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9.1 Introduction 
Particle shape changes occur in many particulate materials, especially in soft 
matter systems, such as colloids, foams, bubbles, and tissues, since the 
characteristic stresses that these particles experience are comparable to their 
elastic moduli.1 Particle shape changes play an important role in the spa 
tiotemporal dynamics of soft particulate systems, including white blood cells 
crawling through the extracellular matrix,2 capillary droplets flowing 
through obstacle arrays,3 and soft granular particles undergoing cyclic 
shear.4 Particle deformation allows particles to remain mobile and undergo 
rearrangements with neighboring particles even when the system is con 
fluent.5 Explicitly modeling particle shape changes is necessary to under 
stand flow and clogging in microfluidic devices,6 collective cell motion and 
stress transmission in confluent tissues,7,8 and frictional particle inter 
actions in MEMS devices.9 
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197 Deformable Particles: Modeling and Applications 

The mechanics that govern particle shape changes can be elastic, surface-
energy dominated, and plastic, as well as intermediate mechanical behavior, 
such as elasto-plastic. The mechanics of particle shape change can be 
modeled over a range of complexity as shown in Figure 9.1(a)–(c). For elastic 
particles, single degree-of-freedom models describe each particle using its 
center of mass (Figure 9.1(a)) and mimic elastic shape changes through the 
form of the interaction potential with the system boundaries and other 
particles. The elastic contact between two particles that repel each other can 
be approximated by a Hertzian central force law that is a function of the 
interparticle overlap between the particles.10 This approach can also be used 
to model adhesive contacts11 and interactions between non-spherical elastic 
particles.12 Level-set methods,13,14 which use a signed distance function to 
determine interparticle separations, can be employed to calculate the in 
terparticle potential energy and forces between pairs of arbitrarily shaped 
non-spherical particles. Even though level-set methods explicitly represent 
non-spherical particle shapes, they do not accurately model large particle 
shape deformation. Point-particle and level-set methods are computationally 
efficient, but they can accurately model particle deformation only for strains 
≲10%. On the more complex end of the spectrum are volumetric meshes 
that accurately model the elastic energy of particle shape deformations, such 
as finite element methods (FEM) as illustrated in Figure 9.1(c). These 
methods can capture the changes in particle shape that arise from the 
propagation of stress through the volume of the particle that are generated 
from multiple contacts between the system boundaries and other particles. 
Volumetric meshes are computationally costly, and thus these methods have 
mainly been used to study packings of ≲103 nearly spherical particles.15–18 

The properties of many soft particulate systems, such as foams,19 liquid 
bridges,20 and capillary droplets,21 are governed by surface tension. In these 
systems, the shapes of the soft particles are obtained by finding the minimal 
surface area for a given particle energy, volume, or boundary condition. Particle 
shapes in these systems can be obtained using surface meshes (Figure 9.1(b)) 
and minimizing the total surface energy subject to the imposed constraints.22–24 

Figure 9.1  Methods to describe the mechanics of particle shape deformations: (a) 
a single degree of freedom located at the center of mass; (b) a surface 
mesh, where the number of degrees of freedom per particle scales 
as Rd−1, where R is the radius of the particle and d is the spatial 
dimension; and (c) a volumetric mesh, where the number of degrees of 
freedom per particle scales as Rd.  
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198 Chapter 9 

Given that surface meshes are more computationally efficient than volumetric 
meshes, it would be beneficial to develop effective surface energies and meshes 
that can describe the shape deformations of elastic particles. Surface meshes 
can also be used to describe plastic shape deformations, such as in clays25 and 
polymeric materials under large stresses,26 where the particle does not return to 
its initial shape after the applied stresses are removed. 

In previous work, we developed the “deformable particle model” that 
describes particle shape changes using triangulated surface meshes and 
shape-energy functions that can describe elastic, surface-energy dominated, 
plastic, as well as elasto-plastic mechanics of particle shape deformation. 
Using the deformable particle model, we studied the jamming of under-
constrained deformable particles in 2D27 and 3D.28 In addition, we carried 
out discrete element method simulations of the deformable particle model 
to study the mechanical properties of thin elastic shells,29 elasto-plastic 
behavior in cell monolayers,30,31 and flow and clogging of capillary droplets 
through narrow constrictions.32 

The remainder of the chapter is organized as follows. In Section 9.2, we 
highlight the variety of deformable particle systems that people interact with 
on a regular basis and those that are topics of current research. We also 
provide illustrations and simple explanations of the computational models 
of deformable particles and associated calculations that will be discussed in 
later sections. In Section 9.3, we describe the shape-energy functions in 2D 
and 3D that can be employed in the deformable particle model to simulate 
floppy particles that can change their shapes without energy cost, elastic 
shells, elastic solid particles, and capillary droplets. We also define the 
interactions between pairs of deformable particles and quantify the fric 
tional forces between particles arising from smooth and rough interaction 
models. In Section 9.4, we describe calculations of the structural and mech 
anical properties of jammed packings of deformable particles, including the 
packing fraction and stress tensor in periodic boundary conditions and for 
shape-energy functions with many-body potentials. We also calculate the vi 
brational modes of jammed packings of deformable particles for several 
shape-energy functions, including elastic shells, capillary droplets, and floppy 
particles. We relate the scaling of the vibrational frequencies with the pressure 
to the number of contacts at jamming onset and the pressure-dependence of 
the shear modulus above jamming onset. Finally, in Section 9.5, we sum 
marize the chapter and provide directions for future research, such as using 
the deformable particle model to describe tessellated granular systems with 
rigid and flexible boundaries for applications in soft robotics. 

9.2 Deformable Particle Systems in Everyday Life 
All of us frequently interact with deformable particles, including bowls of 
cooked rice and other foods, piles of rubber balls and other kids’ toys, and 
emulsion-based lotions and consumer products. Deformable particles are 
also ubiquitous in science and engineering, for example, in studies of cell 
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199 Deformable Particles: Modeling and Applications 

and tissue mechanics, microfluidic devices, and elastic materials. We have 
developed a computational “deformable particle” model to better under 
stand the single- and multi-particle properties of deformable particles. In 
this section, we introduce the main categories of deformable particles and 
give examples for each category. We also illustrate how the calculations in 
later sections provide insight into deformable particle systems. 

There are several types of deformable particles. We will focus on four types 
in this work: floppy particles, like popping pearls in boba tea (Figure 9.2(a)), 
elastic shells like car tires (Figure 9.2(b)), particles whose shape is deter 
mined primarily through surface energy like soap bubbles (Figure 9.2(c)), 
and solid elastic particles like hydrogels used in hot and cold packs 
(Figure 9.2(d)) or bouncy ball kids’ toys. Similar types of deformable particles 
occur in science and engineering and quantitatively accurate computational 
models are necessary to understand their properties (see Figure 9.2(a)–(d)). 

Figure 9.2 Examples of deformable particle systems. (a) Floppy particles: (left) 
popping boba pearls with diameter~1 cm and (right) highly aspherical, 
~50 µm long NIH3T3 cells on an untreated glass coverslip (credit: 
Yimin Luo). (b) Examples of elastic shells undergoing perturbations 
and returning to their original shapes: (top) a car tire, diameter~0.5 m, 
compressed under a ~100 kg rock and (bottom) time series for dia 
meter ~300 µm (bottom) cured polyethylene glycol diacrylate hydrogel 
shells that are driven through an orifice in a microfluidic channel, 
where the white arrow indicates the direction of the flow (credit: Amir 
Pahlavan). (c) Surface tension-dominated particles: (left) diameter 
~5 cm soap bubbles in air and (right)~300 µm diameter water droplets 
(with green food coloring) in silicon oil flowing from top to bottom 
through polydimethyl-siloxane channels (credit: David J. Meer and Eric 
R. Weeks). (d) Elastic solid particles: (left) hot and cold pack filled with 
~0.5 cm diameter hydrogel particles, where the inset shows a close up 
of the particles, and (right)~5 cm diameter photoelastic particles under 
compression, where the fringe pattern shows the stress distribution. 
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200  Chapter 9 

Explicit modeling of particle shape change is also needed to calculate the 
forces arising from particle deformations, like the stresses visible in the 
photoelastic particles in Figure 9.2(d). For floppy particles, elastic shells, and 
surface energy-dominated particles, the stresses that arise from particle 
deformation can be described using a surface mesh as described in 
Section 9.3.1. For elastic solid particles, volumetric meshes are typically used 
to describe the stresses that arise from particle deformation. In this chapter, 
we introduce a surface-mesh approach that can be used to capture the 
mechanical response of elastic solid particles. 

Different types of deformable particles possess varying particle inter 
actions. For example, some deformable particles can slide past each other 
easily, while others can possess frictional and adhesive contact interactions. 
In 

 

Figure 9.3, we show how surface roughness can impact the collective 
mechanical properties of deformable particle systems flowing under the 
influence of gravity. When the deformable particles have rough surface 
interactions, the system remains a multilayered structure with a nonzero 
angle of repose even when the right wall is removed and the deformable 
particles are no longer confined (see Figure 9.3(a) and (b)). In contrast, when 
the deformable particles possess smooth interactions, they spread out over a 
much wider horizontal region (with a flat surface and zero angle of repose) 
when the right wall is removed as shown in Figure 9.3(c) and (d)). In 
Section 9.3.3, we calculate the effective friction coefficient between two 
interacting deformable particles and investigate how the effective friction 
coefficient changes with particle deformation. 

