed in Sections 2.1 and 2.2 require the
specification of a potential energy function V (�ξ ) and its first derivatives ∂V (�ξ )/∂�ξ ,
where �ξ represents the configurational degrees of freedom, e.g. �ξ = {xi, yi, θi}
with i = 1, . . . , N for ellipses, where θi is the angle between x̂ and the long axis of
grain i. We also assume that the potential energy only depends on rij /σij , where σij

is the contact distance between grains i and j . For spherical particles, the contact
distance σij = (σi + σj )/2 is a constant (average diameter) that depends on the
particle species in polydisperse systems and the only relevant derivatives of the
potential energy are ∂rij /∂ri , where r = x, y, z. For nonspherical particles,
the contact distance is not constant and depends on r̂ij and the orientations of
particles i and j . For ellipsoidal particles, we define σij as the true contact dis-
tance: the center-to-center separation rij at which two particles come into contact
at fixed orientation. The definition of σij for two ellipses i and j with orientations
μ̂i and μ̂j and center-to-center separation rij is shown in Figure 2.10. The method
for calculating σij for ellipsoidal particles is described in detail below.

2.3.2 Contact distance for ellipsoidal particles

To generate static packings of ellipsoidal particles using soft-particle methods,
we must be able to calculate the potential energy V (�ξ ) and its derivatives for
general configurations �ξ , which involves determining the contact distance σij and
its derivatives. This section will provide a survey of the techniques for calculating
σij in both 2D and 3D. In 3D, we will limit the discussion to spheroids – ellipsoids
with one axis of symmetry. A spheroid in which the long (short) axis is the axis of
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i

j

μ̂i

μ̂j
r̂ij

σij

Figure 2.10 Definition of the contact distance σij for ellipsoidal particles i and j
with unit vectors μ̂i and μ̂j that characterize the orientations of their major axes.
σij is the center-to-center separation rij at which ellipsoidal particles first touch
when they are brought together along �rij at fixed orientation.

Figure 2.11 (a) Oblate and (b) prolate spheroids with aspect ratios α = 0.375 < 1
and α = 1.7 > 1.

symmetry is termed an oblate (prolate) spheroid, as shown in Figure 2.11. We will
refer to both ellipses and spheroids as ellipsoidal particles and characterize the ratio
of the major to minor axes by α = a/b in 2D or the ratio of the polar to equatorial
lengths in 3D. As shown in Figure 2.10, configurations of ellipsoidal particles are
specified by the centers of mass �ri and the orientation of the major axis μ̂i of each
particle i.

One of the simplest methods for obtaining an approximate expression for the
contact distance between ellipsoidal particles is the ‘Gaussian approximation’ intro-
duced by Berne and Pechukas [38]. In this method, the contact distance between two
ellipsoidal particles of the same size is approximated by finding the overlap between
two Gaussian functions, Gi(�r) and Gj (�r), whose contour surfaces at 1/e coin-
cide with the surfaces of particles i and j . Gi(�r) = e−((x−xi )2+(y−yi )2)/a2

i −(z−zi )2/b2
i

for an ellipsoidal particle centered at (xi, yi, zi) with orientation μ̂i = ẑ and
major (minor) axis a (b). More generally, Gi(�r) = e−(r−ri )k(γ −1)kl (r−ri )l , where
γkl = (a2 − b2)μkμl + b2δkl , δkl is the Kronecker delta, and k, l ∈ {x, y, z}. Inte-
grating

∫
Gi(�r)Gj (�r)d3r , we obtain another Gaussian function, G0e

−2(rij /σ
g

ij )2
[39].



P1: SFK/UKS P2: SFK Trim: 247mm × 174mm Top: 14.762mm Gutter: 18.98mm

CUUK1151-02 CUUK1151-Olafsen 978 0 521 11590 2 March 28, 2010 6:20

38 Experimental and Computational Techniques

(b) (d)(a) (c)

Figure 2.12 Ellipses with α = 2 at their ‘Gaussian contact distance’ σ c
ij . For

two ellipses with the same size, (a) the end-to-end configuration is exact, while
(b) the side-to-end configuration has a relative error of 5%. For two ellipses with
aj/ai = 1.4, (c) the end-to-end configuration has a relative error of 1%, while
(d) the side-to-end configuration has a relative error of 10%.

σ
g

ij > σij is an approximation to the true contact distance, and is given by:

σ
g

ij = σ0√
1 − χ

2

∑
±

(r̂ij · μ̂i ± r̂ij · μ̂j )2

1 ± χμ̂i · μ̂j

, (2.5)

where χ = (a2 − b2)/(b2 + a2) and σ0 = b.
The Gaussian approximation was generalized by Cleaver et al. for ellipsoidal

particles with different sizes and aspect ratios [40]. This approximation for the
contact distance σ c

ij has a similar simple analytic form:

σ c
ij = σ0√

1 − χ

2

∑
±

(βr̂ij · μ̂i ± β−1r̂ij · μ̂j )2

1 ± χμ̂i · μ̂j

, (2.6)

where σ0 =
√

(b2
i + b2

j )/2, χ =
(

(a2
i −b2

i )
(
a2

j −b2
j

)
(
a2

j +b2
i

)(
a2

i +b2
j

)
)1/2

, and β =
(

(a2
i −b2

i )
(
a2

j +b2
i

)
(
a2

j −b2
j

)(
a2

i +b2
j

)
)1/4

in the Cleaver form. The Gaussian approximation to the contact distance behaves
poorly for ellipsoidal particles with different sizes. In Figure 2.12, we show σ c

ij

for different relative orientations of bidisperse ellipses; the relative deviation from
the true contact distance can be as large as e ∼ 10% for aj/ai = 1.4 and α = 2.0.
The Gaussian approximation should therefore not be used to study 2D amorphous
ellipse packings since polydispersity is required to suppress bond orientational
order. For monodisperse ellipses with α = 2.0, 0% < e < 5%, and similar results
are expected for 3D systems.

