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9.1 Introduction

Particle shape changes occur in many particulate materials, especially in soft
matter systems, such as colloids, foams, bubbles, and tissues, since the
characteristic stresses that these particles experience are comparable to their
elastic moduli." Particle shape changes play an important role in the spa-
tiotemporal dynamics of soft particulate systems, including white blood cells
crawling through the extracellular matrix,” capillary droplets flowing
through obstacle arrays,® and soft granular particles undergoing cyclic
shear.” Particle deformation allows particles to remain mobile and undergo
rearrangements with neighboring particles even when the system is con-
fluent.” Explicitly modeling particle shape changes is necessary to under-
stand flow and clogging in microfluidic devices,® collective cell motion and
stress transmission in confluent tissues,”® and frictional particle inter-
actions in MEMS devices.’
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Deformable Particles: Modeling and Applications 197

The mechanics that govern particle shape changes can be elastic, surface-
energy dominated, and plastic, as well as intermediate mechanical behavior,
such as elasto-plastic. The mechanics of particle shape change can be
modeled over a range of complexity as shown in Figure 9.1(a)-(c). For elastic
particles, single degree-of-freedom models describe each particle using its
center of mass (Figure 9.1(a)) and mimic elastic shape changes through the
form of the interaction potential with the system boundaries and other
particles. The elastic contact between two particles that repel each other can
be approximated by a Hertzian central force law that is a function of the
interparticle overlap between the particles.'® This approach can also be used
to model adhesive contacts'' and interactions between non-spherical elastic
particles.'” Level-set methods,"*'* which use a signed distance function to
determine interparticle separations, can be employed to calculate the in-
terparticle potential energy and forces between pairs of arbitrarily shaped
non-spherical particles. Even though level-set methods explicitly represent
non-spherical particle shapes, they do not accurately model large particle
shape deformation. Point-particle and level-set methods are computationally
efficient, but they can accurately model particle deformation only for strains
<10%. On the more complex end of the spectrum are volumetric meshes
that accurately model the elastic energy of particle shape deformations, such
as finite element methods (FEM) as illustrated in Figure 9.1(c). These
methods can capture the changes in particle shape that arise from the
propagation of stress through the volume of the particle that are generated
from multiple contacts between the system boundaries and other particles.
Volumetric meshes are computationally costly, and thus these methods have
mainly been used to study packings of <10° nearly spherical particles.'>®

The properties of many soft particulate systems, such as foams," liquid
bridges,” and capillary droplets,*' are governed by surface tension. In these
systems, the shapes of the soft particles are obtained by finding the minimal
surface area for a given particle energy, volume, or boundary condition. Particle
shapes in these systems can be obtained using surface meshes (Figure 9.1(b))
and minimizing the total surface energy subject to the imposed constraints.**>*

(a) Single Point  (b) Surface Mesh  (c) Volume Mesh

Figure 9.1 Methods to describe the mechanics of particle shape deformations: (a)
a single degree of freedom located at the center of mass; (b) a surface
mesh, where the number of degrees of freedom per particle scales
as R, where R is the radius of the particle and d is the spatial
dimension; and (c) a volumetric mesh, where the number of degrees of
freedom per particle scales as R%.
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Given that surface meshes are more computationally efficient than volumetric
meshes, it would be beneficial to develop effective surface energies and meshes
that can describe the shape deformations of elastic particles. Surface meshes
can also be used to describe plastic shape deformations, such as in clays*® and
polymeric materials under large stresses,”® where the particle does not return to
its initial shape after the applied stresses are removed.

In previous work, we developed the “deformable particle model” that
describes particle shape changes using triangulated surface meshes and
shape-energy functions that can describe elastic, surface-energy dominated,
plastic, as well as elasto-plastic mechanics of particle shape deformation.
Using the deformable particle model, we studied the jamming of under-
constrained deformable particles in 2D*” and 3D.?® In addition, we carried
out discrete element method simulations of the deformable particle model
to study the mechanical properties of thin elastic shells,* elasto-plastic
behavior in cell monolayers,’**" and flow and clogging of capillary droplets
through narrow constrictions.*?

The remainder of the chapter is organized as follows. In Section 9.2, we
highlight the variety of deformable particle systems that people interact with
on a regular basis and those that are topics of current research. We also
provide illustrations and simple explanations of the computational models
of deformable particles and associated calculations that will be discussed in
later sections. In Section 9.3, we describe the shape-energy functions in 2D
and 3D that can be employed in the deformable particle model to simulate
floppy particles that can change their shapes without energy cost, elastic
shells, elastic solid particles, and capillary droplets. We also define the
interactions between pairs of deformable particles and quantify the fric-
tional forces between particles arising from smooth and rough interaction
models. In Section 9.4, we describe calculations of the structural and mech-
anical properties of jammed packings of deformable particles, including the
packing fraction and stress tensor in periodic boundary conditions and for
shape-energy functions with many-body potentials. We also calculate the vi-
brational modes of jammed packings of deformable particles for several
shape-energy functions, including elastic shells, capillary droplets, and floppy
particles. We relate the scaling of the vibrational frequencies with the pressure
to the number of contacts at jamming onset and the pressure-dependence of
the shear modulus above jamming onset. Finally, in Section 9.5, we sum-
marize the chapter and provide directions for future research, such as using
the deformable particle model to describe tessellated granular systems with
rigid and flexible boundaries for applications in soft robotics.

9.2 Deformable Particle Systems in Everyday Life

All of us frequently interact with deformable particles, including bowls of
cooked rice and other foods, piles of rubber balls and other kids’ toys, and
emulsion-based lotions and consumer products. Deformable particles are
also ubiquitous in science and engineering, for example, in studies of cell
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and tissue mechanics, microfluidic devices, and elastic materials. We have
developed a computational “deformable particle” model to better under-
stand the single- and multi-particle properties of deformable particles. In
this section, we introduce the main categories of deformable particles and
give examples for each category. We also illustrate how the calculations in
later sections provide insight into deformable particle systems.

There are several types of deformable particles. We will focus on four types
in this work: floppy particles, like popping pearls in boba tea (Figure 9.2(a)),
elastic shells like car tires (Figure 9.2(b)), particles whose shape is deter-
mined primarily through surface energy like soap bubbles (Figure 9.2(c)),
and solid elastic particles like hydrogels used in hot and cold packs
(Figure 9.2(d)) or bouncy ball kids’ toys. Similar types of deformable particles
occur in science and engineering and quantitatively accurate computational
models are necessary to understand their properties (see Figure 9.2(a)-(d)).

(a)

Figure 9.2 Examples of deformable particle systems. (a) Floppy particles: (left)
popping boba pearls with diameter ~1 cm and (right) highly aspherical,
~50 pm long NIH3T3 cells on an untreated glass coverslip (credit:
Yimin Luo). (b) Examples of elastic shells undergoing perturbations
and returning to their original shapes: (top) a car tire, diameter ~0.5 m,
compressed under a ~100 kg rock and (bottom) time series for dia-
meter ~300 um (bottom) cured polyethylene glycol diacrylate hydrogel
shells that are driven through an orifice in a microfluidic channel,
where the white arrow indicates the direction of the flow (credit: Amir
Pahlavan). (c) Surface tension-dominated particles: (left) diameter
~5 c¢cm soap bubbles in air and (right) ~300 pm diameter water droplets
(with green food coloring) in silicon oil flowing from top to bottom
through polydimethyl-siloxane channels (credit: David J. Meer and Eric
R. Weeks). (d) Elastic solid particles: (left) hot and cold pack filled with
~0.5 cm diameter hydrogel particles, where the inset shows a close up
of the particles, and (right) ~5 cm diameter photoelastic particles under
compression, where the fringe pattern shows the stress distribution.
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Explicit modeling of particle shape change is also needed to calculate the
forces arising from particle deformations, like the stresses visible in the
photoelastic particles in Figure 9.2(d). For floppy particles, elastic shells, and
surface energy-dominated particles, the stresses that arise from particle
deformation can be described using a surface mesh as described in
Section 9.3.1. For elastic solid particles, volumetric meshes are typically used
to describe the stresses that arise from particle deformation. In this chapter,
we introduce a surface-mesh approach that can be used to capture the
mechanical response of elastic solid particles.

Different types of deformable particles possess varying particle inter-
actions. For example, some deformable particles can slide past each other
easily, while others can possess frictional and adhesive contact interactions.
In Figure 9.3, we show how surface roughness can impact the collective
mechanical properties of deformable particle systems flowing under the
influence of gravity. When the deformable particles have rough surface
interactions, the system remains a multilayered structure with a nonzero
angle of repose even when the right wall is removed and the deformable
particles are no longer confined (see Figure 9.3(a) and (b)). In contrast, when
the deformable particles possess smooth interactions, they spread out over a
much wider horizontal region (with a flat surface and zero angle of repose)
when the right wall is removed as shown in Figure 9.3(c) and (d)). In
Section 9.3.3, we calculate the effective friction coefficient between two
interacting deformable particles and investigate how the effective friction
coefficient changes with particle deformation.

When external stress is applied to a system of deformable particles, the
particles can change in size and shape. In Figure 9.4(a), we show results from

(b)

Figure 9.3 Slump tests for collections of deformable particles with different con-
tact interactions. One hundred deformable particles with (a) rough and
(c) smooth particle surfaces under the influence of gravity (in the
downward direction) confined on the left and right by frictionless
walls and on the bottom by a wall with a small friction coefficient.
(b) and (d) The right wall is removed for the systems in (a) and (c) and
the particles are allowed to run out and come to rest during damped
molecular dynamics simulations.
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simulations of a system of repulsive, “soft” disks (c¢f. Figure 9.1(a)) under-
going uniaxial compression. Allowing overlaps between soft particles is a
common approximation for particle deformation. In Figure 9.4(b), we carry
out simulations of a collection of deformable particles with the same bulk
modulus as the “soft” disks undergoing the same uniaxial strain. We find
clear differences between the two systems undergoing uniaxial compression,
e.g. the deformable particles form facets at the interparticle contacts and the
collection of deformable particles is confluent. In Sections 9.4.1 and 9.4.2,
we provide the technical details to calculate the system’s packing fraction,
stress tensor, and pressure for collections of deformable particles.