When external stress is applied to a system of deformable particles, the 
particles can change in size and shape. In Figure 9.4(a), we show results from 

Figure 9.3  Slump tests for collections of deformable particles with different con 
tact interactions. One hundred deformable particles with (a) rough and 
(c) smooth particle surfaces under the influence of gravity (in the 
downward direction) confined on the left and right by frictionless 
walls and on the bottom by a wall with a small friction coefficient. 
(b) and (d) The right wall is removed for the systems in (a) and (c) and 
the particles are allowed to run out and come to rest during damped 
molecular dynamics simulations. 
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201 Deformable Particles: Modeling and Applications 

simulations of a system of repulsive, “soft” disks (cf. Figure 9.1(a)) under 
going uniaxial compression. Allowing overlaps between soft particles is a 
common approximation for particle deformation. In Figure 9.4(b), we carry 
out simulations of a collection of deformable particles with the same bulk 
modulus as the “soft” disks undergoing the same uniaxial strain. We find 
clear differences between the two systems undergoing uniaxial compression, 
e.g. the deformable particles form facets at the interparticle contacts and the 
collection of deformable particles is confluent. In Sections 9.4.1 and 9.4.2, 
we provide the technical details to calculate the system’s packing fraction, 
stress tensor, and pressure for collections of deformable particles. 

In addition to the shear stress and pressure, another property that is used 
to characterize the collective response of particle packings is the density of 
vibrational modes. The vibrational modes provide a basis for collective 
motion and are characterized by a frequency ω and an energy cost that scales 
with ω 2. Thus, the lowest energy collective particle motions possess the 
lowest frequencies. The vibrational modes are obtained by diagonalizing the 
dynamical matrix, which is the matrix of all possible second derivatives of 
the potential energy with respect to the particle positions (see Section 9.4.3). 
In Figure 9.5(a), we show that the vibrational modes are phonons in crys 
talline materials, which can be used to describe heat and electromagnetic 
transport in ordered solids. In contrast, disordered materials do not possess 
phonons. For example, in jammed packings of soft disks at low pressure, the 
low-frequency vibrational modes are quasi-localized, i.e. the particle dis 
placements in these modes only involve a small fraction of the particles in 
the system (see Figure 9.5(b)). When explicit particle shape degrees of free 
dom are included, the modes are more complex and include particle 
translations, rotations, and deformations as shown in Figure 9.5(c) and (d). 
Investigating the vibrational modes is important for understanding the 
mechanical properties of deformable particle packings, such as how the 

Figure 9.4  Collections of disks in 2D undergoing uniaxial compression in origin 
ally square boxes with repulsive walls. (a) (left) System of purely 
repulsive “soft” disks. (right) System in left panel is compressed by 
20% in the direction of the arrow, which causes an increase in pressure 
and visible overlaps between particles. (b) (left) System of purely 
repulsive deformable particles at a similar pressure to that in the left 
panel of (a). (right) System in left panel is compressed by 20% in the 
direction of the arrow, which causes the particles to form facets at the 
contacts with no overlaps. 
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202  Chapter 9 

Figure 9.5  Visualizations of the vibrational modes for several particulate systems, 
where the black arrows indicate the particle displacements in a given 
mode. (a) A low-frequency phonon for a static packing of repulsive soft 
disks arranged on a hexagonal lattice. (b) The lowest frequency mode in 
a disordered, static soft disk packing at jamming onset. (c) A low-
frequency, “quartic” mode and (d) a high-frequency, “quadratic” mode, 
in a “floppy” deformable particle packing. 

shear modulus scales with pressure for different shape-energy functions (see 
Section 9.4.3). 

9.3 Shape Mechanics for Deformable Particles 
The deformable particle model describes the mechanics of deformable 
particles in 2D and 3D using surface meshes. The total potential energy for 
the deformable particle model includes a shape-energy function that de 
termines the equilibrium shape for an individual deformable particle and an 
interaction potential that specifies the interparticle forces. In this section, 
we will define shape-energy functions that can describe the mechanics of 
elastic shells, surface-energy dominated particles, and elastic solids. We also 
define repulsive interactions between rough deformable particles and be 
tween smooth deformable particles in 2D, and calculate the effective friction 
coefficients in the two cases during simple shear tests. 
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203 Deformable Particles: Modeling and Applications 

9.3.1 Shape-energy Function 
In 2D, the surface of particle µ can be described by a set of Nµ vertices that are 
connected by Nµ edges, forming a closed polygon, as shown in Figure 9.6(a). 
The mechanics of deformable particle µ in 2D is controlled by a shape-energy 
function U2D 

µ,shape that can be written in terms of the vertex positions: 

=

N
k XN2D m 2D Xm 2D

U2D = a k
m ( 2
;shape am − am0) + l k

(lmi − l b
i0)

2

2 2 m
i 1

+ (y
2 mi

i 1

− ymi0)
2 + g2Dpm;

=
(9.1)

where aµ is the area of the particle µ, lµi is the length of edge i that lies 
between vertex i − 1 and vertex i, and θµi is the bending angle between edges 
i−1 and i. (Vertices are indexed counter-clockwise around each particle.) The 

Figure 9.6  Images of the rough and smooth deformable particle models in 2D and 
3D. (a) Two deformable particles µ and β with rough surfaces in 2D, 
where aβ   is the polygonal area of particle β, lµi is the length of edge i, θµi
is the bending angle between edge i and i−1, σµ is the diameter of each 
vertex on particle µ, and rµi,βj is the separation between vertex i on 
particle µ and vertex j and particle β. (b) Two deformable particles with 
smooth surfaces in 2D, where dµi,βj is the shortest distance between 
vertex i on particle µ to the line defined by edge j on particle β (see 
eqn (9.7)). (c) Two deformable particles with rough surfaces in 3D, 
where aµf is the area of triangular face f on particle µ, θµe the bending 
angle for edge e on particle µ, σµ is the diameter of each vertex on 
particle µ, and rµi,βj is the separation between vertex i on particle µ and 
vertex j on particle β. Only a few spherical vertices are included on 
particles µ and β for visual clarity. (d) Two deformable particles with 
smooth surfaces in 3D, where dµi,βf is the shortest distance between 
vertex i on particle µ to the plane defined by face f on particle β. 
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first term in eqn (9.1) provides a quadratic energy penalty for deviations of 
the particle area from the preferred area aµ0. The second term provides a 
quadratic energy penalty for deviations of the length of each edge from its 
preferred length lµi0. The third term provides a quadratic energy penalty for 
deviations of each bending angle from its preferred angle θµi0, which ap-
proximates the curvature energy. The parameters k2Da  

 , k2Dl  
 , and k2Db  

 control 
the magnitude of fluctuations in the area, edge length, and bending angle.

The perimeter of particle µ is given by 
ΣNµ 

pµ= lµi
i= 1 

, and thus γ2D in the fourth 

term in eqn (9.1) is the line tension that penalizes increases in perimeter. 
The shape of each particle µ in 2D can be characterized using the “shape 

parameter, ” 2D A = p 2 
µ /(4πaµ). The minimum value for the shape parameter 

is A2D
min=Nµ tan(π/Nµ)/π

 , which corresponds to a regular polygon, or a circle 
with A2D

min= 1  in the limit Nµ→∞. For a shape-energy function with 
k2D 
a >0, k2D 

l >0, k2D 
b = 0, and γ2D= 0( ), in equilibrium, particle µ will possess

A2D=A2D
0 , where 

2 ΣNµ 

A2D 
0 = lµi0 /(4πaµ0)

i= 1 
. For a shape-energy function 

with k2D 
a >0 and k2D 

l >0, either sufficiently large 2Dγ  or k2Db 
 with θµi0= 0 will  

drive the particle toward a circular shape with A2D A2D <A2D= min 0
 . 

In three dimensions, we describe the surface of particle µ using a trian-
gulated mesh with Nµ vertices, Nµf triangular faces, and Nµe edges between 
adjacent triangles that satisfy the Euler characteristic: Nµ+Nµf−Nµe= 2 (see  
Figure 9.6(c)). Each surface triangle has three edges, each edge is shared by 
two triangles, and thus 2Nµe= 3Nµf . When we combine this relation with the 
Euler characteristic, we obtain Nµf= 2Nµ− 4 and  Nµe= 3Nµ− 6. The mechanics 
of deformable particle µ in 3D is controlled by a shape-energy function  

 U3D
µ,shape

that can be written in terms of the vertex positions: 

U3D 
µ,shape= 

k3D 
v 
2 

(vµ− vµ0)
2+

XNµf 

f = 1 

k3D 
a 
2 

(aµf − aµf 0)
2+

XNµe 

e= 1 

k3D 
b 
2 

(θµe− θµe0)
2+ γ3D sµ, 

(9.2) 

where vµ is the volume of particle µ, aµf is the area of triangle f on particle µ, and  
θµe is the angle between two adjacent triangles that share edge e. The  first term  
in eqn (9.2) is a quadratic energy penalty for deviations in the volume of particle 
µ from its preferred volume vµ0. The second term is a quadratic energy penalty 
for deviations in the area of triangle f from its preferred area aµf0. The t hird  
term is a quadratic energy penalty for deviations in the bending angle θµe from 
its preferred value θµe0, which approximates the curvature energy. γ3D gives 

the surface tension, where 
NΣµf 

sµ= aµf
f = 1 

 is the total surface area of particle µ. 

 k3Dv , 3Dka , and

204 Chapter 9

3D kb 
 are parameters that control the magnitude of fluctuations in 

the volume, surface area, and bending angle, respectively.