Perram and Wertheim pursued a related approach, yet their formulation yields the
exact contact distance for ellipsoidal particles with different sizes in 2D and 3D [41].
They define F

single
i (�r) = (r − ri)k(γ −1)kl(r − ri)l , where F

single
i (�r) > 1(< 1) for a

point �r outside (inside) ellipsoidal particle i. They were able to show that for
a given λ, the function F

pair
ij (�r, λ) = λF

single
i (�r) + (1 − λ)F single

j (�r) has a unique
minimum at �r = �rmin(λ). Note that F

pair
ij (�rmin(λ), λ) = 0 when �rmin(λ = 0) = �rj
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(a) (b) (c)

0.2 0.4 0.6 0.8 1.0
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Figure 2.13 Three configurations with the same r̂ij , μ̂i , and μ̂j , but different rij

are shown in panels (a)–(c). The solid curve �rmin(λ) starts from the center of
ellipse j at λ = 0 and ends at the center of ellipse i at λ = 1. In (a), Fij > 1 for
nontouching ellipses; in (b), Fij = 1 for ‘just-touching’ ellipses; and in (c), Fij < 1
for overlapping ellipses. σij has the same value for (a)–(c). In (d), we show that
σ (λ)/σij = [Fij /F

pair
ij (�rmin(λ), λ)]1/2 has a minimum at λ∗ = 0.415 (filled circle)

for this particular choice of r̂ij , μ̂i , and μ̂j .

and �rmin(λ = 1) = �ri . Thus, λ parameterizes a curve �rmin(λ) for which the function
F

pair
ij (�rmin(λ), λ)) goes from 0 at λ = 0 back to 0 at λ = 1 and is concave down for

λ in the range [0, 1] [41].
For the nonoverlapping ellipsoidal particles i and j in Figure 2.13(a),

F single(�rmin(λ), λ) > 1 for both i and j over some range of λ, which implies that
F

pair
ij (�rmin(λ), λ) > 1 for the same range of λ. For the overlapping ellipsoidal par-

ticles in Figure 2.13(c), F single(�rmin(λ), λ) < 1 for either ellipses i or j for all
λ, and thus F

pair
ij (�rmin(λ), λ) < 1 for all λ [41]. Since the maximum over λ of

F
pair
ij (�rmin(λ), λ) < 1 for overlapping ellipsoidal particles and is greater than unity

for nonoverlapping ellipsoidal particles, the two particles will come into contact
when Fij ≡ maxλ F

pair
ij (�rmin(λ), λ) = 1. Perram and Wertheim further showed that

Fij = (rij /σij )2, where the contact distance σij = minλ σ (λ) and σ (λ) = σ c
ij with

λ-dependent parameters σ0(λ) = 1
2

√
b2

i

λ
+ b2

j

1−λ
, χ (λ) =

(
(a2

i −b2
i )

(
a2

j −b2
j

)
(
a2

j + 1−λ
λ

b2
i

)(
a2

i + λ
1−λ

b2
j

)
)1/2

,

and β(λ) =
(

(a2
i −b2

i )
(
a2

j + 1−λ
λ

b2
i

)
(
a2

j −b2
j

)(
a2

i + λ
1−λ

b2
j

)
)1/4

. We obtain the Cleaver Gaussian approximation

for σij , if instead of minimizing σ (λ) over λ, we set λ = 1/2 [42, 40].
The final step in determining the contact distance is to calculate λmin at which

σ (λ) is a minimum. This task can be approached in two ways: either minimize
σ (λ) numerically or derive an analytical expression for λmin. We prefer the latter
because it improves the efficiency and accuracy of the calculation. Determining
λmin involves solving a quartic (for 2D bidisperse ellipses) or quintic (for 3D
monodisperse ellipsoids) polynomial equation.

We now sketch an outline for deriving these polynomial equations since this has
not yet appeared in the literature. First, minimizing σ (λ) with respect to λ is the
same as maximizing σ−2(λ) over λ. We then make the substitution y = λ − 1/2
(because it simplifies the algebra) and define h(y) = [σ (y + 1/2)]−2. Thus, to find



P1: SFK/UKS P2: SFK Trim: 247mm × 174mm Top: 14.762mm Gutter: 18.98mm

CUUK1151-02 CUUK1151-Olafsen 978 0 521 11590 2 March 28, 2010 6:20

40 Experimental and Computational Techniques

λmin, we must solve dh(y)/dy = f (y)/g(y) = 0 for ymin, where f (y) and g(y)
are polynomials, by solving for the roots of f (y). For 2D bidisperse ellipses (3D
monodisperse ellipsoids), f2D(y) (f3D(y)) is a quartic (quintic) polynomial with
coefficients that depend on four parameters J , K , L, and M:

f2D(y) = q4y
4 + q3y

3 + q2y
2 + q1y + q0 (2.7)

q0 = 1

16
J (L + 4) − 1

16
K(J + 4) (2.8)

q1 = −(1 + K/2)(J + 2) (2.9)

q2 = −1

2
J (L + 6) − 1

2
K(3J + 2) (2.10)

q3 = −2JK (2.11)

q4 = J (L − K) (2.12)

J = a2
j − (a2

j − b2
j )(r̂ij · μ̂j )2

a2
i − (a2

i − b2
i )(r̂ij · μ̂i)2

− 1 (2.13)

K =
(

ajbj

aibi

)2

− 1 (2.14)