In addition to the shear stress and pressure, another property that is used
to characterize the collective response of particle packings is the density of
vibrational modes. The vibrational modes provide a basis for collective
motion and are characterized by a frequency @ and an energy cost that scales
with o”. Thus, the lowest energy collective particle motions possess the
lowest frequencies. The vibrational modes are obtained by diagonalizing the
dynamical matrix, which is the matrix of all possible second derivatives of
the potential energy with respect to the particle positions (see Section 9.4.3).
In Figure 9.5(a), we show that the vibrational modes are phonons in crys-
talline materials, which can be used to describe heat and electromagnetic
transport in ordered solids. In contrast, disordered materials do not possess
phonons. For example, in jammed packings of soft disks at low pressure, the
low-frequency vibrational modes are quasi-localized, i.e. the particle dis-
placements in these modes only involve a small fraction of the particles in
the system (see Figure 9.5(b)). When explicit particle shape degrees of free-
dom are included, the modes are more complex and include particle
translations, rotations, and deformations as shown in Figure 9.5(c) and (d).
Investigating the vibrational modes is important for understanding the
mechanical properties of deformable particle packings, such as how the

Figure 9.4 Collections of disks in 2D undergoing uniaxial compression in origin-
ally square boxes with repulsive walls. (a) (left) System of purely
repulsive “soft” disks. (right) System in left panel is compressed by
20% in the direction of the arrow, which causes an increase in pressure
and visible overlaps between particles. (b) (left) System of purely
repulsive deformable particles at a similar pressure to that in the left
panel of (a). (right) System in left panel is compressed by 20% in the
direction of the arrow, which causes the particles to form facets at the
contacts with no overlaps.
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Figure 9.5 Visualizations of the vibrational modes for several particulate systems,
where the black arrows indicate the particle displacements in a given
mode. (a) A low-frequency phonon for a static packing of repulsive soft
disks arranged on a hexagonal lattice. (b) The lowest frequency mode in
a disordered, static soft disk packing at jamming onset. (c¢) A low-
frequency, “quartic” mode and (d) a high-frequency, “quadratic” mode,
in a “floppy” deformable particle packing.

shear modulus scales with pressure for different shape-energy functions (see
Section 9.4.3).

9.3 Shape Mechanics for Deformable Particles

The deformable particle model describes the mechanics of deformable
particles in 2D and 3D using surface meshes. The total potential energy for
the deformable particle model includes a shape-energy function that de-
termines the equilibrium shape for an individual deformable particle and an
interaction potential that specifies the interparticle forces. In this section,
we will define shape-energy functions that can describe the mechanics of
elastic shells, surface-energy dominated particles, and elastic solids. We also
define repulsive interactions between rough deformable particles and be-
tween smooth deformable particles in 2D, and calculate the effective friction
coefficients in the two cases during simple shear tests.
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9.3.1 Shape-energy Function

In 2D, the surface of particle u can be described by a set of N, vertices that are
connected by N, edges, forming a closed polygon, as shown in Figure 9.6(a).
The mechanics of deformable particle u in 2D is controlled by a shape-energy

function U3, that can be written in terms of the vertex positions:

kZD Nu kZD

k
Ujghape = _( — ) 2+ Z (Lui — Luio) 2+ Z 0 — mO)Z +9*PPus

i=1 i=1

(9.1)

where a, is the area of the particle y, [,; is the length of edge i that lies
between vertex i — 1 and vertex i, and 0, is the bending angle between edges
i—1 and i. (Vertices are indexed counter-clockwise around each particle.) The

(a) (c) o

Figure 9.6 Images of the rough and smooth deformable particle models in 2D and
3D. (a) Two deformable particles 1 and f with rough surfaces in 2D,
where ay is the polygonal area of particle f3, [,; is the length of edge 7, 0,,;
is the bending angle between edge 7 and i—1, ¢, is the diameter of each
vertex on particle u, and r,; 4 is the separation between vertex i on
particle u and vertex j and particle . (b) Two deformable particles with
smooth surfaces in 2D, where d,;g; is the shortest distance between
vertex i on particle u to the line defined by edge j on particle f§ (see
eqn (9.7)). (c¢) Two deformable particles with rough surfaces in 3D,
where @, is the area of triangular face f on particle g, 0,. the bending
angle for edge e on particle u, o, is the diameter of each vertex on
particle u, and r,; 4 is the separation between vertex i on particle x4 and
vertex j on particle f. Only a few spherical vertices are included on
particles u and f for visual clarity. (d) Two deformable particles with
smooth surfaces in 3D, where d,; g is the shortest distance between
vertex 7 on particle u to the plane defined by face f on particle /.
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204 Chapter 9

first term in eqn (9.1) provides a quadratic energy penalty for deviations of
the particle area from the preferred area a,,. The second term provides a
quadratic energy penalty for deviations of the length of each edge from its
preferred length /0. The third term provides a quadratic energy penalty for
deviations of each bending angle from its preferred angle 0, which ap-
proximates the curvature energy. The parameters k2P, k?°, and k2P control
the magnitude of fluctuations in the area, edge length, and bending angle.

Ny
The perimeter of particle u is given by p, = > 1,5, and thus y*" in the fourth
i=1
term in eqn (9.1) is the line tension that penalizes increases in perimeter.
The shape of each particle u in 2D can be characterized using the “shape
parameter,” A*° =p,2/(4na,). The minimum value for the shape parameter
is A2) =N, tan(rn/N,)/r, which corresponds to a regular polygon, or a circle
with A2> =1 in the limit N,—oo. For a shape-energy function with
k>0, k" >0, k® =0, and y*” =0, in equilibrium, particle i will possess

2
2D 42D 2D i , .
A=Ay, where A" =| 3 Lo | /(4ma,o). For a shape-energy function

i1
with k2° >0 and & >0, either sufficiently large y*” or k2 with 0, =0 will
drive the particle toward a circular shape with A*° = AZD <AP.

min
In three dimensions, we describe the surface of particle u using a trian-
gulated mesh with N, vertices, N, triangular faces, and N, edges between
adjacent triangles that satisfy the Euler characteristic: N, + W~ =2 (see

Figure 9.6(c)). Each surface triangle has three edges, each edge is shared by
two triangles, and thus 2N, = 3N,». When we combine this relation with the
Euler characteristic, we obtaln Nu=2N, — 4 and N,,= 3N, — 6. The mechanics
of deformable particle u in 3D is controlled by a shape-energy function U?%

u,shape
that can be written in terms of the vertex positions:
ng Nyt 3P ) Nye ng R .
Upshape = 5 Vi)’ Z% Qyf — Ayfo)” + ZT(QW — Ope0)” + 77" Ss
= e=1
(9.2)

where v, is the volume of particle y, a,is the area of triangle fon particle y, and
0, is the angle between two adjacent triangles that share edge e. The first term
in eqn (9.2) is a quadratic energy penalty for deviations in the volume of particle
u from its preferred volume v,,,. The second term is a quadratic energy penalty
for deviations in the area of triangle f from its preferred area a,s,. The third
term is a quadratic energy penalty for deviations in the bending angle 0,,, from
its preferred value 0,0, which approximates the curvature energy. 7°” gives

Nyf
the surface tension, where s, = ) a,r is the total surface area of particle .
f=1

kP, k3P, and k(P are parameters that control the magnitude of fluctuations in
the volume, surface area, and bending angle, respectively.

G20z 1aquieldas £z uo uIBHO £8100 ‘Ausianiun afeA Aq Jpd 96T00-0v6€29.E8T8.6Y0/2.65E6T/APd-181deyDd/8WN|0A-PBYPS/S}000/B10°0S1'$3000)/:dNY WOl papeojumod



Deformable Particles: Modeling and Applications 205

In 3D, we characterize the shape of particle ¢ using the shape parameter
AP —s,t 2/ (64/7v,). The lowest possible shape parameter corresponds to a
sphere with A*” =1. However, in general, in 3D, the minimum shape par-
ameter for a triangulated surface with N, vertices is not known. When N,, is
consistent with a surface mesh composed of equilateral triangles, such as
Platonic solids with N, =4 (regular tetrahedron), 6 (regular octahedron), and
12 (regular icosahedron), we find Af’rll)m:l.8188, 1.2861, and 1.0984. Thus,
A" depends on N,, and the placement of the vertices on the particle surface.
The choice of N, is a compromise between having a sufficient number of
vertices to describe fluctuations of the particle surface and computational
cost. For many applications, we have employed deformable particle models
with N, =42 arranged on a geodesic icosahedron with A’ =1.024.>%° Even
for structures that have A*® = A" for a given N, the preferred triangle areas
a,n and bending angles 0, are not uniform over the surface. For a de-
formable particle with &3P >0, k2P >0, k;° =0, and 7’ =0, in equilibrium,
particle u will possess A*° = A3°, where A;° = ( f"f . aﬂfo) i /(6+/7v,0). For
a deformable particle with &P >0 and k2P >0, either sufficiently large y*"
kP with 0,0=0 will drive the particle toward a spherical shape
with A" =420 .

Using the definitions of the shape-energy functions for deformable par-
ticles in 2D and 3D (eqn (9.1) and (9.2)), we can model a wide array of
soft particulate materials by varying the parameters k2° (k3°), k7 (k3P),
kP (kP), and y*” (3°7). In Table 9.1, we show that we can describe three
types of deformable particles with different shape deformation mechanics.
First, “floppy” particles with k2°>0 (k}°>0) and k>0 (k3°>0) can
maintain their area (volume) and perimeter (surface), but the particles
possess zero energy modes for transforming between shapes with the same
shape parameter A" (A’") (see Section 9.4.3). In prior studies, we have

Table 9.1 Selectlons for the parameters, k2 (KP), k° (k3P), k° (kP), and
7*® (4°P), in the shape-energy functions in 2D (eqn (9.1)) and 3D
(eqn (9.2)) that describe “floppy” particles, elastic shells, and surface-
energy dominated particles.

P(kP) kP (kP) kP (KP)  9*°(°")  System description

>0 >0 0 0 Particles that conserve area (volume)
and A, but possess floppy shapes,
e.g. inflatable actuators® and
epithelial cells®*

>0 >0 >0 0 Particles that maintain their shapes,
e.g. elastic shells®® and platelets®®
>0 =0 0 >0 Particle shapes are controlled by line

(surface) tension and are circular
(spherical), e.g. capillary droplets®”
and bubbles®
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modeled cell monolayers >’ and cancer cells invading adipose tissue as

floppy particles.*” Second, for k2° >0 (k3°>0), kf°>0 (k3°>0), and kZ° >0
(kP >0), we can model elastic shells, which will return to their equilibrium
shapes after applied deformations. For k2° >0 (k¥® >0) and y*”>0 (°? >0),
we can describe particles whose shapes are determined by line (surface)
tension with circular (spherical) shapes in the absence of applied stresses,
such as capillary droplets.”> We can also describe plastic particle shape
mechanics by including equations of motion for the preferred geometrical
properties of the particles, such as @,o (Vo), Lueo (@), and 0,.0.°*! We have
described the development of mesophyll tissue in plant leaves*® and wound
closure in epithelial tissue®' using an elastic shell shape-energy function
with plastic deformation of the edge lengths and bending angles.