D
ow

nloaded from
 http://books.rsc.org/books/edited-volum

e/chapter-pdf/1935972/bk9781837673940-00196.pdf by Y
ale U

niversity, C
orey O

H
ern on 23 S

eptem
ber 2025



In 3D, we characterize the shape of particle µ using the shape parameter 
A3D= s3/2 

µ /
(
6 πvµ 

)√---
. The lowest possible shape parameter corresponds to a 

sphere with A3D= 1. However, in general, in 3D, the minimum shape par-
ameter for a triangulated surface with Nµ vertices is not known. When Nµ is 
consistent with a surface mesh composed of equilateral triangles, such as 
Platonic solids with Nµ= 4 (regular tetrahedron), 6 (regular octahedron), and 
12 (regular icosahedron), we find A3D 

min= 1.8188, 1.2861, and 1.0984. Thus, 
A3D

min
 
 depends on Nµ and the placement of the vertices on the particle surface. 

The choice of Nµ is a compromise between having a sufficient number of 
vertices to describe fluctuations of the particle surface and computational 
cost. For many applications, we have employed deformable particle models 
with  Nµ= 42 arranged on a geodesic icosahedron with 

3D 3D 
A3D 

min= 1.024.28,39 Even 
for structures that have A =Amin for a given Nµ, the preferred triangle areas 
aµf0 and bending angles θµe0 are not uniform over the surface. For a de-
formable particle with k3D 

v >0, k3D 
a >0, k3D 

b = 0, and 3D γ = 0, in equilibrium, 

particle µ will possess A3D=A3D
0

 , where
 N 3/2 

 A3D 
0

( )
µf = 

X
aµf 0 /(6

√--
π
-
vµ0)f = 1 

. For
a deformable  particle with  k3D 

v >0 aand  k3D 
 >0, either sufficiently large γ3D or 

k3Db
 

 with θµe0= 0 will drive the particle toward a spherical shape 
with A3D A3D = min. 

Using the definitions of the shape-energy functions for deformable par-
ticles in 2D and 3D (eqn (9.1) and (9.2)), we can model a wide array of 
soft particulate materials by varying the parameters k2D (

3D 
a kv 

)
, k2D 

l

(
k3D 
a 

)
, 

2Dkb k3D 
b 

( )
, and γ2D (γ3D ). In Table 9.1, we show that we can describe three 

types of deformable particles with different shape deformation mechanics. 
First, “floppy” particles with k2D 

a >0
(
k3D 
v >0 

)
and k2D 

l >0
(
k3D 
a >0 

)
can 

maintain their area (volume) and perimeter (surface), but the particles 
possess zero energy modes for transforming between shapes with the same 
shape parameter A2D (

A3D ) (see Section 9.4.3). In prior studies, we have 

Table 9.1 Selections for the parameters, k2D 3D 
a

(
kv 

) ) )
, 2D 3D kl

(
ka , 2D 3D kb

(
kb , and 

γ2D (  γ3D), in the shape-energy functions in 2D (eqn (9.1)) and 3D 
(eqn (9.2)) that describe “floppy” particles, elastic shells, and surface-
energy dominated particles. 

k2D 
a k3D 

v

( )
k2D 
l

(
k3D 
a

)
k2D 
b k3D 

b

( )
γ2D (γ3D ) System description 

>0 >0 0 0 Particles that conserve area (volume) 
and A, but possess floppy shapes, 
e.g. inflatable actuators33 and 
epithelial cells34 

>0 >0 >0 0 Particles that maintain their shapes, 
e.g. elastic shells35 and platelets36 

>0 ≈0 0 >0 Particle shapes are controlled by line 
(surface) tension and are circular 
(spherical), e.g. capillary droplets  37

and bubbles38
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modeled cell monolayers 27–29 and cancer cells invading adipose tissue as 
floppy particles.39 Second, for k2D 

a >0
(
k3D 
v >0 

)
, k2D 

l >0
(
k3D 
a >0 

)
, and k2D 

b >0(
kb >0

)
3D  , we can model elastic shells, which will return to their equilibrium 

shapes after applied deformations. For k2D 
a >0

(
k3D 
v >0 

)
and γ2D>0 γ3D>0 ( ), 

we can describe particles whose shapes are determined by line (surface) 
tension with circular (spherical) shapes in the absence of applied stresses, 
such as capillary droplets.32 We can also describe plastic particle shape 
mechanics by including equations of motion for the preferred geometrical 
properties of the particles, such as aµ0 (vµ0), lµe0 (aµf0), and θµe0.30,31 We have 
described the development of mesophyll tissue in plant leaves48 and wound 
closure in epithelial tissue31 using an elastic shell shape-energy function 
with plastic deformation of the edge lengths and bending angles. 

9.3.2 Interaction Potential Energy 
Both the shape-energy function of individual deformable particles and the 
interactions between deformable particles determine their shape mechanics. In 
this chapter, we focus on pairwise, repulsive interactions between deformable 
particles that prevent them from overlapping. We consider two types of repulsive 
interactions: (1) “rough” interactions between a circular (spherical) vertex on one 
particle and a vertex on a neighboring particle (Figure 9.6(a) and (c)) and (2) 
“smooth” interactions between a circular vertex on one particle and edges on a 
neighboring particle in 2D (or between a spherical vertex on one particle and 
triangular faces on a neighboring particle in 3D) (Figure 9.6(b) and (d)). 
The potential energy for interactions between N rough deformable par-

ticles in 2D and 3D is 

Urough 
int = 

1 
2 
XN 

µ= 1 

XNµ 

i= 1 

XN 

β= 1 
β≠µ 

XNβ 

j= 1 
Urough 
µi,βj , (9.3) 

where vertex i is on particle µ with Nµ vertices and vertex j is on particle β 
with N β vertices, 

Urough 
µi,βj = 

kc 
2 

σµβ − rµi,βj
( )2 Θ(σµβ − rµi,βj), (9.4) 

and rµi,βj is the magnitude of the separation vector between vertices, 
→rµi,βj =→rβj −→rµi. σµβ= (σµ+ σβ)/2 is the average diameter of the vertices on 
particles µ and β, Θ(.) is the Heaviside step function that ensures that roughUµi,βj 

 

is nonzero only for rµi,βj<σµβ, and kc is the spring constant of the interaction 
(see Figures 9.6(a) and (c) and 9.7(a)). 

The potential energy in eqn (9.3) and (9.4) considers repulsive interactions 
between vertex i on particle µ and vertex j on particle β, which mimics re-
pulsive interactions between rough deformable particles (see Figure 9.7(a)) 
that give rise to torques between contacting deformable particles. How can 
we model repulsive interactions between smooth deformable particles?
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207 Deformable Particles: Modeling and Applications 

Figure 9.7 (a) The rough form for repulsive interactions between particles µ and β 
(eqn (9.3)). Vertex i on particle µ interacts with the vertices (labeled j ) on  

particle β through the interaction potential, 
ΣNβ 

Urough
µi βj,

j = 1 

 , which is a 

function of their separation rµi,βj. Only one vertex i on particle µ is 
shown and σµβ = (σµ + σβ)/2 gives the range of the interaction. (b) The 
minimum distance 1≤rmin

µi,β /σµβ≤0 between vertex i on particle µ and 
the edge of particle β with non-convex shape increases from white 
to dark gray. For non-convex shapes, the gradient of rmin

µβ 
 possesses

discontinuities along lines that bisect concave angles of particle β. 
(c) The smooth interaction potential arising from vertex i interacting 

with particle β,
=

  ΣNβ  

Usmooth
µi,βj 

j     1  
where smooth edgeU i,βj Uµi,βj = µ + Uconcave + Uconvex

µi,βj µi,βj 
 . 

(d)–(f) The contributions to the smooth interaction potential in (c) 

from
ΣNβ 

 Uedge
µi,β

j = 1 

 ,  ΣNβ 

Uconcave
µi,β

j = 1 
, and 

ΣNβ 

Uconvex
µi,β 

j = 1 
separately. The discontinuity 

in the concave region in the edge potential in (d) illustrates the need for 
the addition of Uconcave

µi,βj 
 in Usmooth

µi j ,β . In               (c)–(f) when vertex (a) and             i on
particle µ is outside the dotted regions, its interaction with particle β is 
zero. We do not permit interactions between vertex i and particle β 
when vertex i is in the dark-gray region. 