L = 1

a2
i b

2
i

(a2
i a

2
j + b2

i b
2
j + (a2

i − b2
i )(a2

j − b2
j )(μ̂i · μ̂j )2) − 2 (2.15)

f3D(y) = q5y
5 + q4y

4 + q3y
3 + q2y

2 + q1y + q0 (2.16)

q0 = 1

16
J (L + 4) (2.17)

q1 = −(J + 2) + 1

8
M(L + 8) (2.18)

q2 = −1

2
J (L + 6) (2.19)

q3 = −M(L + 4) (2.20)

q4 = JL (2.21)

q5 = 2ML (2.22)

J = α2 − 1

α2

((r̂ij · μ̂i)2 − (r̂ij · μ̂j )2)

1 − α2−1
α2 (r̂ij · μ̂i)2

(2.23)

L = (α2 − 1)2

α2
(1 − (μ̂i · μ̂j )2) (2.24)

M = (α2 − 1)2

α2

1

1 − α2−1
α2 (r̂ij · μ̂i)2

((r̂ij · μ̂i)
2 + (r̂ij · μ̂j )2

− μ̂i · μ̂j (2(r̂ij · μ̂i)(r̂ij · μ̂j ) − μ̂i · μ̂j ) − 1). (2.25)
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Table 2.1 The base 10 logarithm of the relative error of the Gaussian, linear, and
quadratic approximations for the contact distance from the exact value,
log10(|σapprox − σexact|/σexact), for bidisperse ellipses with size ratio 1.4 over a
range of aspect ratios α. These estimates were averaged over r̂ij and orientations.

Approximation α = 1.0 1.2 1.5 2.0 3.0 10.0

Gaussian −2.0 −2.0 −1.9 −1.6 −1.3 −0.4
Linear −3.9 −3.8 −3.7 −3.6 −1.5 −0.1
Quadratic −6.3 −6.2 −6.3 −5.0 −3.8 −1.4

The coefficients J , K , L, and M reveal the symmetry of the polynomial f (y).
M = 0 in two dimensions, L = 0 when ellipsoidal particles i and j of the same
aspect ratio have parallel orientations, K = 0 when i and j have the same size,
and J = 0 when the orientations of ellipsoids i and j of the same size and aspect
ratio have the same angle with respect to their center-to-center vector �rij . The
symmetries found for M , L, and K are obvious (2D, parallel, and same size), but
the symmetry found in J is not. When J = 0, f3D(y) only contains odd terms in y,
which implies that λmin = 1/2 is a solution, and we have a simple expression for
the contact distance in a nontrivial case!

We are now in a position to quantitatively compare the exact results for the
contact distance to various levels of approximation. For example, we can truncate
f (y) at either linear or quadratic order, which yield:

λlinear
min = −q0

q1
; λquadratic

min = −

(
q1 −

√
q2

1 − 4q0q2

)
2q2

. (2.26)

Even at this level of approximation, the solution is significantly more precise than
the commonly used Gaussian approximation, and is more efficient than numerically
solving a quartic or quintic equation at each step in the packing-generation process.
To demonstrate the improved precision, we include Table 2.1 that lists the relative
error in finding the true contact distance for the Gaussian, linear, and quadratic
approximation methods for two ellipses i and j with aj/ai = 1.4 over a range
in aspect ratios from α = 1 to 10. These estimates were averaged over r̂ij and
orientations.

2.3.3 Particle shape annealing

Static packings of anisotropic particles can also be generated using a ‘particle shape
annealing’ method. This method involves starting with a static packing of spherical
particles, changing a shape parameter at a given rate to cause the particles to become
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Figure 2.14 Distribution of (a) packing fractions φJ and (b) mean contact num-
bers 〈z〉J at jamming onset for ellipses at α = 1.6 using the isotropic compres-
sion packing-generation method as a function of system size N = 32 (black dot
dashed), 64 (gray dashed), 256 (black dashed), 512 (gray solid), and 1024 (black
solid).

nonspherical, and using the compression method described in Section 2.1 to obtain
a packing of just-touching particles with the new shape parameter.

We provide specific details of the particle shape annealing method for creating
packings of ellipsoidal particles at a given aspect ratio α. The process starts with
a static packing of spherical particles. The aspect ratio of each disk/sphere is
then increased from α = 1 to 1 + �α with the direction of the major axis chosen
randomly. A static packing of ellipsoidal particles at α = 1 + �α is formed from
this initial state using the compression method from Section 2.1. The ellipsoidal
particles in this new packing are further elongated, and the protocol is repeated
until a packing with the desired aspect ratio is reached. From our previous studies
of ellipse packings [33], we find that the average jammed packing fraction 〈φJ 〉
is larger than that obtained using the isotropic compression method, even though
the packings do not possess increased spatial or orientational order as shown in
Figure 2.18(b). In addition, the particle shape annealing procedure does not depend
sensitively on the step size �α, at least for sufficiently small �α.

2.4 Distributions of jamming onsets

In previous sections, we described several methods for generating jammed particle
packings. By creating packings for large numbers of independent, random initial
conditions, we can create an ensemble of static packings and measure the distri-
bution of jammed packing fractions P (φJ ) as shown in Figure 2.14(a) for ellipses
at α = 1.6 and several system sizes from N = 32 to 1024. Note that the distribu-
tion is broad for small systems, but approaches a δ-function in the large-N limit.
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Packing-generation procedures for frictionless spherical and nonspherical grains
give rise to jammed packings with well-defined mean packing fractions 〈φJ 〉 in the
large-system limit. In previous studies, we found that the width W of the packing
fraction distribution for spherical particles scaled as W ∼ N−ν , with ν ≈ 0.5 [13].
Preliminary studies indicate that the scaling exponent depends on the aspect ratio
α for ellipsoidal particles [43].