9.3.2 Interaction Potential Energy

Both the shape-energy function of individual deformable particles and the
interactions between deformable particles determine their shape mechanics. In
this chapter, we focus on pairwise, repulsive interactions between deformable
particles that prevent them from overlapping. We consider two types of repulsive
interactions: (1) “rough” interactions between a circular (spherical) vertex on one
particle and a vertex on a neighboring particle (Figure 9.6(a) and (c)) and (2)
“smooth” interactions between a circular vertex on one particle and edges on a
neighboring particle in 2D (or between a spherical vertex on one particle and
triangular faces on a neighboring particle in 3D) (Figure 9.6(b) and (d)).

The potential energy for interactions between N rough deformable par-

ticles in 2D and 3D is
h N Ny N N1 h
yrous roug]
mt Z Z Z Z U/”/} ’ (9'3)
71171ﬁ 1]—1
B#u

where vertex [ is on particle u with N, vertices and vertex j is on particle f8
with Ny vertices,

n Kk 2
Uiy = ;C (0us = Tuig) O(Gup — Tuify): (9.4)

and r,; i is the magnitude of the separation vector between vertices,

Puifj =T — Tui- 0up=(0,+0p)/2 is the average diameter of the vertices on
rough
ui,pj

is nonzero only for r,; 3 < 7,4, and k. is the spring constant of the interaction
(see Figures 9.6(a) and (c) and 9.7(a)).

The potential energy in eqn (9.3) and (9.4) considers repulsive interactions
between vertex i on particle u and vertex j on particle , which mimics re-
pulsive interactions between rough deformable particles (see Figure 9.7(a))
that give rise to torques between contacting deformable particles. How can
we model repulsive interactions between smooth deformable particles?

particles u and f8, ©(:) is the Heaviside step function that ensures that U
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(a)

Ti:j

0

Figure 9.7 (a) The rough form for repulsive interactions between particles 1 and f
(eqn (9.3)). Vertex i on particle u interacts with the vertices (labeled j) on

Urough

ifij ! which is a

Ng
particle f through the interaction potential,
j=1

function of their separation r,;4. Only one vertex i on particle u is
shown and o,3=(0, + gp)/2 gives the range of the interaction. (b) The
minimum distance 1Srﬂ}fl§‘ /o <0 between vertex i on particle u and
the edge of particle f with non-convex shape increases from white
to dark gray. For non-convex shapes, the gradient of rl‘};;in possesses
discontinuities along lines that bisect concave angles of particle f.
(c) The smooth interaction potential arising from vertex i interacting

N,
B
: : smooth smooth __ rredge concave convex
with particle f, jglUm,ﬂj where UpTge™ = U, 5 + U™ + UpZi™.

(d)—(f) The contributions to the smooth interaction potential in (c)

Ny Ny Np
from ‘21 Uzgﬁe, ‘21 Usepeve, and 21 U separately. The discontinuity
j= Jj= Jj=
in the concave region in the edge potential in (d) illustrates the need for
.. . th .
the ..':lddltlf)n of .ﬁg;}jca"e in U5° - In (a) z.md (c]—(f) wl.len Vert.ex i on
particle p is outside the dotted regions, its interaction with particle f§ is
zero. We do not permit interactions between vertex i and particle f§

when vertex i is in the dark-gray region.

A simple method for calculating the interaction energy between two smooth
deformable particles is to assume that the pairwise potential energy for
vertex i on particle u interacting with particle f is a function of the minimum
distance r/‘f;’ig from vertex i to the nearest point on the closest edge (or face) of

particle . However, the gradient of rf{l“/? is discontinuous along lines that

bisect concave angles of particle i as shown in Figure 9.7(b), and thus the
repulsive forces between particles ¢ and f would be discontinuous if we
assumed this form for the smooth interaction potential.

We seek a smooth interaction potential that does not possess dis-
continuities in the repulsive forces between particles x4 and f. To achieve
this, we construct the smooth interaction potential U™ that is a function
of rgl“l‘; when vertex 7 on particle u interacts with a convex region of particle f3,
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and gives rise to continuous forces when vertex i on particle u interacts with
concave regions of particle f3 (see Figure 9.7(c)). Usm*°® includes three terms.
The first term is a function of the distance, d,; g, from vertex i on particle y to
each overlapping edge j with width o4 on particle 8. In convex regions of particle
p, vertex i can only overlap with one edge, while in concave regions vertex i can
overlap with two or more edges (see Figure 9.7(d)). The second term is a func-
tion of the distance r,; 3 between vertex i on particle u and overlapping vertex j
on particle 5, when j is in a concave region on particle § (see Figure 9.7(e)).
Otherwise, the second term is zero. The third term is a function of the separ-
ation r,; 5; between vertex i on particle u and vertex j on particle f when j is in a
convex region and i and j overlap (see Figure 9.7(f)). The total potential energy
Usmooth arising from repulsive interactions between N smooth deformable par-

ticles in 2D is
N Ny

=33y ﬂz z smeoth, )
B#u

where p and f=1,...,N, i=1,. N#, j=1,...,Ng, and Usmooth — yedge 4

i B uipj
U™ + Ui The first term, U i ﬁj , includes repulsive spring interactions

between vertex i on particle y and edge j in convex and concave regions on
particle f:

d k 2
Ui = C((Uﬂ/f dyif) O(Cup — i) O(F (- 1)~ (- 1))
O Pt~ 10 i) (9-6)

where k. is the spring constant. d,; s is the perpendicular distance between
vertex i on particle u and the line defined by edge j that runs from vertex 7 ;1)
to vertex 7,

iy =2 - (P p—1) X 7 i) / 17 il (9.7)

where Z is a unit vector that is perpendicular to the 2D plane. The combined

Heaviside functions in eqn (9.6) evaluate to 1 when vertex i is perpendicular

to edge j and within the interaction range o, and evaluate 0 elsewhere.
When adjacent edges j— 1 and j on particle p form a concave angle be-

tween 0 and m/2, a discontinuity occurs in Uuz BJ In particular as vertex i on

particle 4 moves along edge j — 1 on particle 8, U -2° jumps discontinuously

ul ﬁJ
when vertex i enters the portion of edge j that overlaps with edge j— 1 (see
Figure 9.7(d)). The second term, U737, removes this discontinuity.

Vi k 2 _ N
eonense = — 2 (0 = ruisy) " O — rucs)O( P - Py )
OO (P Fiyot+ )0ty ) (9-8)

includes attractive interactions between vertex i on particle Iy and vertex j on
particle f§ that exactly cancel the discontinuous jump in U ; ﬁ . The combined
Heaviside functions in eqn (9.8) evaluate to 1 when vertex 7 is within ¢,5 of
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vertex j and within ¢, of both edges j and j+1. The third term Uz

captures the repulsive interactions between vertex i on particle u and vertex j
on particle f when vertex j lies between two edges that form a convex angle:

convex

kC 2 — - - -
Wiff ((U 1= Tuify) Oty —0up)O(—T gy T pi-1))O(—F i Ty i+ 1])> :
(9.9)

The combined Heaviside functions in eqn (9.9) evaluate to 1 in the gaps
between edges j and j+ 1 when they form a convex angle, when r; <04,
and evaluate to 0 otherwise (see Figure 9.3(f)).

9.3.3 Calculation of Friction Coefficient Between Deformable
Particles During Simple Shear

After specifying the shape-energy function of deformable particles in
Section 9.3.1 and repulsive interactions between them in Section 9.3.2, we
will characterize their mechanical properties. In this section, we will calcu-
late the effective friction coefficient between two deformable particles (both
floppy particles and elastic shells with rough and smooth interactions) in 2D
by carrying out a simple shear test, i.e. fixing the vertical separation between
their centers and sliding them relative to each other in the horizontal dir-
ection. In the next section, we will characterize the normal force between two
deformable particles in 2D and 3D by compressing them between two rigid
flat plates.

We define the effective friction coefficient u.s between two deformable
particles 1 and f undergoing simple shear as

F
—— 9.10
Hett F, ( )
where
Fo=F - figy, (9.11)
il h,rough
is the normal component of the force F,;= — Z V,m U 08 on par-

ticle p in the 7,4 direction from interactions with particle f, fig, =7p,/7p,

points from the center of mass of particle f to the center of mass of particle
u, and ﬁ;m. is the gradient with respect to the position of vertex i on particle
u. The tangential force component is

Fe=Fu5 - tpy, (9.12)

where 25, satisfies fig, x t5, =2.

To characterize the effective friction coefficient, we consider two deformable
particles p and f with eight vertices each (N, = Ny = 8) and identical shape and
interaction potentials. The particles undergo simple shear by fixing the position
of particle f and moving particle u from left to right (see Figure 9.8(a)-(c)).
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Fixing particle f and translating particle u are achieved by adding harmonic

. 2
spring potential energy functions. UE‘)“S“““ = Y keonstraint| P57 — ?/;j,o|2 /2 fixes
j=1
the positions of the bottom two vertices 1 and 2 of particle f, 75, and 74,, by
defining “preferred” positions for each of them, 7, and 7, 0. We use

) 3

Ul‘j"“ma‘m = > keonstraint|Tui — ?ﬂi,o|2 /2 to shift the positions of vertices 1, 2, and
i=1

3 on particle g, 7,; with i=1,2,3 from left to right, by incrementally changing

v

the “preferred” positions 7, =F,+AxkX, where Ax=0.016D; and
Dg = max;|X - 7 | + o is the horizontal width of particle f5. After each hori-
zontal shift of particle u, we relax the total potential energy of the system (in-

2D rough smooth constraint constraint :
Ufshaper Unne . OF U™, Uy , and Uj ) using

damped molecular dynamics simulations until the total kinetic energy, K,

: 2D
cluding U shape?