A simple method for calculating the interaction energy between two smooth 
deformable particles is to assume that the pairwise potential energy for 
vertex i on particle µ interacting with particle β is a function of the minimum 
distance rmin

µi,β                                                                                                     from vertex i to the nearest point on the closest edge (or face) of
particle β. However, the gradient of rmin

i,   µ β is discontinuous            along lines that 
bisect concave angles of particle β as shown in Figure 9.7(b), and thus the 
repulsive forces between particles µ and β would be discontinuous if we 
assumed this form for the smooth interaction potential. 

We seek a smooth interaction potential that does not possess dis 
continuities in the repulsive forces between particles µ and β. To achieve 
this, we construct the smooth interaction potential Usmooth

int  
 that is a function 

of rmin
i,µ β

 
 when            vertex i on particle µ interacts with a convex region of particle β, 
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and gives rise to continuous forces when vertex i on particle µ interacts with 
concave regions of particle β (see Figure 9.7(c)). Usmooth

int
 includes three terms. 

The first term is a function of the distance, dµi,βj, from vertex  i on particle µ to 
each overlapping edge j with width σβ on particle β. In convex regions of particle 
β, vertex i  can only overlap with one edge, while in concave regions vertex i can 
overlap with two or more edges (see Figure 9.7(d)). The second term is a func-
tion of the distance rµi,βj between vertex i on particle µ and overlapping vertex j 
on particle β, when j  is in a concave region on particle β (see Figure 9.7 (e)). 
Otherwise, the second term is zero. The third term is a function of the separ-
ation rµi,βj between vertex i on particle µ and vertex j on particle β when j is in a 
convex region and i and j overlap (see Figure 9.7 (f)). The total potential energy 
Usmooth
int

 arising from repulsive interactions between N smooth deformable par-
ticles in 2D is 

Usmooth 
int = 1 

2 
XN 

µ= 1 

XNµ 

i= 1 

XN 

β= 1 
β≠µ 

XNβ 

j = 1 
Usmooth 
µi,βj , (9.5) 

where µ and β= 1,. . .,N, i 1,. . .,Nµ= , j= 1,. . .,Nβ, and Usmooth 
µi,βj Uedge 

µi,βj + =
concaveU convex
µi,βj +Uµi,βj 

 . The first term, edgeUµi,βj  , includes repulsive spring interactions 
between vertex i on particle µ and edge j in convex and concave regions on 
particle β: 

Uedge 
µi,βj = kc 

2 
σµβ− dµi,βj
( )2 Θ(σµβ− dµi,βj)Θ(→rβ( j− 1),µi .→rβ( j− 1),βj)
(

.Θ(→rβj,µi .→rβj,β( j− 1))Θ(dµi,βj)
)
, (9.6) 

where kc is the spring constant. dµi,βj is the perpendicular distance between 
vertex i on particle µ and the line defined by edge j that runs from vertex→rβ( j− 1) 
to vertex→rβj, 

dµi,βj = ̂z . (→rβj,β(j− 1)×→rβj,µi)/|→rβj,µi|, (9.7) 

where ẑ is a unit vector that is perpendicular to the 2D plane. The combined 
Heaviside functions in eqn (9.6) evaluate to 1 when vertex i is perpendicular 
to edge j and within the interaction range σµβ and evaluate 0 elsewhere. 

When adjacent edges j− 1 and j on particle β form a concave angle be-
tween 0 and /2π , a discontinuity occurs in Uedge

µi,βj 
 . In particular, as vertex i on 

particle µ moves along edge j− 1 on particle β, edge Uµi,βj jumps discontinuously 
when vertex i enters the portion of edge j that overlaps with edge j − 1 (see 
Figure 9.7(d)). The second term, concaveUµi,βj , removes this discontinuity. 

Uconcave 
µi,βj = − kc 

2 
σµβ− rµi,βj
( )2 Θ(σµβ− rµi,βj)Θ(→rβj,µi .→rβj,β( j− 1))
(

.Θ(dβj,µi)Θ(→rβj,µi .→rβj,β( j+ 1))Θ(dβ( j + 1),µi)
)

(9.8) 

includes attractive interactions between vertex i on particle µ and vertex j on 
edgeparticle β that exactly cancel the discontinuous jump in Uµi,βj 

 . The combined 
Heaviside functions in eqn (9.8) evaluate to 1 when vertex i is within σµβ of
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vertex j and within σµβ of both edges j and j+ 1. The third term Uconvex
µi,βj 

 

captures the repulsive interactions between vertex i on particle µ and vertex j 
on particle β when vertex j lies between two edges that form a convex angle: 

Uconvex 
µi,βj =

kc 
2 

σµβ−rµi,βj
( )2 Θ(rµi,βj−σµβ)Θ(−→rβj,µi .→rβj,β( j−1))Θ(−→rβj,µi .→rβj,β( j+1))

(
. 

)

(9.9) 

The combined Heaviside functions in eqn (9.9) evaluate to 1 in the gaps 
between edges j and j+ 1 when they form a convex angle, when rµi,βj≤σµβ, 
and evaluate to 0 otherwise (see Figure 9.3(f)). 

9.3.3 Calculation of Friction Coefficient Between Deformable 
Particles During Simple Shear 

After specifying the shape-energy function of deformable particles in 
Section 9.3.1 and repulsive interactions between them in Section 9.3.2, we 
will characterize their mechanical properties. In this section, we will calcu-
late the effective friction coefficient between two deformable particles (both 
floppy particles and elastic shells with rough and smooth interactions) in 2D 
by carrying out a simple shear test, i.e. fixing the vertical separation between 
their centers and sliding them relative to each other in the horizontal dir-
ection. In the next section, we will characterize the normal force between two 
deformable particles in 2D and 3D by compressing them between two rigid 
flat plates. 

We define the effective friction coefficient µeff between two deformable 
particles µ and β undergoing simple shear as 

µeff = Ft 
Fn 

, (9.10) 

where 

Fn →Fµβ n̂βµ,= . (9.11) 

is the normal component of the force 
Nµ 

→Fµβ= −
Σ ∇→ smooth,rough

→rµi Uint
i 1 

 on par-
=

ticle µ in the n̂µβ direction from interactions with particle β, n̂βµ=→rβµ/rβµ 

points from the center of mass of particle β to the center of mass of particle 
µ, and →

→rµi is the gradient with respect to the position of vertex i on particle 
µ. The tangential force component is 

∇

Ft=→Fµβ . t̂βµ, (9.12) 

where t̂βµ satisfies n̂ ^βµ tβµ ẑ× = .
To characterize the effective friction coefficient, we consider two deformable 

particles µ and β with eight vertices each (Nµ=Nβ= 8) and identical shape and 
interaction potentials. The particles undergo simple shear by fixing the position 
of particle β and moving particle µ from left to right (see Figure 9.8(a)–(c)).
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210 Chapter 9 

Fixing particle β and translating particle µ are achieved by adding harmonic 

spring potential energy functions.  Σ2
Uconstraint 2
β = kconstraint|→rβj →rβj,0 /2

j 1 
− |

=
fixes  

the positions of the bottom two vertices 1 and 2 of particle β, →rβ1 and →rβ2, by  
defining “preferred” positions for each of them, →rβ1,0 and →rβ2,0. We use  Σ3 
Uconstraint = kconstraint →rµi →µ rµi,0

i 1 
| − |2 /2 to shift the positions of vertices 1, 2, and 

=
3 on particle  µ, r→µi with i = 1,2,3 from left to right, by incrementally changing 
the “preferred” positions →r ′ →µi,0 = rµi,0 +Δxx̂, where  Δx 0.016Dβ=  and 
Dβ =maxij |x̂ ·→rβi,βj| + σβ is the horizontal width of particle β. After each hori-
zontal shift of particle µ, we relax the total potential energy of the system (in 
cluding U2D 

µ,shape, U2D 
β,shape, U

rough 
int or Usmooth 

int , Uconstraint
µ

 , and U constraint ) using  β 
damped molecular dynamics simulations until the total kinetic energy, K, 

Figure 9.8 Two elastic shell particles µ and β with Nµ =Nβ = 8 and  A2D 
0 A2D

min =
undergo simple shear by fixing the position of particle β and moving 
particle µ from left to right, which is achieved by adding two harmonic 
spring potential energy functions that prescribe the equilibrium positions 
→rβ1,0 and →rβ2,0 of two vertices (green) on particle β and the equilibrium 
positions →rµ1,0, →rµ2,0, and →r µ3,0 of three vertices (red) on particle µ. →rβµ is 
the separation vector from particle β to µ, Dβ is the horizontal width of 
particle β, and  Rµ is the distance from the center of particle µ to each 
vertex when particle µ is a regular polygon. Particle positions (varying in 
frames 1–7) for two particles of varying types undergoing simple shear as 
a function of  xβµ = x̂ · (→rµ2,0 − (→rβ1,0 +→rβ2,0)/2): (a) two rough elastic shells 
with Cµ =Rµ/σµ = 1.3 and  µm

eff = 0.537; (b) two rough elastic shells with 
Rµ/σµ = 0.71 and µm

eff = 0.261; and (c) two smooth elastic shells with 
Cµ =Rµ/σµ = 1.3 and mµeff = 0.190. (d) The effective coefficient of friction  
µeff plotted versus xβµ/Dβ for the particle types in (a)–(c). The configuration 
at which the maximum effective friction coefficient µm

eff occurs for two 
smooth elastic shells is marked with a star. 
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satisfies K/(kcσ2 )≲10−20 , where  σ is the average vertex diameter. To ensure that 
the constrained vertices remain near their “preferred” positions, we chose 
kconstraint/kc 100= . 