3 Mechanical stability

After static particle packings are generated, we can test to determine whether they
are mechanically stable, i.e. in a state of total force and torque balance for each
particle (except floater particles that are not locally stable) and stable with respect
to infinitesimal deformations. Mechanical stability can be assessed by calculating
the dynamical matrix of second derivatives of the total potential energy V [11]:

Mkl = ∂2V

∂�ξk∂�ξl

, (2.27)

where �ξk are the relevant configurational degrees of freedom for particle k. As
examples, �ξk = {xk, yk} for disks and �ξk = {xk, yk, dkθk} for ellipses, where xk and
yk are the center of mass coordinates, θk is the angle between the major axis and x̂,
and dk is a lengthscale for dimensional consistency that is typically obtained from
the second moment of the mass distribution of the grain about its major axis. For

ellipses, dk = 1
4

√
a2

k + b2
k . In this discussion, we will assume that all grains have

mass m = 1 with a uniform mass distribution. The dimension of the dynamical
matrix is determined by the number of degrees of freedom (DOF) dfN for a
given system, where N = N − Nf and Nf is the number of floaters in the system.
For example, df = 2 (3) for disks (ellipses). The dynamical matrix is real and
symmetric with dimension dfN × dfN .

To determine whether or not a static packing is mechanically stable, we diag-
onalize Mkl to find its dfN eigenvalues ei and associated eigenvectors êi , with
ê2
i = 1. For systems with periodic boundary conditions, d of these eigenvalues are

zero due to translational invariance. For mechanically stable states, the dynamical
matrix possesses dfN − d nontrivial eigenvalues with ei > 0. This implies that all
nontrivial deformations give rise to particle overlap and an increase in the potential
energy to second order. In practice, we typically use a threshold (e.g. emin = 10−6)
above which eigenvalues are deemed nonzero [28].

To illustrate the importance of testing mechanical stability, we show two N = 7
monodisperse static disk packings (solid circles) in Figures 2.15(a) and (b) at nearly
the same packing fraction φ ≈ 0.73. The packing in (a) is mechanically stable,
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(a) (b) (c)

Figure 2.15 (a) Mechanically and (b) locally stable packings at nearly identi-
cal packing fractions. The original (perturbed) packings are shown using solid
(dashed) circles. The packings are deformed according to: �ξ = �ξ0 + δê1, where
�ξ0 is the unperturbed configuration, δ is the amplitude of the perturbation, and
ê1 is the eigenvector of the dynamical matrix (evaluated at �ξ0) corresponding to
the lowest nontrivial eigenvalue. Solid lines connecting the centers of correspond-
ing particles in configurations �ξ and �ξ0 at δ = 0.2 are also shown. (c) Change in
potential energy per particle V (�ξ ) − V (�ξ0) versus δ for the (a) mechanically stable
(solid line) and (b) locally stable (dashed line) configurations. Note that the locally
stable configuration can be deformed along ê1 without energy cost.

while that in (b) is only locally stable [44]. To show this, we diagonalized the
dynamical matrix for these configurations and then deformed them by δ along the
eigenvector ê1 corresponding to the smallest nontrivial eigenvalue: �ξ = �ξ0 + δê1.
In Figure 2.15(c), we plot the change in energy �V ≡ V (�ξ ) − V (�ξ0) versus δ.
�V ∼ δ2 for the mechanically stable packing, while �V = 0 for the locally stable
packing. In Figure 2.15(b), we can see that for locally stable packings there are
collective modes that do not give rise to particle overlap and thus do not change
the potential energy.

The spectrum of normal modes (or vibrational frequencies) ωi = √
ei/M , where

M = Nm, yields significant insight into the structural and mechanical properties
of MS packings. The normal mode spectra are typically visualized in two ways:
(1) the ordered list of dfN − d nonzero frequencies and (2) the density of states
(DOS) D(ω) = (N(ω + δω) − N(ω))/δω, where N(ω) is the number of modes
with frequency ω. The spectrum of normal modes for jammed bidisperse disk
packings is shown in Figure 2.16, where we plot the sorted list of frequencies
and DOS in (a) and (b), respectively. For jammed disk packings, we see the
characteristic continuous increase in the sorted frequencies in (a) and plateau in
the DOS at low frequencies in (b) [13]. In contrast to jammed sphere packings, we
find three distinct regimes, separated by two gaps, in the normal mode spectrum
for jammed ellipse packings over a range of aspect ratios [33], [37] as shown in
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Figure 2.16 (a) Vibrational modes ωi sorted in increasing order versus index i/2N
normalized by the number of DOF and (b) density of vibrational modes D(ω)
(averaged over 100 configurations) for jammed 50–50 bidisperse disk packings
with diameter ratio d = 1.4 at φ − φJ = 10−4.
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Figure 2.17 Normal mode frequencies ωi vs. index i/3N normalized by the
number of DOF, sorted by increasing frequency for N = 120 ellipse packings at
six aspect ratios, α = 1.02 (black circles), 1.06 (gray circles), 1.1 (black squares),
1.2 (gray squares), 1.4 (black diamonds), and 1.8 (gray diamonds). The sorted
frequency spectrum possesses three distinct branches (numbered 1, 2, and 3).
Adapted from reference [33].

Figure 2.17. A novel feature of ellipse packings is that in the just-touching limit
perturbations along modes in region 1 give rise to quartic, not quadratic, increases
in potential energy. Moreover, modes in regions 1 and 2 are primarily rotational in
character.



P1: SFK/UKS P2: SFK Trim: 247mm × 174mm Top: 14.762mm Gutter: 18.98mm

CUUK1151-02 CUUK1151-Olafsen 978 0 521 11590 2 March 28, 2010 6:20

46 Experimental and Computational Techniques

4 Measurements of structural and mechanical properties

In previous sections, we discussed methods to generate mechanically stable par-
ticle packings. In this section, we will describe a number of measurements that
can be performed to quantify the structural and mechanical properties of these
jammed packings, which include the contact number, pair distribution function,
structure factor, bond orientational and nematic order parameters, positional cor-
relation functions, and elastic moduli. The focus will be on methodology, not a
comprehensive discussion of the results for jammed particle packings. That is, the
purpose of this section is to facilitate the calculation of these quantities for jammed
particle packings.