(@)

(b) %
%
£,

e wwighi % = 0907
S voght iy « 0
S swmooth: i = 019

zg,/Dg

Figure 9.8 Two elastic shell particles ¢ and f with N,=N;=8 and A" =A%
undergo simple shear by fixing the position of particle f and moving
particle u from left to right, which is achieved by adding two harmonic
spring potential energy functions that prescribe the equilibrium positions
Tpo and Py o of two vertices (green) on particle f and the equilibrium
positions 7,10, 72,0, and 7,30 of three vertices (red) on particle u. 7, is
the separation vector from particle f to u, Dy is the horizontal width of
particle f5, and R, is the distance from the center of particle u to each
vertex when particle p is a regular polygon. Particle positions (varying in
frames 1-7) for two particles of varying types undergoing simple shear as
a function of xg, =% - (Fua,0 — (Fp1,0 +7'p20)/2): (a) two rough elastic shells
with C,=R,/o,=1.3 and pl =0.537; (b) two rough elastic shells with
R,/0,=0.71 and ul}=0.261; and (c) two smooth elastic shells with
C,=R,/o,=1.3 and ul =0.190. (d) The effective coefficient of friction
Uegr plotted versus xg, /Dy for the particle types in (a)-(c). The configuration
at which the maximum effective friction coefficient uf occurs for two
smooth elastic shells is marked with a star.
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satisfies K/(k.0”) <10~ >°, where ¢ is the average vertex diameter. To ensure that
the constrained vertices remain near their “preferred” positions, we chose
keonstraint/ke = 100.

We first calculate pieg(xp,), where xp, =X - (72,0 — (Fp1,0 +Tpo0)/2), for stiff,
elastic shells (k7° /k. = 100, k2° /(k.o*) = 171, and k2Pa,? /(k.o?) = 14, where a,
is the average preferred area) with rough interactions, N,=8, and
AP = AP (see Figure 9.8(a) and (b)). As the two particles are sheared, pes
displays a “saw-tooth” pattern as the particles “stick” and “slip” past one
another,*® as shown in Figure 9.8(d). u.¢ starts at a small positive value at the
first contact between the particles and decreases approximately linearly until
it reaches its minimum value near xz, = 0. At xz,= 0, where one vertex on
particle u contacts two vertices on particle  and fits into the groove between
them, the particles only exert normal forces on each another and p.¢= 0 (see
frame 4 in Figure 9.8(a)). For xz,2 0, one of these contacts breaks and fies
jumps to its maximum value pgg = maxy,, feg(Xp.)- Hesr then decreases roughly
linearly as particle ¢ moves out of the groove of particle f5. At sufficiently large
X, the particles are no longer in contact (see frames 6 and 7 in Figure 9.8(a)).

Given the shapes, positions, and orientations of particles p and f5, ptess for
each two-particle configuration can be calculated, and the maximum value
of pies(xp,) over all sampled configurations can be obtained. In the case of
rough, circular particles with A}” =A% ' the maximum effective friction
coefficient is determined by the ratio of the polygon radius to the vertex
diameter C,=R,/o, and number of the vertices N,:*'

max — ! 2 1 2 9.13
Lt = Crsin(w/N)| : (9.13)

In Figure 9.8(a) and (b), we fix N, and R, and vary ¢, to achieve yuJ* =0.577
with C,=1.3 and puji* = 0.283 with C,, = 0.71. These calculated values of uJ3™
are consistent with uf}; =0.537 and 0.261 that are found in Figure 9.8(d).
We then calculate p.g for stiff, elastic shells for smooth interactions with
the same shape-energy function, A2°, and C,=1.3 as those for the rough,
elastic shells in Figure 9.8(a). Unlike per(xp,) for rough interactions, pegr for
smooth elastic shells does not possess large jumps while the particles are in
contact as shown in Figure 9.8(d). Rather p.¢ begins at a small positive value
and undergoes smooth oscillations between positive and negative values as
xp, increases. As shown in frame 4 in Figure 9.8(c), when x4, =0, the dom-
inant force between particles x4 and f arises from overlaps between the
bottom vertex of u and the top edge of f and points in the 75, direction,
which is vertical in this configuration. Here, any tangential forces arising
from interactions between the top two vertices of f and the bottom two edges
of u cancel. When xg, 2 0, the dominant force on particle u from f continues
to point in the vertical direction, unlike rough interactions where for xg, 20,
F,; has a large horizontal component. The maximum value of % = 0.190
occurs when xg,/Dg~ 0.1, which is consistent with i = 0.190 calculated for
smooth, elastic shell particles in the configuration indicated by the star in
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Figure 9.8(c). (See Appendix A for the calculation of uJi* for smooth de-
formable particles.)

We now characterize the impact of particle deformability on ¢ by calculating
Hetdxp,) for floppy particles (kf°/k. =1, ki® =0, and k2°a,?/(k.0*) =14) with
rough and smooth interactions (see Figure 9.9(a)). We have additional control of
the deformability by varying A;° = A”> ~1.05, 1.15, and 1.3. e for rough,
floppy particles with AZ° = A2 (Figure 9.9(b)) is similar to i for rough, stiff
elastic shells (Figure 9.8(d)), i.e., both possess saw-tooth patterns and similar
Les(xp,.)- For floppy particles with AZ° > A2 | jiei(x5,) changes dramatically. For
AgD =1.15, ueer is no longer symmetric as particle 4 moves past particle . Ra-
ther, ueedxp,) is irregular, it has a large region —0.08 <xg,/Dp<0.4 where
Uege ~ Mot for rough, elastic shells. p.¢ ~ pug™ occurs when the vertices of par-
ticle u are located in the grooves of particle § and vice-versa. The deformability of
the particles allows interdigitated configurations to occur over a wide range of
xp, rather than at a single xz, as for rigid, elastic shells. For extremely floppy
particles, such as A2” = 1.3, the particles can explore elongated shapes, which
can achieve larger friction coefficients than those that are possible for rough,
nearly spherical elastic shells (see frame 6 in Figure 9.9(a)). We note that for
floppy particles, the particle shape and effective friction coefficient are history-
dependent, and thus ¢ would be different for a cyclic simple shear protocol.

Finally, we calculate u.¢ for floppy particles with smooth interactions and the
same shape-energy function that was used for the rough interactions (see Fig-
ure 9.9(c)). As before, j.¢ for smooth particles with A2° = A>  is similar to that
for smooth, elastic shells (see Figure 9.9(d)). uegr for smooth, floppy particles
with A2” = 1.15 and 1.30 depend strongly on the shape of the particles. We find

that smooth, floppy particles with .A;” = 1.15 possess the lowest M across all
systems we considered, indicating a combination of deformability and surface
interactions can lead to the least friction between particles undergoing simple
shear. However, 1M for smooth, floppy particles with A;° = 1.30 exceeds 1
for smooth, elastic shells. Thus, increasing deformability by increasing A;°
gives rise to non-monotonic behavior in pJF*. Together these results confirm
the sensitivity of frictional interactions between deformable particles on the
specific two-particle configurations that are sampled.

9.3.4 Contact Mechanics

In this section, we characterize the mechanical properties of individual de-
formable particles undergoing uniaxial compression. In particular, we com-
pare the relation between the applied force and particle deformation for
rough, elastic shells (with A>”°° = A?"P) and bulk elastic particles in 2D and
3D. We will confine a single deformable particle between two flat rigid parallel
plates and determine the applied force F, normal to the top plate that achieves
a given compression distance J (see Figures 9.10(a), (b) and 9.11(a)-(c)). We fix
the bottom plate and move the top plate downward in small compression
steps, with each followed by minimization of the total potential energy
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—B— AP = A i =055 —SP— AP = LG e =0T —— AP = 130 = 1922
L 1

-0.5 0 0.5 1
zau/ Dy

-0.5 0 0 5 1
zp,/Dp

Figure 9.9 Two floppy particles x and  with N, = Ny =8 undergoing simple shear
by fixing the position of particle f and moving particle p from left to
right. This protocol is achieved by adding two harmonic spring poten-
tial energy functions that prescribe the equilibrium positions 7, o and
rﬂz o of two vertices (green) on particle  and the equlllbrlum posmons
Tu0, Tuzo, and 730 of three vertices (red) on particle u. 7p, is the
separation vector from particle f§ to 4, and Dy is the horizontal width of
particle B. (a) Floppy, rough and (c) floppy, smooth (with A2P =1.3)
partlcle shapes and posmons (varying in frames 1-7) as a functlon of
Xpu =% (Fu20 — (Fp1,0 +7p2,0)/2)- Her plotted versus xp,/Dy for (b) floppy,
rough and (d) floppy smooth particles with A2 = A" | 1.15, and 1.3.
The horizontal dashed lines in (b) and (c) indicate +xJ#* =0.577 and
0.190 for elastic shell particles with rough and smooth interaction
potentials, respectively, obtained from eqn (9.13) and Appendix A.

including the shape-energy function and repulsive interaction energy between

vertices i on particle ¢ and the top (t=1) and bottom plates (t=2):
NH
Uglate tz:l Z (O'H/Z platet) (GH/Z platet)’ where kp/kc:4 is the
=1i=

plate t

spring constant for the plate-vertex interaction and r,;" " is the minimum

distance between vertex i and plate ¢. These compress1on tests are similar to
those used to quantify F, versus ¢ for bulk elastic particles, such as com-
pressing elastic cylinders in the radial direction in 2D and compressing elastic
spheres in 3D.

In 2D, for an elastic cylinder with length / and diameter D parallel to and
in contact with a plane of the same material, the applied force F, to achieve
compression ¢ is*?

6 4 F, D(1—1?) nl*ED?

=——2 =1+ In|l—F| |, 9.14
D mnED* 1 (1-1*)D’°F, ©6-14)
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where v is the Poisson’s ratio and E is the Young’s modulus of the particle.

T
DF. | )

where D =D/1, 5 =0/D, and F, = F,(1 — v?)/(ED?). In the small compression
limit 6 « 1, eqn (9.14) can be approximated by a linear force-displacement

In dimensionless form, eqn (9.14) becomes 0 = [4F,D /7] (1 + In

relation: F,ocd” with «=1. We find a similar result, 7, ~5, when we com-
press an elastic solid disk modeled using a spring network (Figure 9.10(a)).
The spring network is composed of a disordered triangular lattice with
1100 nodes connected by 3197 linear springs (for an average coordination
number of 5.81) all with the same spring constant k/k. = 1. For compression
of an elastic shell, we consider A}” =A2 | k2 >0, k° >0, k2°>0, 0,,0=
2n/N, for all i, and N, =100 (Figure 9.10(b)). We also find that F,ccd for
compression of elastic shells using the deformable particle model for small 5,
while F, increases nonlinearly for ', > 102 as shown in Figure 9.10(c). Thus,
for small deformations, both elastic shells and bulk elastic particles possess
linear force-displacement relations during compression in 2D.