We first calculate µeff(xβµ), where xβµ x̂ (→rµ2,0 (→rβ1,0 →rβ2,0)/2)= . − + , for stiff , 
elastic shells (k2D/k = 100, k2D 2 

l c b /(kcσ )= 171, and k2D 
a a 2 

0 /(kcσ2)= 14, where a0 
is the average preferred area) with rough interactions, Nµ= 8, and 
A2D 

0 =A2D 
min (see Figure 9.8 (a) and (b)). As the two particles are sheared, µeff 

displays a “saw-tooth” pattern as the particles “stick” and “slip” past one 
another,40 as shown in Figure 9.8(d). µeff starts at a small positive value at the 
first contact between the particles and decreases approximately linearly until 
it reaches its minimum value near xβµ= 0. At xβµ= 0, where one vertex on 
particle µ contacts two vertices on particle β and fits into the groove between 
them, the particles only exert normal forces on each another and 

 
µeff= 0 (see  

frame 4 in Figure 9.8(a)). For xβµ≳0, one of these contacts breaks and µeff 
jumps to its maximum value µm 

eff =maxxβµµeff (xβµ). µeff then decreases roughly 
linearly as particle µ moves out of the groove of particle β. At  sufficiently large 
xβµ, the particles are no longer in contact (see frames 6 and 7 in Figure 9.8(a)). 

Given the shapes, positions, and orientations of particles µ and β, µeff for 
each two-particle configuration can be calculated, and the maximum value 
of µeff(xβµ) over all sampled configurations can be obtained. In the case of 
rough, circular particles with A2D 

0 =A2D 
min, the maximum effective friction 

coefficient is determined by the ratio of the polygon radius to the vertex 
diameter Cµ Rµ/σµ=  and number of the vertices Nµ: 41 
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([ ]2 −1
2

1
µmax
eff = ( )

Cµ sin π/Nµ
− 1 .

)
(9.13) 

In Figure 9.8(a) and (b), we fix Nµ and Rµ and vary σµ to achieve µmax 
eff 0.577  =

with C 1.3µ=  and µmax 
eff 0.283=  with Cµ 0.7= 1. These calculated values of µmax 

eff 
are consistent with µm 

eff 0.537 and 0.261 that are found in Figure 9.8 (d). =
We then calculate µeff for stiff, elastic shells for smooth interactions with 

the same shape-energy function, A2D 
0 , and Cµ 1.3=  as those for the rough, 

elastic shells in Figure 9.8(a). Unlike µeff(xβµ) for rough interactions, µeff for 
smooth elastic shells does not possess large jumps while the particles are in 
contact as shown in Figure 9.8(d). Rather µeff begins at a small positive value 
and undergoes smooth oscillations between positive and negative values as 
xβµ increases. As shown in frame 4 in Figure 9.8(c), when xβµ 0,=  the dom-
inant force between particles µ and β arises from overlaps between the 
bottom vertex of µ and the top edge of β and points in the n̂βµ direction, 
which is vertical in this configuration. Here, any tangential forces arising 
from interactions between the top two vertices of β and the bottom two edges 
of µ cancel. When xβµ≳0, the dominant force on particle µ from β continues 
to point in the vertical direction, unlike rough interactions where for xβµ≳0, 
→Fµβ has a large horizontal component. The maximum value of µm 

eff 0.190 =
occurs when xβµ/Dβ≈0.1, which is consistent with µmax 

eff 0.190=  calculated for 
smooth, elastic shell particles in the configuration indicated by the star in
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212 Chapter 9 

Figure 9.8(c). (See Appendix A for the calculation of maxµeff for smooth de 
formable particles.) 

We now characterize the impact of particle deformability on µeff by calculating 
µeff(xβµ) for floppy particles (k2D/kc  1, k2D  0,l b = =  and 2k2Da0 /(kcσ2)    14)a =  with 
rough and smooth interactions (see Figure  9.9(a)). We have additional  control  of  

=the deformability by varying  A2DA2D 
min≈1.050 , 1.15, and 1.3. µeff for rough, 

floppy particles with = A2DA2D 
min 0 (Figure 9.9(b)) is similar to µeff for rough, stiff

elastic shells (Figure 9.8(d)), i.e., both possess saw-tooth patterns and similar 
µeff(xβµ). For floppy particles with >A2D A2D 

min, µeff(xβµ0 ) changes dramatically. For 
A2D 

0  1.15= , µeff is no longer symmetric as particle µ moves past particle β. Ra 
ther, µeff(xβµ) is irregular, it has a large region −0.08≲xβµ/Dβ≲0.4 where 

max µeff ~µeff for rough, elastic shells. maxµeff ~µeff occurs when the vertices of par 
ticle µ are located in the grooves of particle β and vice-versa. The deformability of 
the particles allows interdigitated configurations to occur over a wide range of 
xβµ rather than at a single xβµ as for rigid, elastic shells. For extremely floppy 
particles, such as A2D  1.30 = , the particles can explore elongated shapes, which 
can achieve larger friction coefficients than those that are possible for rough, 
nearly spherical elastic shells (see frame 6 in Figure 9.9(a)). We note that for 
floppy particles, the particle shape and effective friction coefficient are history-
dependent, and thus µeff would be different for a cyclic simple shear protocol. 

Finally, we calculate µeff for floppy particles with smooth interactions and the 
same shape-energy function that was used for the rough interactions (see Fig-
ure 9.9(c)). As before, µeff for smooth particles with = A2DA2D 

min is similar to that 0 
for smooth, elastic shells (see Figure 9.9(d)). µeff for smooth, floppy particles 
with A2D  1.150 =  and 1.30 depend strongly on the shape of the particles. We find 
that smooth, floppy particles with A2D  1.150 =  possess the lowest maxµeff across all 
systems we considered, indicating a combination of deformability and surface 
interactions can lead to the least friction between particles undergoing simple 
shear. However, max µeff for smooth, floppy particles with A2D = 1.300  exceeds maxµeff 
for smooth, elastic shells. Thus, increasing deformability by increasing A2D 

0 
gives rise to non-monotonic behavior in maxµeff . Together these results confirm 
the sensitivity of frictional interactions between deformable particles on the 
specific two-particle configurations that are sampled. 

 

9.3.4 Contact Mechanics 
In this section, we characterize the mechanical properties of individual de 
formable particles undergoing uniaxial compression. In particular, we com 
pare the relation between the applied force and particle deformation for 
rough, elastic shells (with = A2D,3D A2D,3D 

0 min ) and bulk elastic particles in 2D and 
3D. We will confine a single deformable particle between two flat rigid parallel 
plates and determine the applied force Fa normal to the top plate that achieves 
a given compression distance δ (see Figures 9.10(a), (b) and 9.11(a)–(c)). We fix 
the bottom plate and move the top plate downward in small compression 
steps, with each followed by minimization of the total potential energy 
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Figure 9.9 Two floppy particles µ and β with Nµ Nβ 8= =  undergoing simple shear 
by fixing the position of particle β and moving particle µ from left to 
right. This protocol is achieved by adding two harmonic spring poten-
tial energy functions that prescribe the equilibrium positions →rβ1,0 and 
→rβ2,0 of two vertices (green) on particle β and the equilibrium positions 
→rµ1,0, →rµ2,0, and →rµ3,0 of three vertices (red) on particle µ. →rβµ is the 
separation vector from particle β to µ, and Dβ is the horizontal width of 
particle β. (a) Floppy, rough and (c) floppy, smooth (with =A2D 

0 1.3) 
particle shapes and positions (varying in frames 1–7) as a function of 
xβµ x̂ (→rµ2,0 (→rβ1,0 →rβ2,0)/2)= . − + . µeff plotted versus x /Dβ for (b) floppy, 
rough and (d) floppy smooth particles with =A2D 

0 A2D 
min

βµ

 , 1.15, and 1.3. 
The horizontal dashed lines in (b) and (c) indicate ± =µmax 

eff 0.577 and 
0.190 for elastic shell particles with rough and smooth interaction 
potentials, respectively, obtained from eqn (9.13) and Appendix A. 

including the shape-energy function and repulsive interaction energy between 
vertices i on particle µ and the top (t 1) and bottom plates (t 2):=