4.1 Contact number

In a static granular packing, mechanical stability (to second order) can be achieved
only if the number of contacts is greater than or equal to the number of degrees
of freedom (DOF), Nc ≥ Ndf − d + 1 [45], [46]. We subtract off d trivial DOF
due to translational invariance in systems with periodic boundary conditions and
add 1 from the packing fraction DOF. For N frictionless spherical grains in d

dimensions, jammed packings are isostatic [47], [48] with Nc = Nd − d + 1.
Using Nc = N 〈z〉/2, we obtain 〈z〉iso = 2d − (d − 1)/N for frictionless packings
of spherical particles. In the large-N limit, 〈z〉iso = 2d as shown in Figure 2.18(a)
for α = 1.

When counting the number of contacts in jammed systems, we must first remove
all floaters in the system since they do not contribute to the force network. We
assume that particles are floaters if they are not locally stable. Convex particles
must generally have at least df + 1 contacts to remain locally stable. Thus, disks
must have at least three contacting neighbors; ellipses, 2D n-mers, and spheres
must have at least four contacting neighbors; and ellipsoids and 3D n-mers must
have at least six contacting neighbors. However, counter-examples include a disk
with three contacting neighbors on one side of its equator and an ellipse with three
contacts, whose normals at the points of contact intersect at a single point [16] as
shown in Figure 2.19.

Once all floaters have been removed, Nc is obtained by counting the num-
ber of just-touching (slightly overlapped) pairs of particles. Since there are two
contacting particles for each contact, the average number of contacts per particle
〈z〉 = 2Nc/N . Note that the constraint of mechanical stability is global, i.e. on Nc

or N 〈z〉/2, not the contact numbers of individual grains zi . We show the distribu-
tion of zi for bidisperse disk packings in Figure 2.20. Note that a large fraction of
particles have three (and five) contacts, not four.
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Figure 2.18 Average (a) contact number 〈z〉 and (b) packing fraction at jam-
ming φJ versus aspect ratio α for bidisperse ellipse packings using the isotropic
compression (dashed line) and particle shape annealing methods. Two annealing
rates are shown, �α = 0.05 (solid line) and 0.005 (diamonds). Adapted from
reference [33].

Figure 2.19 Ellipses are generically locally jammed, i.e. the ellipse can neither
translate nor rotate without causing particle overlap with other particles held fixed,
when they possess four or more contacts. However, ellipses can be locally jammed
with three contacts if the normals to the tangent lines at contact happen to intersect
at a single point [16].

Unlike spherical particles, ellipsoidal particles are hypostatic with Nc < Ndf −
d + 1. Packings of ellipsoidal particles can have nearly any value of contact number
from the isostatic value for spherical particles 〈z〉iso = 2d to the isostatic value for
ellipsoidal particles 〈z〉iso = 2df . In Figure 2.18(a), we show that 〈z〉 ranges from
〈z〉 = 4 when α = 1 to 〈z〉 � 6 (for particle shape annealing) near α = 2 for ellipse
packings [16], [33], [37].

4.2 Pair distribution function and structure factor

The pair distribution function g(�r) gives the probability for finding two particles
�r apart in a given system normalized by the probability for finding two particles
separated by �r in an ideal gas at the same density. In isotropic systems, the pair
distribution function only depends on separation r . Here, g(r) can be used to detect
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Figure 2.20 Histogram of the number contacts for individual particles zi for
jammed packings of bidisperse disks. Note that there are significant fluctuations
away from four contacts, but all particles have zi ≥ 3 except for floaters.

whether systems exist in the gas, liquid, or solid phases, and provide a sensitive
measure of the distance to jamming in particle packings. g(r) can be expressed as:

g(�r) = V

N2

〈
N∑

i=1

N∑
i �=j

δ(�r − �rij )

〉
, (2.28)

where V is the volume of the system [27]. In simulations, the δ-function is replaced
by a function that is nonzero over a small range δr . Also, in periodic systems with
simulation cell size L, the maximum separation is L/

√
2; however, the statistics

are greatly reduced for r > L/2. In liquids and solids, g(r) is a function φ and T ,
but in model hard sphere systems, g(r) is only a function φ.

The pair distribution function has strikingly different features for fluids, jammed
packings, and crystalline systems as shown in Figure 2.21. Note that we normalize
r by the rms contact distance 〈σ 2〉1/2 averaged over all particle species to account
for polydispersity and anisotropic particles. For monodisperse systems, 〈σ 2〉1/2 is
the particle diameter. For fluids (Figure 2.21(a)) with only short-range correlations,
g(r) has noticeable first and second neighbor peaks and then decays to 1 beyond
3–4 particle diameters.

For crystalline solids, g(r) possesses sharp peaks that correspond to the
different interparticle distances allowed by the symmetry of the lattice. In
Figure 2.21(c), we show g(r) for a hexagonal crystal in 2D. The hexagonal
lattice is composed of linear combinations of the vectors n̂1 = (1, 0) and n̂2 =
(1/2,

√
3/2). In units of the particle diameter, the lattice vectors are �nkl =

kn̂1 + ln̂2, where k, l are nonnegative integers, and the corresponding distances
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Figure 2.21 Pair distribution function, g(r), for (a) liquid (b) jammed, and (c)
crystalline systems. In (a), we show g(r) for a 2D bidisperse system at φ = 0.7 and
temperature T/ε = 0.004 � Tg (where kb = 1 and Tg is the glass transition) with
repulsive linear spring interactions. In (b) (adapted from reference [13]), we show
g(r) for jammed 3D monodisperse packings at φ − φJ = 10−2 using the repulsive
linear spring potential. Note that the first peak in (b) extends to g(r → σ ) ≈ 40.
g(r) for a hexagonal crystal in 2D near φhex = π/2

√
3 and T = 0 is plotted in

(c). The dashed vertical lines indicate the possible separations for the hexagonal
lattice.

are nkl = √
k2 + lk + l2 = 1,

√
3, 2,

√
7, 3, 2

√
3,

√
13, . . . . A similar procedure

can be followed for other crystals, e.g. the face centered cubic (FCC) lat-
tice, with n̂1 = (1, 0, 0), n̂2 = (1/2,

√
3/2, 0), and n̂3 = (1/2, 1/2

√
3,

√
2/3), and

nklm = √
k2 + l2 + m2 + kl + lm + km = 1,

√
3, 2,

√
6,

√
7, . . . .