~ 4x0 . . ~ %
In 3D, Fy = géa with o= 1.5 for an elastic solid sphere®” and F, oc 6 for an

elastic spherical shell.*> When we model an elastic solid sphere as a volumetric
spring network with 3765 nodes connected by 43,334 springs with spring
constant k/k.=1 and coordination number 223 (Figure 9.11(a)), we also find

© Elastic Cylinder
Elastic Disk: Spring Network

Elastic Shell &M

Figure 9.10 Images from compression tests in 2D for (a) an elastic disk modeled
using a spring network with coordination number 5.81 that fills the
entire disk and (b) an elastic shell with A" =A% | k2P >0, k?° >0,
k2P >0, and 0,,,=2n/N, for all i. In (a) and (b), the red vertices are in
contact with the top and bottom plates, ¢ and F, define the compression
distance and applied compression force, respectively. (Note that we do
not show all of the vertices, nodes, and spring connections for visual
clarity.) (c) Dimensionless applied force F, plotted as a function of the
dimensionless compression distance & for an elastic cylinder (blue
circles, eqn (9.14)), elastic disk modeled using a spring network (red
triangles), and elastic shell (yellow squares). The dashed line has slope 1.
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Fa~0&" with a=1.5. For an elastic shell with A3° =A% = k3P >0, k3P >0,
kP >0, and 0,., that correspond to the equilibrium bending angles for a
polyhedron with A° = 432 for N, =162 (Figure 9.11(b)), we find that F, oc

min
over a large range of 5 as found for the continuum description of an elastic
spherical shell (see Figure 9.11(d)).

Can we develop a surface tessellation model that mimics the compressive
response of an elastic solid sphere? We propose a model with a spherical surface
tessellation (with N, vertices) plus an additional vertex at the particle’s center that
form 2N, — 4 tetrahedra between the central vertex and triangles on the particle
surface (Figure 9.11(c)). Instead of using U3, in eqn (9.2), we assume that the
following strain energy governs particle deformation during compression:

v
ngtrain: Z Z Eff,mncmnqrsf,qry (9.15)

f: 1 mngr=1

where vy is the volume of tetrahedron f, &, and ¢, are the components
of the strain tensor & for tetrahedron f, and C,,q- is the elasticity tensor.

(a)
(d)

102 | © Elastic Sphere: Spring Network #
i | & Elastic Shel i
Elastic Tetrahedra b

w 10°}
1027} g
L 0. k. - i ik
10 108 10 1071
3

Figure 9.11 Images from compression tests in 3D for (a) an elastic sphere modeled
by a volumetric spring network with coordination number 223, (b) an
elastic spherical shell with A}” = A2 | k2P >0, kP >0, kP >0, and
0,0 that correspond to the equilibrium bending angles for a poly-
hedron with A3” = A" for N, =162, and (c) 2N, — 4 elastic tetrahe-
dra that are formed by the center of mass of the particle and the
triangles that form its surface mesh. In (a)-(c), the red vertices
indicate those in contact with the top and bottom plates. (Note that
we do not show all of the vertices, nodes, and spring connections for
visual clarity.) (d) Dimensionless applied force, F, plotted as a function

of dimensionless compression distance ¢ for an elastic shell (red
triangles), spring network (blue circles), and elastic tetrahedra (yellow
squares). The dashed and dash-dotted lines have slopes 1 and 1.5,
respectively.
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The strain tensor & is given by the deformation tensor Jr of tetrahedron f:

= (]fT Jr —I) /2, where I is the identity matrix. The deformation gradient
tensor obeys Jr = Yy X! (XpX/ )~!, where X/ is the transpose of X and Xyand Yy

are matrices formed from the separation vectors from the central vertex to
the vertices of each surface triangle before and after deformation:

_ (0 -0 -0 -0 -0 20
Xr = (rf,l TN T2 TN b TEs _rN#Jrl)’ (9.16)
Yr=(Fra —Fny+1s Fra =P 1s 713 = Tat1)s (9.17)

where 7 rfl, 77,, and 77, are the column vectors giving the coordinates of the
three vertices that form surface triangle f before deformation, 7y 1, 7r,, and 73
are the column vectors giving the coordinates of the three vertices that form the
surface triangle fafter deformation, and ??\,ﬂ +1and 7y, ;4 are the column vectors

giving the coordinates of the central vertex before and after deformation. When
we assume that each tetrahedron is composed of the same isotropic elastic

material, we find that F,ocd” with 2 =1.5 during compression for sufficiently
large displacements as shown in Figure 9.11(d). Note that for this model « ~ 1 for
small & since at small deformations the purely repulsive linear spring forces
between the surface vertices and the flat plates are larger than the forces arising
from deformation of the elastic tetrahedra. At larger deformations, the strain
energy dominates the interaction energy between the particle and the plates.

9.4 Jammed Packings of Deformable Particles

In previous sections, we described the mechanical properties of individual
deformable particles. We will now describe the collective structural and
mechanical properties of static, jammed packings of N deformable particles.
To generate a jammed packing, we start with a dilute system at packing
fraction ¢ =10~?, randomly placed particles in a square (cubic) box with side
length L in 2D (3D), and periodic boundary conditions in all directions. We
isotropically compress the system by decreasing L in small steps AL/L so that
the packing fraction i increases by A¢/dp<10°. After each compression step,
we use the FIRE algorithm®** to minimize the total potential energy that
includes the shape-energy function and interaction potential energy. We
then calculate the pressure P of the energy-minimized packing. If P<P,
we compress the system again, followed by energy minimization. If P> P, we
return to the configuration before the most recent compression step and
decrease AL/L by a factor of 2. We continue this process until 1 <P/P,<1.01.
We set P, =107, where P, =P;/(k2"a,) in 2D and P;/(k3°v,) in 3D for the
dimensionless threshold pressure that signals jamming onset, where a, and
v, are the average rest area and volume in 2D and 3D, respectively. After
saving the packing at jamming onset, we compress the packing further to
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generate overcompressed particle configurations at dimensionless pressures
that are logarithmically spaced between 10~” and 10>,

In this section, we will first describe the calculation of the packing
fraction of jammed deformable particle packings in periodic boundary
conditions given that deformable particles possess spherical vertices on
their surfaces and provide expressions for the components of the stress
tensor in systems with periodic boundary conditions given that the shape-
energy function of deformable particles includes many-body potentials. We
will use these results to show the pressure versus packing fraction relation
near jamming onset for packings of deformable particles in 2D. We also
compare the vibrational density of states of jammed packings of floppy
particles, elastic shells, and surface-energy dominated particles with rough
interactions in 2D and 3D, by calculating the eigenvalue spectrum of the
dynamical matrix.

9.4.1 Calculation of Packing Fraction

The packing fraction ¢ plays a dominant role in controlling the collective
mechanical properties of many particulate systems. We will focus on
systems near jamming onset, where overlaps between deformable par-
ticles are small compared to the particle size. In this case, the packing
fraction is the total area (volume) occupied by the particles divided by the
area (volume) of the confining boundaries. The area (volume) of each
particle is determined by the edges of the particle that define the inter-
action potential between particles in eqn (9.3) for rough particles and
eqn (9.5) for smooth particles. In this subsection, we describe the cal-
culation of the packing fraction ¢ for collections of N rough deformable
particles in a square box with side length L in 2D with periodic boundary
conditions and validate the method using Monte-Carlo integration.
Calculations of ¢ for deformable particles with smooth interactions and
in 3D can be obtained using similar methods.

The area occupied by a collection of 2D deformable particles with rough
interactions is the sum of the areas of the polygons and vertices for each
particle (see Figure 9.12(a)). However, we must subtract off the areas of regions
that are double-counted for overlaps that occur between two vertices on a
given particle, overlaps between the vertices and polygon on a given particle,
as well as overlaps between vertices on different particles. If the vertices on a
given deformable particle do not overlap significantly, 0.1<r; ,i/o,<1, we
only need to consider overlaps between pairs of vertices and a single vertex
overlap with each polygon. The area of a collection of deformable particles is

Aparticles = Apolygon + Avertices — Asector — Apaira (9- 1 8)

N
where Apolygon = » @y, is the area of the polygon for each particle (see
u=1

Figure 9.12(b)). The total area of the vertices for all particles is

G20z 1aquieldas £z uo uIBHO £8100 ‘Ausianiun afeA Aq Jpd 96T00-0v6€29.E8T8.6Y0/2.65E6T/APd-181deyDd/8WN|0A-PBYPS/S}000/B10°0S1'$3000)/:dNY WOl papeojumod



218 Chapter 9

Figure 9.12 (a) A jammed packing of N=7 rough, deformable particles. We show
the area of the particles Ap,rcies in the main simulation cell (black),
unoccupied area (white), and area of particles in the image cells (gray).
The packing fraction ¢ is the ratio of the area in black to the total area
of the main cell. The area of the particles has four contributions:
Aparticles :Apolygon + Avertices — Asector 7Apair- (b) Apolygon is shaded gray.
(c) The area of the vertices in the main cell Ayeices 1S shaded gray.
(d) The regions Agector that are counted both in the polygon and vertex
areas are shaded gray. (e) The vertex-vertex overlaps outside of the
particle polygons Ay, are shaded gray. (f) A close-up of vertex 7 (red)
on particle y overlapping with vertex j (green) on particle f. o, and oy
are the diameters of the vertices, r,; 4 is their separation, and 7, 4 is
the distance from 7; to the planar interface with vertex j on particle f5.
I;p is the red-shaded area. Intraparticle vertex-vertex overlaps out-
side of the particle polygons are shown in gray; these regions corres-
pond to the first term in eqn (9.19). (g) Each particle area 4,, is shaded
according to the local pressure P, =Tr (Eu) /2 (in units of k2P a,, where
a, is the average preferred area). The close-up shows the planar
interfaces between several vertices on different particles. In (a)-(e),
and (g), the main cell is indicated by a solid black line, and the image
cells are indicated by dashed black lines.