Nµ ( ) (2 Σ Σ
Uplate k 2 

= p 2 rplate pl e 
µ σ ,t at Θ σ ,t 

µ/ µi µ/2 rµi
t 1 2

− −
1 i ==

) =
, where  kp/kc = 4 is  the  

spring constant for the plate–vertex interaction and rplate,tµi
 is the minimum 

distance between vertex i and plate t. These compression tests are similar to 
those used to quantify Fa versus δ for bulk elastic particles, such as com-
pressing elastic cylinders in the radial direction in 2D and compressing elastic 
spheres in 3D. 
In 2D, for an elastic cylinder with length l and diameter D parallel to and 

in contact with a plane of the same material, the applied force Fa to achieve 
compression δ is42 

δ 
D 
= 4 

π 
Fa 

ED2 
D(1− ν2) 

l 
1+ ln πl3ED2 

1− ν2
( )

D3 Fa 
, (9.14)
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where ν is the Poisson’s ratio and E is the Young’s modulus of the particle.( [ )]
In dimensionless form, eqn (9.14) becomes π 

δ~ = [4F~ D~a /π] 1+ ln 
~ 3D F~ a 

, 

where D~ D ~/l, δ δ/D= = , and F~ a= Fa(1− ν2)/(ED2). In the small compression 
limit δ~≪1, eqn (9.14) can be approximated by a linear force–displacement 
relation: F~ ~ α 

a∝δ with α= 1. We find a similar result, ~ ~F a~δ, when we com-
press an elastic solid disk modeled using a spring network (Figure 9.10 (a)). 
The spring network is composed of a disordered triangular lattice with 
1100 nodes connected by 3197 linear springs (for an average coordination 
number of 5.81) all with the same spring constant k/kc 1= . For compression 
of an elastic shell, we consider A2D A2D 2D 

0 min, ka >0, k2D 
l >0, k2D 

b >0, θµi0  = =
2π/Nµ for all i, and Nµ= 100 (Figure 9.10(b)). We also find that F~ ~

a∝δ for 
compression of elastic shells using the deformable particle model for small δ~ , 
while F~ a increases nonlinearly for ~ 2 F a≳10−  as shown in Figure 9.10(c). Thus, 
for small deformations, both elastic shells and bulk elastic particles possess 
linear force–displacement relations during compression in 2D. 

In 
4 

3D, F~ a= δ~
α

3
 
with α= 1.5 for an elastic solid sphere42 and F~ ~ 

a∝δ for an 
elastic spherical shell.43 When we model an elastic solid sphere as a volumetric 
spring network with 3765 nodes connected by 43, 334 springs with spring 
constant k/kc= 1 and coordination number≈23 (Figure 9.11(a)), we also find 

Figure 9.10 Images from compression tests in 2D for (a) an elastic disk modeled 
using a spring network with coordination number 5.81 that fills the 
entire disk and (b) an elastic shell with A2D A2D , k2D 

0 > 2D 
min a 0, kl >0, =

k2D 
b >0, and θµi0 2π/Nµ=  for all i. In (a) and (b), the red vertices are in 
contact with the top and bottom plates, δ and Fa define the compression 
distance and applied compression force, respectively. (Note that we do 
not show all of the vertices, nodes, and spring connections for visual 
clarity.) (c) Dimensionless applied force F~ a plotted as a function of the 
dimensionless compression distance 

214 Chapter 9

δ~ for an elastic cylinder (blue 
circles, eqn (9.14)), elastic disk modeled using a spring network (red 
triangles), and elastic shell (yellow squares). The dashed line has slope 1.
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215 Deformable Particles: Modeling and Applications 

F a~δ ~~ α 
with α = 1.5. For an elastic shell with = A3DA0

3D 
min, kv

3D>0, ka
3D>0, 

k3D>0b , and θµe0 that correspond to the equilibrium bending angles for a 
polyhedron with = A3DA3D

0 min for Nµ = 162 (Figure 9.11(b)), we find that ~~F a∝δ 
over a large range of δ~  as found for the continuum description of an elastic 
spherical shell (see Figure 9.11(d)). 

Can we develop a surface tessellation model that mimics the compressive 
response of an elastic solid sphere? We propose a model with a spherical surface 
tessellation (with Nµ vertices) plus an additional vertex at the particle’s center that  
form 2Nµ 4 − tetrahedra between the central vertex and triangles on the particle 
surface (Figure 9.11(c)). Instead of using U3D 

µ,shape in e qn (9.2), we assume that the  
following strain energy governs particle deformation during compression: 

2NXµ − 4 3X
U3D 
µ,strain = 

vf ωf ,mnCmnqr ωf ,qr , 2
f = 1 m,n,q,r = 1 

(9.15) 

where vf is the volume of tetrahedron f, ωf,mn and ωf,qr are the components 
of the strain tensor ωf for tetrahedron f, and Cmnqr is the elasticity tensor. 

Figure 9.11  Images from compression tests in 3D for (a) an elastic sphere modeled 
by a volumetric spring network with coordination number≈23, (b) an 
elastic spherical shell with = A3DA3D

0 min, kv
3D>0, ka

3D>0, kb
3D>0, and 

θµe0 that correspond to the equilibrium bending angles for a poly 
hedron with = A3DA3D 

min for Nµ  1620 = , and (c) 2Nµ 4−  elastic tetrahe 
dra that are formed by the center of mass of the particle and the 
triangles that form its surface mesh. In (a)–(c), the red vertices 
indicate those in contact with the top and bottom plates. (Note that 
we do not show all of the vertices, nodes, and spring connections for 
visual clarity.) (d) Dimensionless applied force, ~F a plotted as a function 
of dimensionless compression distance ~δ for an elastic shell (red 
triangles), spring network (blue circles), and elastic tetrahedra (yellow 
squares). The dashed and dash-dotted lines have slopes 1 and 1.5, 
respectively. 
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The strain tensor εf is given by the deformation tensor Jf of tetrahedron f : 
εf 

(
JT 
f Jf I /2=

)
− , where I is the identity matrix. The deformation gradient 

tensor obeys Jf Yf XT 
f (X T 

f Xf )
−1=  , where XT 

f is the transpose of Xf, and Xf and Yf 
are matrices formed from the separation vectors from the central vertex to 
the vertices of each surface triangle before and after deformation: 

Xf = →r0 
f ,1−→r0 

Nµ + 1, →r
0 
f ,2−→r0 

Nµ + 1, →r
0 
f ,3−→r0 

Nµ + 1

(
,
)

(9.16) 

Yf = →r f ,1−→rNµ + 1, →r f ,2−→rNµ + 1, →r f ,3−→rNµ + 1
(

,
)

(9.17) 

where →r0 
f ,1, →r0 

f ,2, and  →r0 
f ,3 are the column vectors giving the coordinates of the 

three vertices that form surface triangle f before deformation, →r f ,1,→r f ,2, and  →r f ,3 
are the column vectors giving the coordinates of the three vertices that form the 
surface triangle f after deformation, and→r0 

Nµ 1+ and→rNµ + 1 are the column vectors 
giving the coordinates of the central vertex before and after deformation. When 
we assume that each tetrahedron is composed of the same isotropic elastic 
material, we find that  F~ δ~

α 
a∝ with α= 1.5 during compression for sufficiently 

large displacements as shown in Figure 9.11(d). Note that for this model α≈1 for  
small δ~ since at small deformations the purely repulsive linear spring forces 
between the surface vertices and the flat plates are larger than the forces arising 
from deformation of the elastic tetrahedra. At larger deformations, the strain 
energy dominates the interaction energy between the particle and the plates. 

9.4 Jammed Packings of Deformable Particles 
In previous sections, we described the mechanical properties of individual 
deformable particles. We will now describe the collective structural and 
mechanical properties of static, jammed packings of N deformable particles. 
To generate a jammed packing, we start with a dilute system at packing 
fraction ϕ 10−3=  , randomly placed particles in a square (cubic) box with side 
length L in 2D (3D), and periodic boundary conditions in all directions. We 
isotropically compress the system by decreasing L in small steps ΔL/L so that 
the packing fraction increases by Δϕ/ϕ<10−3 . After each compression step, 
we use the FIRE algorithm44 to minimize the total potential energy that 
includes the shape-energy function and interaction potential energy. We 
then calculate the pressure P of the energy-minimized packing. If P<Pt, 
we compress the system again, followed by energy minimization. If P>Pt, we  
return to the configuration before the most recent compression step and 
decrease ΔL/L by a factor of 2. We continue this process until 1<P/Pt<1.01. 
We set P- 7

t 10− , where - 2DPt Pt/ ka a0 = ( )
in 2D and 3D Pt/

(
kv v0 = )

in 3D for the 
dimensionless threshold pressure that signals jamming onset, where a0 and 
v0 are the average rest area and volume in 2D and 3D, respectively. After 
saving the packing at jamming onset, we compress the packing further to
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217 Deformable Particles: Modeling and Applications 

generate overcompressed particle configurations at dimensionless pressures 
that are logarithmically spaced between 10−7 and 10−2. 