Even though g(r) for glassy systems does not show strong signatures that signal
the glass transition [49], there are several key features of g(r) that signal the onset
of jamming. For example, as systems approach the jamming transition, the height
of the first peak diverges as its width tends to zero and the broad second peak found
in liquids splits into two peaks, both of which become singular near jamming [13],
[50]. In Figure 2.21(b), we show these features for a 3D monodisperse system with
φ − φJ = 10−2.

The pair distribution function can be measured easily in granular and col-
loidal systems via direct visualization of particles. On smaller lengthscales or
in cases where direct visualization is not possible, we can obtain structural infor-
mation, such as the structure factor S(�k) from light or x-ray scattering. S(�k) is
the autocorrelation function of Fourier transformed density ρ(�k) = ∑N

i=1 eı�k·�ri ,
S(�k) = N−1〈ρ(�k)ρ(−�k)〉, which can be written as:

S(�k) = 1

N

〈
N∑

i=1

N∑
i �=j

eı�k·(�ri−�rj )

〉
, (2.29)

where �k = (2π/L)(nxx̂ + nyŷ + nzẑ), with nx, ny, nz = 0, 1, . . . , are the allowed
wavevectors and angle brackets denote an ensemble average. The isotropic S(k)
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Figure 2.22 Angular averaged structure factor S(k) for jammed monodisperse
sphere packings at φ − φJ = 10−4. Adapted from reference [13].

can be obtained by angular averaging over �k/k at fixed k. S(k) is also related to
the spatial Fourier transform of g(r), but since simulations have access to particle
positions, both are typically calculated directly. In Figure 2.22, we show S(k) for
jammed packings of monodisperse spheres at φ − φJ = 10−4. A key feature of
S(k) for jammed packings is the long-lived fluctuations that occur at k∗

n = 2πn/a,
where n = 1, 2, 3, . . . and a is the particle diameter, which are a direct result of
the divergent first peak in g(r). Recent studies have also investigated the novel
power-law scaling of S(k) at low k in jammed sphere packings [51].

4.3 Order parameters

It is important to characterize the translational and orientational order as systems
approach the jamming transition. For example, in granular shear flows we must
distinguish between crystallization kinetics and jamming behavior [52], [53]. Order
parameters that identify various symmetries can be measured and used to quan-
tify order or disorder. We will discuss three commonly used order parameters: the
nematic order parameter P2, which evaluates to one in the case that all orientations
of uniaxial particles are parallel; the bond orientational parameter Q6, which eval-
uates to one for systems in which the positional degrees of freedom have perfect
six-fold symmetry; and a translation order parameter G, which is the ratio of the
first minimum to the first maximum in g(r) and tends to zero as systems crystallize.

The nematic order parameter is defined as P2 = 〈2 cos2 θ − 1
2〉 in 2D and

P2 = 〈 3
2 cos2 θ − 1

2〉 in 3D, where angle brackets denote an average over all parti-
cles in the system, θ is the angle of the particle director (i.e. the unit vector along the
long axis, n̂) relative to the average nematic director N̂ . N̂ can be obtained by cal-
culating 〈n̂〉 or by maximizing P2 with respect to n̂. P2 = 1 for completely aligned
systems, whereas P2 ∼ 1/

√
N (1/

√
Nd) in the absence (presence) of nematic

domains, where Nd is the number of domains. In Figure 2.23(c) and (d) we show
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Figure 2.23 Packings that display varying degrees of bond orientational Q6 and
nematic P2 order. In (a) and (b), we show N = 1024 disk packings with polydis-
persity p = 1.1 (1.4), Qg

6 = 0.93 (0.03), and Ql
6 = 0.95 (0.63). In (c) and (d), we

show N = 256 monodisperse ellipse packings with α = 3 and P2 = 0.64 (0.11)
using two different packing protocols.

monodisperse ellipse packings at aspect ratio α = 3 and roughly the same packing
fraction that were created using two different packing-generation methods. The
method used in (c) produces roughly aligned ellipses with P2 = 0.64, while the
method in (d) produces randomly oriented ellipses with P2 = 0.11.

The bond orientational order parameter Q6, which measures hexagonal registry
of nearest neighbors, can be calculated “locally,” which does not consider phase
information, or “globally,” which allows phase cancellations. A polycrystal will
yield a large value for the local bond orientational order parameter Ql

6, even though
the global order parameter Ql

6 ∼ 1/
√

Nd , where Nd is the number of polycrystalline
domains. The expressions for the global and local definitions of Q6 are given below.
Equations (2.30) (global), (2.31) (local), (2.32) (global), and (2.33) (local) provide
expressions for the bond orientational order parameters in 2D and 3D, respectively:

Q
g

6 = 1

N

∣∣∣∣∣∣
N∑

i=1

1

ni

ni∑
j=1

e6ıθij

∣∣∣∣∣∣ (2.30)

Ql
6 = 1

N

N∑
i=1

1

ni

∣∣∣∣∣∣
ni∑

j=1

e6ıθij

∣∣∣∣∣∣ (2.31)