N Ny N Ny

Avertices = »_ »_ mo,*/4 (see Figure 9.12(c)). Agector = Z > 0,2 (n—0,)/8 is

n=1i=1 u=1i=1
the area of the overlaps between each vertex and the polygon of the particle
to which they belong, as shown in Figure 9.12(d). The area of the overlaps
between the vertices that occur outside of the particle polygons is

N Ny N N. N N
palr— Z Z ;u;u+1)+ ZZ Z Zl,ui,ﬂj’ (9'19)
n=1i=1 n=1i=1 [s’:lj:l
B#u

which includes both intra- and interparticle vertex-vertex overlaps and is
shaded gray in Figure 9.12(e). In eqn (9.19), I,; 4; is the area of one of the two
circular segments (with radius o,/2) defined by the points where overlapping
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vertices i on particle u and j on particle f8 intersect.*” The area of overlap
between vertex i on particle u and vertex j on particle f is

2 op\?2 %
Tup (E) + (7)

Oul'up

o 2
Ligi = O(0up — Tuigy) (f) arccos

ap\2
= (3)

2ryup

+(%)Z (@)2_ r"ﬂz_(%)z

2 2rup

(9.20)

The first term in the square brackets is the area of the circular sector
defined by vertex i and the intersection points with vertex j, and the second
term removes the area of the triangle defined by the intersection points
and 7,. The Heaviside function ensures that I,; 5; only contributes to Apair
when vertex i and j overlap. (See the red-shaded region in Figure 9.12(f).) In
eqn (9.19), the first term is a sum over adjacent vertices in each particle, and
since all vertices on particle u have the same diameter, I,; ,(i + 1) is half the
overlap between vertex 7 and vertex i + 1. We only use this half overlap when
calculating A,,;; because only half of the intersection occurs outside the
polygon of particle u. In the second term in eqn (9.19), the double sum

N Np

> z/: L is the size of the double-counted region we associate with
p=1p#uj=1
vertex i on particle y from overlaps with vertices on other particles. Thus, the
area attributed to a single deformable particle u is

Ny Nu Nu Ne N Ng
A — T ul)
u—au"‘E:Z"u - E:Uu e E:mwﬂ E:E:E:ulﬁj
i=1 i=1 i=1 ﬁil_]—l
B#u

(9.21)

While it is possible to make other choices concerning the attribution of
double-counted area between vertices on different particles, this choice re-
flects the idea that the particles deform such that two contacting vertices
form a planar interface, and as a result the area occupied by vertex i should
be reduced by I, 4. In Figure 9.12(g), the blue- and green-shaded regions
indicate A4, (eqn (9.21)) for each particle.

Using eqn (9.18), the packing fraction is defined as

¢ = Abparticles /LZ . (9 . 22)

In Table 9.2, we compare the analytic expressions for ¢ and the four con-
tributions to Aparticies (I.€. Apolygon, Averticess Asector; aNd Apair) to those found
using Monte-Carlo integration for the deformable particle packing in
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Table 9.2 The packing fraction ¢ =Apamdes/LZ and the four contributions to
Aparticles:Apolygon+Avertices_Asector_Apair (eqn (918)) for the deformable
particle packing in Figure 9.12. For ¢ and each area contribution, we
compare the analytical expressions in the middle row to those obtained
from Monte-Carlo integration in the bottom row. The errors in the
Monte-Carlo integration scale as ~Np, V2, where N, is the number of
Monte-Carlo trials.

Method 4) :Aparticlcs/Lz Apolygon/L2 Avcrtcx/L2 Ascctor/L2 Apair/L2

Analytic 0.8397 0.276 0.8648 0.259 0.0415

Monte- 0.83914+0.0008 0.2764+0.001 0.8642 4 0.0008 0.260+0.001 0.0410+ 0.0004
Carlo

Figure 9.12(a). For example, we find ¢ =0.8397 using eqn (9.22) and
¢ =0.8391 £ 0.0008 using Monte-Carlo integration for this deformable par-
ticle packing. The packing in Figure 9.12(a) contains elastic shell particles
with &P /k. =2, k*D /(k.0*)=0.3, and k*Pay?*/(k.0?)=0.9 with rough inter-
actions, N, =5, N=7, and A(Z,D =A%

min*®

9.4.2 Stress Tensor for Deformable Particles in Periodic
Boundary Conditions

The stress tensor 2 of a jammed packing of deformable particles describes
the mechanical response of the packing. The stress tensor is symmetric with
d(d +1)/2 independent components in d dimensions. The pressure is given
by the diagonal elements of the stress tensor, P=Tr(X)/d, where Tr is the
trace. The off-diagonal components of the stress tensor give the shear stress.
The stress tensor is straightforward to calculate for systems of point particles
with fixed-wall boundary conditions. For periodic boundary conditions, the
potential energy (and thus the stress tensor) has an additional dependence
on the length of the boundary from the minimum image convention.”® For
systems with only pairwise, central potentials, the additional dependence on
box length can be captured by summing over each pair interaction and using
the main simulation cell position of one particle in the pair and the closest
image position of the other particle when calculating each pair interaction’s
contribution to the stress tensor.*” The shape-energy function for deform-
able particles includes not only pair interactions, but also many-body po-
tentials (see eqn (9.1) and (9.2)). In this section, we will first review
expressions for the stress tensor for collections of particles that interact via
repulsive pairwise, central potentials with periodic boundary conditions.
We then generalize the expressions for the stress tensor for packings of
deformable particles to include many-body interactions with periodic
boundary conditions. We also discuss a method for defining the stress
tensor for each particle that sums to the total stress tensor when averaged
over all particles in the system. Using these relations for the stress tensor,
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we calculate the pressure of deformable particle packings as a function of
packing fraction as they are isotropically compressed above jamming
onset.

For a 2D system of N elastic disks modeled by point particles with short-
range pairwise, central potentials, and fixed-wall boundary conditions, the
stress tensor can be defined as

Asystem n—1

_ 1 X
2= < Z (mnvn,avn,b + rn,aFn,b) > 5 (9-23)

where a, b=x, y, r,, and v, , are the ath components of the position and
velocity vectors for disk n, and m, is the mass of disk n. F,, is the bth
component of the net force on disk 7, Agem is the area of the system, and (-)
gives the ensemble average. In eqn (9.23), the first term is the contribution to
the stress tensor from momentum transfer through particle motion, while
the second term is the force moment or virial contribution.

However, eqn (9.23) does not hold for systems with periodic boundary
conditions.*” The stress tensor can be calculated for systems with pairwise
interactions in periodic boundary conditions by making a specific choice for
the position factor in the force moment. When calculating the contribution
to the stress tensor for the pair interaction between disk n and disk m, we use
the position of disk n in the main simulation cell, and the closest image
position of disk m, since these are the positions used to calculate the
interaction potential and forces between disks n and m within the main
simulation cell.*® Using this method,

1 N N-1 N . .
5 _ n,pair /1, pair n,pair y/1,pair
2ap= 2 E (MypVnavb) + E E (rn,g Eomb —&—rmi Fonp ) )
system \ =1 n=1 m=n+1
(9.24)
where 5" is ath component of the position vector of disk 7 in the main

simulation cell and ;%" is the ath component of the position vector of the

. . . i 0 ir
closest image of disk m to disk n. F,»%" = — — - UF" is the bth com-
n,b

ponent of the force on disk n from the pair force on disk n from disk m and

n,pair __

mnb T T ppair
0 m,b

disk n. UEA" is the pair potential between disks 7 and m using the minimum
image distance between them. Eqn (9.24) can then be rearranged as

B 1 N N-1 N o
Zap= < (Z MpVn.aVnp — Z Z Ry | ) (9.25)

UPA g the bth component of the pair force on disk m from

Asystem n=1 n=1 m=n+1

where by =rma — g, using Newton’s third law.
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In the case of deformable particles, the total potential energy (and
therefore the stress tensor) has two contributions. First, the total potential
energy includes pairwise interactions from vertices on different particles,
which can be treated using eqn (9.25). The second contribution includes
many-body interactions from the shape-energy function U2, \Lshape- HOW do the
many-body interactions contribute to the stress tensor for systems with
periodic boundary conditions? We calculate the stress tensor using the copy
of each particle whose center of mass occurs in the main simulation cell. We
use the positions of these copies when calculating the shape-energy contri-
bution to the force moment. This choice ensures, as required, that the
contributions from the shape-energy function for each particle appear only
once in the stress tensor and that the positions used to calculate the force
moment correspond to those used to calculate the shape-energy functions.*®
The stress tensor of a system of N 2D rough deformable particles is

1 N Ny "
S ~ shape
2= E g (m,uivui,av,ui,b + 7, aF,“, b )

Agystem \ =1 77

N—-1 Ny Ny .
- Z Z Z Zrm/fja ;(1),2’ng>> (9.26)

pu=1i=1f=pu+1j=1

where m,,; is the mass of vertex i on particle u and v, , is the ath component
of the velocity vector of vertex i on particle p. 7, is the ath component of the
position vector of vertex i on the copy of particle x that appears in the main
simulation cell. The first term in the double sum is the contribution to the
stress tensor from momentum transport via particle motion. The second
term is the contribution from the shape-energy function, where

shape 0 U
ib — T A% sha e
1 OF ip 1shap

is the hth component of the net force on vertex i of

particle u arising from shape-energy forces. The quadruple sum is the con-

tribution from each vertex-vertex pair interaction Uuz ﬁjg , where r,; 5; 5 is the

bth component of the separation vector between vertex i on particle u in the
main simulation cell and the closest image of vertex j on particle f and

rough 0 rough .
Wi = T g U, Is the bth component of the pair force on vertex 7 on
particle u from vertex j on f.

A similar formulation for the stress tensor can be developed for smooth
interactions between deformable particles in systems with periodic bound-

ary conditions. In this case, the quadruple sum in eqn (9.26) is replaced with
three quadruple sums that account for the forces arising from Uzld;fe, i

and U;f;}vex We use the position of particle f in the main simulation cell

given by 74 and the closest image of 7,; in eqn (9.6), (9.8), and (9.9).
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In static packings of deformable particles in systems with periodic
boundary conditions, we can also quantify the stress tensor for each par-
ticle u:

Ny No. N Ng
S _ shape ul T, fj rough
Zuaab—< eraFuzb -2 2 Z TR > (9:27)
i=1 p=1 j=1 L
B#u

where A, is the area of particle x in eqn (9.21) and £, ; is the distance from
vertex i on particle u to the “contact line” with vertex j on particle f as shown
in Figure 9.12(f). The triple sum allocates a fraction of the force moment
arising from the interaction between vertex i on particle u and vertex j on
particle f§ to particle u that is proportional to £,;, @/rﬂl s, which is the fraction
of the separation vector 74 that lies within 4,*** (see Figure 9.12(f) and (g)).