In this section, we will first describe the calculation of the packing 
fraction of jammed deformable particle packings in periodic boundary 
conditions given that deformable particles possess spherical vertices on 
their surfaces and provide expressions for the components of the stress 
tensor in systems with periodic boundary conditions given that the shape-
energy function of deformable particles includes many-body potentials. We 
will use these results to show the pressure versus packing fraction relation 
near jamming onset for packings of deformable particles in 2D. We also 
compare the vibrational density of states of jammed packings of floppy 
particles, elastic shells, and surface-energy dominated particles with rough 
interactions in 2D and 3D, by calculating the eigenvalue spectrum of the 
dynamical matrix. 

9.4.1 Calculation of Packing Fraction 
The packing fraction ϕ plays a dominant role in controlling the collective 
mechanical properties of many particulate systems. We will focus on 
systems near jamming onset, where overlaps between deformable par 
ticles are small compared to the particle size. In this case, the packing 
fraction is the total area (volume) occupied by the particles divided by the 
area (volume) of the confining boundaries. The area (volume) of each 
particle is determined by the edges of the particle that define the inter 
action potential between particles in eqn (9.3) for rough particles and 
eqn (9.5)  for smooth particles. In this subsection, we describe the cal 
culation of the packing fraction ϕ for collections of N rough deformable 
particles in a square box with side length L in 2D with periodic boundary 
conditions and validate the method using Monte-Carlo integration. 
Calculations of ϕ for deformable particles with smooth interactions and 
in 3D can be obtained using similar methods. 

The area occupied by a collection of 2D deformable particles with rough 
interactions is the sum of the areas of the polygons and vertices for each 
particle (see Figure 9.12(a)). However, we must subtract off the areas of regions 
that are double-counted for overlaps that occur between two vertices on a 
given particle, overlaps between the vertices and polygon on a given particle, 
as well as overlaps between vertices on different particles. If the vertices on a 
given deformable particle do not overlap significantly, 0. <rµi,µj/σµ<11 , we 
only need to consider overlaps between pairs of vertices and a single vertex 
overlap with each polygon. The area of a collection of deformable particles is 

Aparticles = Apolygon + Avertices − Asector − Apair, (9.18) 

where 
NΣ

Apolygon = aµ
µ    1 =

, is the area of the polygon for each particle (see 

Figure 9.12(b)). The total area of the vertices for all particles is 
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218 Chapter 9

Figure 9.12 (a) A jammed packing of N= 7 rough, deformable particles. We show 
the area of the particles Aparticles in the main simulation cell (black), 
unoccupied area (white), and area of particles in the image cells (gray). 
The packing fraction ϕ is the ratio of the area in black to the total area 
of the main cell. The area of the particles has four contributions: 
Aparticles Apolygon Avertices Asector Apair= + . (b) A polygon is shaded gray. 
(c) The area of the vertices in the main cell 

− −
Avertices is shaded gray. 

(d) The regions Asector that are counted both in the polygon and vertex 
areas are shaded gray. (e) The vertex–vertex overlaps outside of the 
particle polygons Apair are shaded gray. (f) A close-up of vertex i (red) 
on particle µ overlapping with vertex j (green) on particle β. σµ and σβ 
are the diameters of the vertices, rµi,βj is their separation, and hµi,βj is 
the distance from→rµi to the planar interface with vertex j on particle β. 
Iµi,βj is the red-shaded area. Intraparticle vertex–vertex overlaps out-
side of the particle polygons are shown in gray; these regions corres-
pond to the first term in eqn (9.19). (g) Each particle area Aµ is shaded 
according to the local pressure Pµ Tr Σ- µ /2= ( )

 (in units of k2D 
a a0, where 

a0 is the average preferred area). The close-up shows the planar 
interfaces between several vertices on different particles. In (a)–(e), 
and (g), the main cell is indicated by a solid black line, and the image 
cells are indicated by dashed black lines.

N Nµ

Avertices= 
Σ Σ 

πσ 2 
µ /4 

µ= 1 i 1
(see Figure 9.12(c)). 

N Nµ 

Asector = 
Σ Σ 

σ 2 
µ (π θµi)/8

µ= 1 i 1
− is  

= =
the area of the overlaps between each vertex and the polygon of the particle 
to which they belong, as shown in Figure 9.12(d). The area of the overlaps 
between the vertices that occur outside of the particle polygons is 

Apair= 
XN 

µ= 1 

XNµ 

i= 1 
Iµi,µ(i+ 1)+ 

XN 

µ= 1 

XNµ 

i= 1 

XN 

β= 1 
β≠µ 

XNβ 

j = 1 
Iµi,βj, (9.19) 

which includes both intra- and interparticle vertex–vertex overlaps and is 
shaded gray in Figure 9.12(e). In eqn (9.19), Iµi,βj is the area of one of the two 
circular segments (with radius σµ/2) defined by the points where overlapping 
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vertices i on particle µ and j on particle β intersect.45 The area of overlap 
between vertex i on particle µ and vertex j on particle β is 

Iµi,βj = Θ(σµβ− rµi,βj) 
σµ 

2

( )2 
arccos 

r2 
µβ−

σβ 

2

( )2 
+ σµ 

2

( )2 

σµrµβ 

( 

|( 

) 

|| 

[ 

||

−
rµβ 

2− σβ 

2

( )2 
+ 

σµ 

2

( )2 

2rµβ 

------------------------------------------------------------------------ 
σµ 

2

( )2
−

rµβ 
2− σβ 

2

( )2 
+ 

σµ 

2

( )2 

2rµβ 

( 

|( 

) 

|| 

2 
[||||√ 

] 

|||. 

(9.20) 

The first term in the square brackets is the area of the circular sector 
defined by vertex i and the intersection points with vertex j, and the second 
term removes the area of the triangle defined by the intersection points 
and →rµi. The Heaviside function ensures that Iµi,βj only contributes to Apair 
when vertex i and j overlap. (See the red-shaded region in Figure 9.12(f).) In 
eqn (9.19), the first term is a sum over adjacent vertices in each particle, and 
since all vertices on particle µ have the same diameter, Iµi,µ(i 1)+  is half the 
overlap between vertex i and vertex i+ 1. We only use this half overlap when 
calculating Apair because only half of the intersection occurs outside the 
polygon of particle µ. In the second term in eqn (9.19), the double sum 

N Nβ 

β 

Σ
I 

1 

Σ 
µi,βj 

= ,β≠µ j = 1 
is the size of the double-counted region we associate with 

vertex i on particle µ from overlaps with vertices on other particles. Thus, the 
area attributed to a single deformable particle µ is 

Aµ= aµ+ 
XNµ 

i= 1 

π 
4 
σµ 

2−
XNµ 

i= 1 
σµ 

2 (π− θµi) 
8

−
XNµ 

i= 1 
Iµi,µ(i+ 1)−

XNµ 

i= 1 

XN 

β= 1 
β≠µ 

XNβ 

j= 1 
Iµi,βj. 

(9.21) 

While it is possible to make other choices concerning the attribution of 
double-counted area between vertices on different particles, this choice re-
flects the idea that the particles deform such that two contacting vertices 
form a planar interface, and as a result the area occupied by vertex i should 
be reduced by Iµi,βj. In Figure 9.12(g), the blue- and green-shaded regions 
indicate Aµ (eqn (9.21)) for each particle. 

Using eqn (9.18), the packing fraction is defined as 

ϕ= Aparticles/L2 . (9.22) 

In Table 9.2, we compare the analytic expressions for ϕ and the four con-
tributions to Aparticles (i.e. Apolygon, Avertices, Asector, and Apair) to those found 
using Monte-Carlo integration for the deformable particle packing in
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220  Chapter 9 

Table 9.2  The packing fraction ϕ    Aparticles/L
2=  and the four contributions to 

Aparticles  Apolygon Avertices Asector Apair = + − − (eqn (9.18)) for the deformable 
particle packing in Figure 9.12. For ϕ and each area contribution, we 
compare the analytical expressions in the middle row to those obtained 
from Monte-Carlo integration in the bottom row. The errors in the 
Monte-Carlo integration scale as ~Nm 

−1/2, where Nm is the number of 
Monte-Carlo trials. 

Method ϕ = Aparticles/L
2 Apolygon/L2 Avertex/L

2 Asector/L
2 Apair/L

2 

Analytic 0.8397 0.276 0.8648 0.259 0.0415 
Monte-

Carlo 
0.8391 ± 0.0008 0.276 ± 0.001 0.8642 ± 0.0008 0.260 ± 0.001 0.0410 ± 0.0004 

Figure 9.12(a). For example, we find ϕ = 0.8397 using eqn (9.22) and 
ϕ = 0.8391 ± 0.0008 using Monte-Carlo integration for this deformable par 
ticle packing. The packing in Figure 9.12(a) contains elastic shell particles 
with k2D/kc  2, k2D/(kcσ2)    0.3l b = , and 2 k2Da0 /(kcσ2)    0.9 a = with rough inter-
actions, 

 
Nµ = 5, N = 7

=
, and = A2DA2D 

0 min. 