Q
g

6 =

⎛
⎜⎝4π

13

6∑
m=−6

∣∣∣∣∣∣
1

N

N∑
i=1

1

ni

ni∑
j=1

Ym
6 (θij , φij )

∣∣∣∣∣∣
2
⎞
⎟⎠

1/2

(2.32)

Ql
6 =

⎛
⎜⎝4π

13

6∑
m=−6

1

N

N∑
i=1

1

ni

∣∣∣∣∣∣
ni∑

j=1

Ym
6 (θij , φij )

∣∣∣∣∣∣
2
⎞
⎟⎠

1/2

, (2.33)
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Figure 2.24 The nearest-neighbor range employed for calculations of Q6. The
dashed particle is outside the nearest-neighbor radius rmin, which is defined as the
first minimum of g(r).

where θij is the angle (axial angle in 3D) between a central particle i and neighbors
j , φij is the polar angle between i and j , Y l

m are the spherical harmonics, and ni

denotes the number of nearest neighbors of i. Two particles are deemed nearest
neighbors if their center-to-center separation rij < rmin, which we set as the first
minimum of g(r) as shown in Figure 2.24. The spherical harmonics Ym

l (θij , φij ) =√
2l+1
4π

(l−6)!
(l+6)!e

ımφij P m
l (cos θij ), where P m

l (cos θij ) are Legendre polynomials [54].
In Figure 2.23 we show two jammed disk packings with different polydisper-

sities at roughly the same packing fraction. The lower polydispersity p = 1.1 is
polycrystalline with a large Q

g

6, while the packing at p = 1.4 is amorphous with
a negligible Q

g

6. This shows that weakly polydisperse disk packings are prone to
crystallization. In Figure 2.25, we show that both finite aspect ratio α and poly-
dispersity p give rise to disorder. α > 1.2 and p > 1.2 both lead to amorphous
packings with small Q

g

6. In Figure 2.26, we show snapshots of dimer packings as a
function of increasing α and disorder. Panels (a)–(f) correspond to the dashed line
in Figure 2.25.

We also mention briefly the order parameter G = g(rmin)/g(rmax) that is sensitive
to translational order. It is zero for crystalline systems, but is a finite constant for
jammed systems. It has been used for example in studies of metallic and structural
glasses to determine the onset of crystallization as a function of cooling rate [55].

4.4 Correlation functions and lengths

Although jammed systems are amorphous on macroscopic scales, they can possess
order over short lengthscales that is averaged out when calculating global order
parameters such as Q6 and P2. For instance, jammed systems of monodisperse disks
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Figure 2.25 Q6 (global) versus aspect ratio α for monodisperse ellipse packings
(solid line), α for 2D dimer packings (dashed line), and polydispersity p for disk
packings (dot-dashed line). All data are for N = 256 particles.

Figure 2.26 Jammed packings of N = 256 dimers with aspect ratios (a) α = 1.04,
(b) 1.1, (c) 1.2, (d) 1.3, (e) 1.4, and (f) 1.6. Corresponding global Q6 values are
plotted in Figure 2.25 (dashed line).

form polycrystals, which yield a low value of Q
g

6 because the ordered domains are
out of phase with each other. Similarly, uniaxial objects form nematic domains when
quenched rapidly [56]. We will now review several spatial correlation functions
that provide correlation lengths related to the size of ordered subregions.

We will first measure a spatial correlation length from the decay of correlations
in g(r). As we showed earlier in Figure 2.21, the fluctuations in g(r) − 1 die out
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Figure 2.27 The magnitude of the complex Q6 spatial correlation function for
N = 1024 jammed disk packings with polydispersity p = 1.1 (solid black), 1.2
(solid gray), 1.3 (dashed black), 1.4 (dashed gray), and 1.5 (dot–dashed black).

quickly for fluid systems, less quickly for jammed systems, and persist over large
distances for crystalline systems. In Figure 2.28(b), we plot the local maxima of
g(r) − 1 for disk packings with different polydispersities. The decay of correlations
is exponential with a correlation length ξ that grows with decreasing polydispersity
as shown in Figure 2.29.

The Q6 spatial correlation function also provides a correlation length related
to fluctuations in particle positions [57]. Just as we defined Q

g

6 and Ql
6 averaged

over the whole system, we can also define qi
6 for each particle i. In 2D, qi

6 =
n−1

i

∑ni

j=1 e6ıθij . We consider two spatial correlation functions formed from qi
6: the

complex Q6 correlation function 〈q6(r)q6(0)〉 and the magnitude Q6 correlation
function 〈|q6(r)||q6(0)|〉. These correlation functions are calculated by choosing a
bin size δr , binning all values of q6(r ′)q6(0) (or |q6(r ′)||q6(0)|) between r ′ = r and
r ′ = r + δr , and then dividing by the number of pairs between r and r + δr . Since
q6(r)q6(0) is a complex number and contains phase information, the difference
between these two correlation functions is analogous to the difference between
the order parameters Q

g

6 and Ql
6. The complex Q6 correlation function is sensitive

to fluctuations in phase. Therefore, it should decay to 1/
√

Nb in an amorphous
system, where Nb is the number of bonds, or 1/

√
Nd in a polycrystal. In contrast,

the magnitude Q6 correlation function is not sensitive to fluctuations in phase.
In Figure 2.27, we show the magnitude of the complex Q6 correlation func-

tion |〈q6(r)q6(0)〉| as a function of polydispersity for jammed disk packings.