We emphasize that for this definition of the local stress tensor we as-
sumed that the stresses arising from the shape-energy function occur within
the area spanned by the deformable particle. We also chose to distribute the
contact stresses along the shortest line between contacting vertices and use
the Irving-Kirkwood convention®® of assuming that stress from a pair
interaction acts along the line between the two points. However, other def-
initions of local stresses are also valid.”" In Figure 9.12(g), we show that the
local pressure P, = (Z,)/2 on each particle varies in static packings of elastic
shell particles (k°/k. =2, k2°/k. =0.3, and kP /k. =0.9) with rough inter-
actions, N,=5, N=7, and AéD = Afr?in. The total stress tensor of the system
can be obtained by calculating the area-weighted sum of the single particle

stress tensors over all particles: X = Z A, > u/Asystem-
i=1

Obtaining the pressure P and packing fraction ¢ of static packings of
deformable particles is crucial to understanding their mechanical prop-
erties. For instance, in mechanically stable, amorphous packings of soft,
bidisperse disks in 2D that interact via purely repulsive linear spring po-
tentials with periodic boundary conditions, the pressure (P) (averaged over
an ensemble of packings) increases with excess packing fraction ¢—¢. above
jamming onset: (P)=B((¢ — $.))*, where ¢. is the packing fraction at
jamming onset, B is the bulk modulus, and { =1 (see Figure 9.13(a)). In
the case of static packings of bidisperse elastic shell particles with
AP = A0 k2P >0, kP >0, k2P >0, and y*” =0, we also find (P) = B(¢p—¢.)
at small pressures as shown in Figure 9.13(a). However, at large pressures,
the deformability of the elastic shell particles plays an important role and (P)
increases nonlinearly with (¢—¢.). To determine whether the nonlinearity is
caused by the surface roughness of the particles, we also performed isotropic
compression of static packings of rough disks that do not change shape with
the same number of vertices N, =20 as the elastic shells. Each rough disk is
modeled as a regular polygon with the associated vertices that move together
as a rigid body, such that the total potential energy of the packing obeys
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Figure 9.13

(a) Ensemble-averaged pressure (P) (in units of k*Pay) versus the
deviation in packing fraction (¢ — ¢.) from jamming onset at ¢,
during compression for N =128 (a) smooth disks with purely repulsive
linear spring interactions (blue circles), rough disks (red triangles),
and elastic shell particles with AZ® = A2 | k2 >0, kP >0, k2P >0,
and y*® = 0 (magenta squares). The smooth disk packing is bidisperse
with half large disks, half small disks, and diameter ratio of 1.4. The
rough disk and elastic shell particle packings are also bidisperse with
half large, half small, and polygon diameter ratio of 1.4. The results
are averaged over 500 packings. The dashed lines show linear fits to
(P) = B(¢p—¢.), where B=0.14, 0.36, and 10> (¢.=0.836, 0.79, and
0.783) for smooth disks, rough disks, and elastic shells, respectively.
Pversus ¢ for individual static packings for the same systems in (a): (b)
smooth disks (circles and crosses), (c) rough disks (triangles and
crosses), and (d) elastic shells (squares and crosses). The circles,
triangles, and squares show results for static packings compressed
starting from jamming onset. The crosses show results for packings
decompressed from packings that were originally compressed to the ¢
indicated by the filled symbols. Static packings of smooth disks (e)
before and (f) after a rearrangement that causes a change in the
contact network (indicated by red lines) following compression by
A¢p~107°. The three green (before) and gray (after) regions highlight
particle rearrangements.

eqn (9.3)."! For both packings of smooth and rough disks, we find linear

behavior,

(P) =B{¢p—¢.), for the ensemble-averaged pressure versus

packing fraction relation. For individual static packings, irreversible
particle rearrangements occur during compression, which cause dis-
continuities in the pressure versus packing fraction relation as shown in
Figure 9.13(b)-(d). Note that static packings before and after particle re-
arrangements possess different ¢.. The ensemble-averaged (P) versus
(¢ — ¢.) averages over the rearrangement events giving a smoothed rep-
resentation of the pressure versus packing fraction relation. See an
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example of compression-induced particle rearrangements in static pack-
ings of smooth disks in Figure 9.13(e) and (f).

9.4.3 Vibrational Density of States

The vibrational response of individual deformable particles, as well as mech-
anically stable packings of deformable particles, can be obtained by calculating
the eigenmodes of the dynamical matrix M, which gives the second derivatives
of the total potential energy U with respect to the vertex positions:
M, pi = v 9.28
HLff = a?ﬂla?ﬂj : ( . )

For a system with Ng.¢ degrees of freedom, M is a Ngor X Ngof matrix with
Nyor eigenvalues /; and eigenvectors é;, where k ranges from 1 to Ngor and
& - & =1. We will report dimensionless eigenvalues i = A/ (k2Pay) in 2D
and 1 = g /(KP(0)*?) in 3D, where a, and v, are the average equilibrium area
and volume of the deformable particles in 2D and 3D, respectively. The vi-
brational response can be used to determine the necessary conditions for
rigidity of a single particle, as well as the collective rigidity of particle
packings. For example, packings of spherical particles become mechanically
stable with no non-trivial zero eigenmodes when they are isostatic,>”** and
the number of interparticle contacts (that give rise to N, constraints) mat-
ches the number of degrees of freedom Ny,

A deformable particle in 2D with N, vertices has Ngor= 2N, degrees of
freedom. The shape-energy function for floppy particles with
AP > AP0 k2P >0, k2P >0, kP =0, and y*°=0 imposes N.=N,+1 con-
straints. Hence, floppy particles have Nqor—N.=N, —1 unconstrained de-
grees of freedom, which matches the number of zero eigenmodes of M as
shown in Figure 9.14(a). (Note that three of the N, — 1 zero modes corres-
pond to two rigid translational modes and one rotational mode.) To remove
the non-trivial zero energy modes in a single deformable particle, we can
either increase the number of constraints without prestress or induce
prestress in the particle, e.g. by setting k2° >0 with 0,,,=2n/N, for all i
(elastic shell) or setting k2® =0 and y*”>0 (surface-energy dominated par-
ticle). Note that both elastic shells and surface-energy dominated particles
are circular when they are not subjected to external stresses. Indeed, M for an
elastic shell and for a surface-energy dominated particle possesses only three
trivial zero modes as shown in Figure 9.14(a).

In Figure 9.14(b), we show the eigenvalue spectrum /; of M for static packings
of “floppy” particles, elastic shells, and surface-energy dominated particles with
rough interactions at jamming onset in 2D. In addition to the two zero modes
that correspond to rigid translations arising from periodic boundary conditions,
we find that low-frequency modes occur in “floppy” particle packings that are
absent in packings of elastic shells and surface-energy dominated particles.
These low-frequency modes in floppy-particle packings have been identified as
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Figure 9.14 (a) Eigenvalues /; of the dynamical matrix M for a “floppy” particle
(blue circles), elastic shell (red triangles), and surface-energy domin-
ated particle (black squares) with N, =10 vertices in 2D. The “floppy”
particle has A}” =1.04, k2*>0, kK°>0, k¥?® =0, and y*”=0. The
elastic shell has A}°=A2 = k2°>0, k*>0, k°>0, and y*"=0.
The surface-energy dominated particle has A2°=A2D = k2P >0,
K°>0, k=0, and y*>0. The eigenvalues /; are sorted in as-
cending order. Modes with 7. <1013 are considered “zero” modes.

(b) 7 for jammed packings of “floppy” (blue circles), elastic shell (red
triangles), and surface-energy dominated (black squares) particles in
2D at pressure P=10"" in units of k?°a,, where a, is the equilibrium
area. Each packing has N =16 particles, half with N5™!' =10 and half
with N}f‘rge =14 vertices. (c) Change in potential energy AU (in units of
k2P ay?) in the packing of “floppy” particles in (b) when it is perturbed
by amplitude Ar in units of (a,)"’* along each eigenmode of M. The
dot-dashed (dashed) line represents AU~ (Ar)" with k=4 (2). /iy
plotted versus pressure P for the packings in (b) containing (d)
“floppy” particles, (e) elastic shells, and (f) surface-energy dominated
particles. The colors in (c)-(f) indicate the mode indexes from k=1

(dark blue) to N (sz"‘“ + N/‘f‘rge) =384 (dark red).

“quartic” modes. When perturbing a floppy-particle packing along a quartic
mode with amplitude Ar, the change in potential energy AU first scales
quadratically with Ar at small Ar and then quartically at large Ar (see
Figure 9.14(c)). In comparison, AU oc (Ar)* for all Ar for higher frequency
quadratic modes. (Note that quartic modes have also been observed in jam-
med packings of non-spherical particles®>® and “breathing” particles with size
degrees of freedom.””) The number of quartic modes equals the number of
missing contacts N, = 2NN,, — 1 — N,,, where N, is the number of vertex-vertex
contacts between deformable particles in the packing. Further, since quartic
modes arise from a higher-order expansion of the potential energy with
respect to the vertex positions, they are pressure-dependent. In Figure 9.14(d),
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we show that /., increase linearly with pressure for quartic modes, while 7, are
constant with pressure for quadratic modes. Since packings of elastic shells

and surface-energy dominated particles do not possess quartic modes, their /.
do not increase strongly with pressure, as shown in Figure 9.14(e) and (f).

We have also studied the vibrational response in 3D for a single (1) “floppy”
particle, A" > A0 1 k3P >0, kP>0, KP =0, and y*°=0; (2) elastic shell,
AP = A0 kP >0, k2P >0, kP >0, with 0, that correspond to the equi-
librium bending angles for a polyhedron with A3° = A°2 "and 7°*” = 0; and (3)
surface-energy dominated particle, A3 = A2 | k3P >0, kP >0, kP =0, and
7°P> 0. In Figure 9.15(a), we show that only the “floppy” particle (with N, =42
vertices) possesses non-trivial zero modes (Ngof— Nys—1 =3N, — (2N, —4) — 1=
N,+ 3 =45). The elastic shell and surface-energy dominated particles pos-
sess only six zero modes, which correspond to three rigid translations and
rotations. Only packings of floppy particles exhibit quartic modes as shown
in Figure 9.15(b), where AU increases as (Ar)* along a quartic eigenmode®®
(Figure 9.15(c)). Quadratic and quartic modes in 3D packings of deformable
particles show the same pressure dependence as those in 2D (see
Figure 9.15(d)-(f)).

In previous studies, we have shown that the presence of quartic vibrational
modes strongly influences the pressure dependence of the shear modulus G
of jammed packings.'” To measure G for packings of deformable particles,
we apply a series of small simple shear strains Ay, with each simple shear
strain followed by potential energy minimization, and calculate the resulting
shear stress. For each simple shear strain step, we apply the following
transformation to the vertex positions consistent with Lees-Edwards
boundary conditions:*® x/,=x,; + Ayy,; with Ay=5x10"°. Following the
shear strain step and energy minimization, we calculate the shear stress
X = - X, and shear modulus G =0 /5.

For jammed packings of purely repulsive smooth disks and spheres, the
ensemble-averaged shear modulus (G) obeys the following scaling relation

with pressure P: )
P C
(G)—Go (lTo)

= (9.29)

G(] P E-n’
1+¢|—
- 2<P0>

where G,, Py, and ¢, are constants, and {~1 and n~0.5 are scaling ex-
ponents.’® At large P, (G) ~P" and the exponent is determined by the scaling
of the excess contact number with pressure.”>>® For 2D packings of floppy
particles in Figure 9.16(a), we find that n~1 instead of 0.5 due to the pres-
ence of quartic modes. n>0.5 has been reported previously for jammed
packings of non-spherical particles such as ellipses, which also possess
quartic modes."” We also calculate (G) versus P for packings of elastic shells
and surface-tension dominated particles, which do not have quartic modes.
In these systems, #~0.5 as shown in Figure 9.16(a). We find similar results
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Figure 9.15

(a) Eigenvalues /j of the dynamical matrix M for a single “floppy”
particle (blue circles), elastic shell (red triangles), and surface-energy
dominated particle (black squares) with N, =42 vertices in 3D. The
“floppy” particle has A;” =1.04, k3°>0, k&2 >0, kP =0, and y*° =0.
The elastic shell has A® =A% | kP >0, kP >0, kP >0, 0, that
correspond to the equilibrium bending angles for a polyhedron with
AP = A0 and y*P =0. The surface-energy dominated particle has
AP = A2 k3P >0, 30 >0, P =0, and y*°>0. The eigenvalues 7
are sorted in ascending order. Modes with 71 <1071 are considered
“zero” modes. (b) /i for jammed packings of “floppy” particles (blue
circles), elastic shells (red triangles), and surface-energy dominated
particles (black squares) in 3D at pressure P=10"" in units of k> v,
where v, is the equilibrium particle volume. Each packing has N=16
particles with N, =42 vertices. (c) Change in potential energy AU (in
units of k°v? in the packing of “floppy” particles in (b) when it is
perturbed by amplitude Ar in units of (v,)"* along each eigenmode
of M. The dot-dashed (dashed) line represents AU~ (Ar)* with k=4
(2). /i plotted versus pressure P for the packings in (b) containing (d)
“floppy” particles, (e) elastic shells, and (f) surface-energy dominated
particles. The colors in (c¢)-(f) indicate the mode indexes from k=1
(dark blue) to 3NN, =2016 (dark red).

for 3D packings of floppy particles, elastic shells, and surface-energy dom-
inated particles in Figure 9.16(b).

9.5 Summary

In this chapter, we describe the mechanics of single deformable particles
and the collective properties of jammed packings of deformable particles
using the recently developed deformable particle model. Using the shape-
energy function of the deformable particle model we can tune the particle
mechanics to consider floppy particles, elastic shells, surface-energy dom-
inated particles, as well as bulk elastic particles. We also introduce rough
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Figure 9.16 Ensemble-averaged shear modulus (G) plotted versus pressure P for
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jammed packings of N “floppy” particles (blue circles), elastic shells
(red triangles), and surface-energy dominated particles (magenta
squares) in (a) 2D and (b) 3D. G and P are expressed in units of
k2Pay in 2D and k3Pv, in 3D, where g, and v, are the equilibrium
particle area and volume in 2D and 3D, respectively. The dashed and
dash-dotted lines in (a) and (b) have slopes of 0.5 and 1, respectively.

N=256in 2D and 128 in 3D and (G) is averaged over 500 packings.

e ¢ ‘[ ‘!’( “’[ "[ »

H

Figure 9.17 Jammed bidisperse disk packings with N=4 in fixed (a) square, (b)

rectangular, and (c) parallelogram-shaped boundary conditions.
(d) Hlustration of a tessellation contammg N, =49 cells of the same
jammed bidisperse disk packing in (c) with N=4 and fixed parallelo-
gram-shaped boundary conditions. (e) Illustration of a tessellation
containing N,=49 cells of jammed bidisperse disk packings within
deformable boundaries. The different colors indicate distinct particle-
filled cells.
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and smooth interaction potential energies in the deformable particle model
to control the effective friction coefficient between interacting deformable
particles. For the collective properties, we focus on calculations of the
packing fraction and stress tensor of packings of deformable particles. We
then explore the vibrational properties of jammed packings of deformable
particles. We show that jammed packings of floppy particles possess quartic
modes, whereas packings of elastic shells and surface-energy dominated
particles do not. The presence of quartic modes in packings of floppy par-
ticles gives rise to novel pressure scaling of the shear modulus compared to
that for jammed packings of elastic spherical particles.

As discussed in the introduction, the deformable particle model can be
used to simulate a wide range of physical, biological, and human-engineered
systems. Here, we highlight a future application of the deformable particle
model to describe the mechanics of soft robotic systems. In most studies of
soft particulate materials, the boundaries have a fixed shape, such as
squares or rectangles in 2D, as shown in Figure 9.17 (a)-(c). In previous
studies,®® we showed that particle packings in fixed boundaries can be used
as cells to form a large tessellation (see Figure 9.17(d)). The shape and
mechanics of the boundary will significantly impact the mechanical prop-
erties of the tessellation.®" In addition, particle-filled cells with deformable
boundaries can be used to form curved or flexible tessellations as shown in
Figure 9.17(e). To begin to address the question of what types of particle
packings can occur within deformable boundaries, we show preliminary

(a) (b) ® - _'
(c) (d) 045" 1
0.35‘—- ]
0.3 1
1.06 1.08 o 1.1 1.12

0 A

Figure 9.18 (a)-(e) All jammed packings of N=4 monodisperse disks (blue disks)
inside a deformable boundary (yellow band) with N, =100 vertices,
k>0, k2’ =0, k2® =0, and y*”=0. Red lines (areas) indicate con-
tacts between disks (disks and the boundary). 0 gives the smaller of
the interior angles of the parallelogram formed by the contacting
disks. (f) 0 for jammed N=4 monodisperse disk packings with a
deformable boundary with N, =100 vertices, kt® >0, k2° >0, k2° =0,
and y*” = 0 plotted as a function of the preferred shape parameter .A2"
of the deformable boundary. The red dashed lines correspond to 0 for
the packings shown in (a)-(e).
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results for jammed monodisperse disk packings within a floppy deformable
boundary with 7P >0, k2° =0, k2P =0, and k2° = 0. In this case, we find only
five possible jammed packings (Figure 9.18(a)—(e)). After including an area
constraint on the deformable boundary, i.e. k2° >0, which models filling the
interior with fluid, we find a nearly continuous range of jammed packings as
a function of the preferred shape parameter A;” of the boundary (see
Figure 9.18(f)). One can imagine developing a method to actuate from one of
the packings to another in the continuous range for locomotion and grip-
ping applications in soft robotics. The discontinuities in the shape of the
disk packing as a function of A" in Figure 9.18(f) can arise from a com-
bination of the finite number of vertices included in the boundary and the
use of frictionless disks.

9.6 Appendix A

9.6.1 Maximum Effective Friction Coefficient for the Smooth
Interaction Potential

In this appendix we calculate the maximum friction coefficient for two
elastic shells with smooth interactions undergoing a simple shear test. In
Figure 9.8(d), we show piefxp,) for this system. We find that the maximum
effective friction coefficient plj occurs in the configuration indicated by the
star in Figure 9.8(d), between frames 4 and 5 in Figure 9.8(c).

The regime for the maximum friction coefficient between smooth particles in
the simple shear test occurs when (1) the right vertex on the top edge of particle
p interacts with the bottom vertex on particle x4 and (2) the lowest vertex on
particle u is in contact with the top edge of particle f (see Figure 9.19(a) and (b)).
In this configuration, the net force from particle f on particle y is

—convex — —edge

Fy=F, +F;, (9.30)

where F;(/)}nvex_ W,MUCO“"‘?X/Z is the contribution from the vertex-vertex

interaction between the vertex r, the top right vertex on particle f8, and vertex

¢, the bottom vertex on particle y (Figure 9.19(c)), and FZC[:ge =Vs, E?%er ri1)/2
is the contribution from the interaction between vertex ¢ on particle x4 and
edge r+1 on particle § (Figure 9.19(d)).

To investigate the dependence of the friction coefficient on the inter-
particle overlap and horizontal displacement in this regime, we calculated
Uer While varying 7, =7, — 7y, the displacement between the lower vertex
on particle u and the upper right vertex on particle 5, and maintaining fixed
particle shape (see Figure 9.19(e)). We varied the x-component of 7, ,; by
changing the x-component of 7, from that of 74, 1) to that of 74,.. We also
varied the y-component of 74, by changing the y-component of 7, from
configurations that yield the maximum overlap between the two particles to
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Figure 9.19 (a) Illustration of the configuration of two elastic shells with smooth
interactions that corresponds to the star in Figure 9.8(d) with the
maximum effective friction coefficient during the simple shear test.
The top particle 1 and bottom particle f§ are labeled and 7y, gives the
separation vector between the centers of the particles. (b) A close-up of
the dotted region in (a). The bottom vertex ¢ on particle x4 and the
upper right vertex r on particle f§ are labeled, and 74, is the separ-

ation vector from vertex r to vertex ¢. In this configuration, the net
—convex — —edge

force on particle u from particle f, F’M;:F“ﬂ +F has two
contributions. (c) A schematic of the vertex-vertex interaction between

—=convex

vertex r on particle f and vertex ¢ on particle y, F s . (d) A schematic
of the vertex-edge interaction between vertex ¢ on particle 1 and edge
—edge

r+1 on particle §, F ;" (e) The effective friction coefficient s as a
function of the displacement of particle u. We vary 74, by fixing the
particle shapes and orientations in (a) and translating particle u. The
horizontal displacements of particle u range from vertex ¢ occurring
directly above vertex r+ 1 on particle f to above vertex r on particle f,
and the vertical displacements range from zero vertical separation
between vertex r on particle f and vertex ¢ on particle u to the zero-
overlap limit. The particles remain in contact for all 7, ,, shown. The
“x” marks 74, for the starred configuration in (a).

the limit of zero overlap. We find that F 4 is nonzero over the full range and the

only configurations with z.¢s= 0 have F up aligned with 7g,,. Thus, ue is nonzero
even in the zero-overlap limit, meaning that the smooth interactions are not
completely smooth, but they give rise to much smaller maximum friction co-
efficient than for similar two-particle configurations with rough interactions.

We find that ug =0.190 obtained in Section 9.3.3 is consistent with the
maximum friction we measure by varying the x-component of 7. ,» with the
same j component used in the starred configuration, yuJ#* =0.190, marked
with an “x” in Figure 9.19(e).
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