P1: SFK/UKS P2: SFK Trim: 247mm × 174mm Top: 14.762mm Gutter: 18.98mm

CUUK1151-02 CUUK1151-Olafsen 978 0 521 11590 2 March 28, 2010 6:20

Computational methods to study jammed systems 55

(b)(a)

0 4 8 12 16

0

lo
g 10

m
ax

0 4 8 12 16
r / s2 1/2

0
lo

g 10
 C

(r r

) m
ax

g

r / s2 1/2

Figure 2.28 Local maxima of (a) C(r) (defined in the text) and (b) g(r) − 1 for disk
packings with polydispersities p = 1.1 (circles), 1.2 (squares), 1.3 (diamonds),
1.4 (upward triangles), and 1.5 (leftward triangles). The lines show least-square
fits to e−r/ξ .
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Figure 2.29 Correlation length ξ obtained from the decay of the local maxima
of C(r) = |〈q6(r)q6(0)〉 − 〈q6(∞)q6(0)〉| (dashed line) and g(r) − 1 (solid line)
shown in Figure 2.28 for disk packings as a function of polydispersity p.

|〈q6(r)q6(0)〉| decays more slowly as the polydispersity decreases due to the
increase in polycrystalline domain size as shown in the snapshots in Figure 2.23(a)
and (b). To extract a correlation length from the decay of correlations in Fig-
ure 2.27, we plot the local maxima of C(r) = |〈q6(r)q6(0)〉 − 〈q6(r)q6(∞)〉| in
Figure 2.28(a). The correlations decay exponentially with distance over a length-
scale that increases with decreasing polydispersity p. The dependence of the cor-
relation length from |〈q6(r)q6(0)〉| on p appears in Figure 2.29. Note that the
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Figure 2.30 (a) Isotropic compression and (b) simple shear for strain γ = �L/L.

lengthscales from the complex Q6 and g(r) correlation functions show a marked
departure at low polydispersities.

4.5 Bulk and shear moduli

The mechanical properties of jammed systems are qualitatively different from
those of crystalline solids. For example, in crystalline solids, the response to shear
strain is generally comparable to the response to isotropic compression. However, in
jammed, frictionless particulate systems, the response to shear is much weaker than
that for isotropic compression. In this section, we will demonstrate this property
by calculating the static bulk modulus, B, (response to isotropic compression) and
shear modulus, G, (response to shear strain) for jammed frictionless packings.

To measure B (G), we slightly deform the system by applying an infinitesimal
isotropic compressive (shear) strain as shown in Figure 2.30(a) (Figure 2.30(b)),
allowing the system to relax, and then measuring the resulting isotropic (shear)
stress in the system [13]. We perturb the system over a range of strains to verify
that the measurements are in the linear response regime. The shear and bulk moduli
are obtained by measuring the response of the pressure tensor, Pαβ to the applied
strain, where:

Pαβ = −L−d
∑
i>j

rijα

rijβ

rij

dV

drij

(2.34)

and α, β ∈ {x, y, z}. The bulk and shear moduli are defined by B = φdP/dφ and
G = d�/dγ , where P is the pressure and � = −Pxy is the shear stress (when
x (y) is the shear (gradient) direction). In Figure 2.31, we show that � is linear
in γ and P is linear in φ − φJ over several orders of magnitude in jammed disk
packings.
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Figure 2.31 (a) Shear stress � versus shear strain γ in jammed disk packings
at φ − φJ = 6 × 10−5 (solid black), 3 × 10−4 (solid gray), 1 × 10−3 (dashed
black), 4 × 10−3 (dashed gray), 2 × 10−2 (dot–dashed black). (b) Pressure P
versus φ − φJ for jammed disk packings. P is linear in φ − φJ , and � is linear in
γ over several orders of magnitude.

The magnitude of the shear stress versus strain curve has strong φ − φJ depen-
dence, showing a power law dependence G ∝ (φ − φJ )1/2 [13]. In contrast, the
bulk modulus does not depend strongly on φ − φJ . Thus, in the limit φ → φJ , the
bulk modulus remains finite, while the shear modulus goes to zero. This behavior
has been related to the depletion of low frequency modes in the jamming density
of states [58], [59], revealing fundamental physics not found in crystalline solids.

A subtle aspect of the shear modulus calculations especially for packings of
spherical particles is the wide distribution of yield strains. In Figure 2.31, the yield
strain γy > 10−4 for all φ − φJ shown. However, γy even at fixed φ − φJ has large
fluctuations, and thus for measurements on some configurations it is difficult to
be simultaneously below the yield strain, above numerical noise, and within the
linear regime. Several examples of nonlinear stress versus strain curves are shown
in Figure 2.32. We have noticed that this behavior is diminished in large systems
and systems composed of ellipsoidal particles.

Though B is nearly for same for jammed packings of ellipses and disks
(Figure 2.33, main panel), G is much smaller for ellipses than for disks (Fig-
ure 2.33, inset). In fact, G ∝ (φ − φJ ) for ellipses at sufficiently low φ − φJ ,
whereas G ∝ (φ − φJ )1/2 for disks. For low aspect ratio (α < 1.01), the φ − φJ

scaling intersects the (φ − φJ )1/2 scaling for disks at φ∗(α), below which the sys-
tem has sphere-like (φ − φJ )1/2 scaling, and above which the system has φ − φJ

scaling [33]. This new scaling behavior has been linked to quartic vibrational modes
found in “just-touching” ellipse packings. Thus, near-jamming ellipse packings are
much more susceptible to shear than packings of spherical particles.
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Figure 2.32 (a) Shear stress � versus shear strain γ for the same φ − φJ values in
Figure 2.31. For some of these configurations, the yield strain is extremely small,
which causes nonlinearity in �(γ ).
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Figure 2.33 Shear (main plot) and bulk (inset) moduli versus φ − φJ for ellipse
packings at α = 1.0 (circles), 1.002 (squares), 1.01 (diamonds), 1.1 (upward
triangles), 1.5 (leftward triangles), 2.0 (downward triangles). Notice that over the
range φ − φJ = 10−5 to φ − φJ = 10−1, B changes by a factor of 1.5, while G
changes by a factor of 100. The solid (dashed) line has slope 1 (0.5). Adapted
from reference [33].
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