9.4.2  Stress Tensor for Deformable Particles in Periodic 
Boundary Conditions 

The stress tensor Σ- of a jammed packing of deformable particles describes 
the mechanical response of the packing. The stress tensor is symmetric with 
d(d + 1)/2 independent components in d dimensions. The pressure is given 
by the diagonal elements of the stress tensor, P     Tr(Σ- )/d= , where Tr is the 
trace. The off-diagonal components of the stress tensor give the shear stress. 
The stress tensor is straightforward to calculate for systems of point particles 
with fixed-wall boundary conditions. For periodic boundary conditions, the 
potential energy (and thus the stress tensor) has an additional dependence 
on the length of the boundary from the minimum image convention.46 For 
systems with only pairwise, central potentials, the additional dependence on 
box length can be captured by summing over each pair interaction and using 
the main simulation cell position of one particle in the pair and the closest 
image position of the other particle when calculating each pair interaction’s 
contribution to the stress tensor.47 The shape-energy function for deform 
able particles includes not only pair interactions, but also many-body po 
tentials (see eqn (9.1) and (9.2)). In this section, we will first review 
expressions for the stress tensor for collections of particles that interact via 
repulsive pairwise, central potentials with periodic boundary conditions. 
We then generalize the expressions for the stress tensor for packings of 
deformable particles to include many-body interactions with periodic 
boundary conditions. We also discuss a method for defining the stress 
tensor for each particle that sums to the total stress tensor when averaged 
over all particles in the system. Using these relations for the stress tensor, 

D
ow

nloaded from
 http://books.rsc.org/books/edited-volum

e/chapter-pdf/1935972/bk9781837673940-00196.pdf by Y
ale U

niversity, C
orey O

H
ern on 23 S

eptem
ber 2025



we calculate the pressure of deformable particle packings as a function of 
packing fraction as they are isotropically compressed above jamming 
onset. 

For a 2D system of N elastic disks modeled by point particles with short-
range pairwise, central potentials, and fixed-wall boundary conditions, the 
stress tensor can be defined as

1 XN
Σ- ab = A

(mnvn,avn,b
system n

+ rn,aFn,b ,
= 1

/
(9.23)

where a, b= x, y, rn,a and vn,a are the ath components of the position and 
velocity vectors for disk n, and mn is the mass of disk n. Fn,b is the bth 
component of the net force on disk n, Asystem is the area of the system, and 〈.〉 
gives the ensemble average. In eqn (9.23), the first term is the contribution to 
the stress tensor from momentum transfer through particle motion, while 
the second term is the force moment or virial contribution. 

However, eqn (9.23) does not hold for systems with periodic boundary 
conditions.47 The stress tensor can be calculated for systems with pairwise 
interactions in periodic boundary conditions by making a specific choice for 
the position factor in the force moment. When calculating the contribution 
to the stress tensor for the pair interaction between disk n and disk m, we use 
the position of disk n in the main simulation cell, and the closest image 
position of disk m, since these are the positions used to calculate the 
interaction potential and forces between disks n and m within the main 
simulation cell.46 Using this method,
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)
\

1 XN NX (− 1 XN
Σ- = ( )m v v + rn,pairFn,pair + rn,pairFn,pair

ab n n,a ,
A n,b n,a nm,b m,a mn,b
system n= 1 n= 1 m= n+ 1

))/ ( \
(9.24)

where rn,pair n,a is ath component of the position vector of disk n in the main 
simulation cell and rn,pair m,a is the ath component of the position vector of the 

closest image of disk m to disk n. Fn,pair ∂ pair 
nm,b = − U

∂rn,pair 
nm 

n,b 

is the bth com-

ponent of the force on disk n from the pair force on disk n from disk m and 
n,pair ∂ 

Fmn,b = − Upair 

∂rn,pair 
nm 

m,b 

is the bth component of the pair force on disk m from 

disk n. Upair
nm 

 is the pair potential between disks n and m using the minimum 
image distance between them. Eqn (9.24) can then be rearranged as/ (

1 XN NX− 1 XN
- = m v v − rn,pairFpairΣab A n n,a n,b nm,a nm,b ,

system n= 1 n= 1 m= n+ 1

)\
(9.25)

where rn,pair nm,a rn,pair n,pair 
m,a rn,a = − , using Newton’s third law.
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In the case of deformable particles, the total potential energy (and 
therefore the stress tensor) has two contributions. First, the total potential 
energy includes pairwise interactions from vertices on different particles, 
which can be treated using eqn (9.25). The second contribution includes 
many-body interactions from the shape-energy function U2D 

µ,shape. How do the 
many-body interactions contribute to the stress tensor for systems with 
periodic boundary conditions? We calculate the stress tensor using the copy 
of each particle whose center of mass occurs in the main simulation cell. We 
use the positions of these copies when calculating the shape-energy contri-
bution to the force moment. This choice ensures, as required, that the 
contributions from the shape-energy function for each particle appear only 
once in the stress tensor and that the positions used to calculate the force 
moment correspond to those used to calculate the shape-energy functions.46 

The stress tensor of a system of N 2D rough deformable particles is

-Σab= 1 
Asystem 

XN 

µ= 1 

XNµ 

i= 1 
mµivµi,avµi,b+ ~rµi,aFshape 

µi,b

((/ )

)\
NX− 1XNµ XN XNβ

− r rough
µi,βj,aFµi,βj,b ,

µ= 1 i= 1 β= µ+ 1 j= 1

(9.26) 

where mµi is the mass of vertex i on particle µ and vµi,a is the ath component 
of the velocity vector of vertex i on particle µ. r~µi,a is the ath component of the 
position vector of vertex i on the copy of particle µ that appears in the main 
simulation cell. The first term in the double sum is the contribution to the 
stress tensor from momentum transport via particle motion. The second 
term is the contribution from the shape-energy function, where 

∂ 
Fshape 
µi,b = − U2D 

µ,shape ∂r~µi,b 
is the bth component of the net force on vertex i of 

particle µ arising from shape-energy forces. The quadruple sum is the con-
tribution from each vertex–vertex pair interaction Urough 

µi,βj , where rµi,βj,b is the 
bth component of the separation vector between vertex i on particle µ in the 
main simulation cell and the closest image of vertex j on particle β and 

Frough ∂ 
µi,βj,b= − Urough

∂ i,r µ βj 
µi,b 

 is the bth component of the pair force on vertex i on 

particle µ from vertex j on β. 

 

A similar formulation for the stress tensor can be developed for smooth 
interactions between deformable particles in systems with periodic bound-
ary conditions. In this case, the quadruple sum in eqn (9.26) is replaced with 
three quadruple sums that account for the forces arising from Uedge

µi,βj , concaveUµi,βj 
 , 

and Uconvex
µi,βj 

 . We use the position of particle β in the main simulation cell 
given by r~βj and the closest image of →rµi in eqn (9.6), (9.8), and (9.9).
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In static packings of deformable particles in systems with periodic 
boundary conditions, we can also quantify the stress tensor for each par-
ticle µ:

-Σµ,ab= 
1 
Aµ 

XNµ 

i= 1 
~rµi,aF

shape 
µi,b −

XNµ 

i= 1 

XN 

β= 1 
β≠µ 

XNβ 

j= 1 

hµi,βj 
rµi,βj 

rµi,βj,aF
rough 
µi,βj,b 

|||( 

|||) 

/  

,

( )\
(9.27) 

where Aµ is the area of particle µ in eqn (9.21) and hµi,βj is the distance from 
vertex i on particle µ to the “contact line” with vertex j on particle β as shown 
in Figure 9.12(f). The triple sum allocates a fraction of the force moment 
arising from the interaction between vertex i on particle µ and vertex j on 
particle β to particle µ that is proportional to hµi,βj/rµi,βj, which is the fraction 
of the separation vector→rµi,βj  

 that lies within Aµ48,49 (see Figure 9.12(f) and (g)). 
We emphasize that for this definition of the local stress tensor we as-

sumed that the stresses arising from the shape-energy function occur within 
the area spanned by the deformable particle. We also chose to distribute the 
contact stresses along the shortest line between contacting vertices and use 
the Irving–Kirkwood convention50 of assuming that stress from a pair 
interaction acts along the line between the two points. However, other def-
initions of local stresses are also valid.51 In Figure 9.12(g), we show that the 
local pressure Pµ (Σ- µ)/2=  on each particle varies in static packings of elastic 
shell particles = =2D (kl /kc 2, k2D 

b /kc 0.3, and k2D 
a /kc 0.9= ) with rough inter-

actions, Nµ 5, N 7= = , and A2D 
0 =A2D 

min. The total stress tensor of the system 
can be obtained by calculating the area-weighted sum of the single particle

stress tensors over all particles:
ΣN 

 Σ- = A -µΣµ/Asystem
µ 1 =

. 

Obtaining the pressure P and packing fraction ϕ of static packings of 
deformable particles is crucial to understanding their mechanical prop-
erties. For instance, in mechanically stable, amorphous packings of soft, 
bidisperse disks in 2D that interact via purely repulsive linear spring po-
tentials with periodic boundary conditions, the pressure 〈P〉 (averaged over 
an ensemble of packings) increases with excess packing fraction ϕ−ϕc above 
jamming onset: 〈P B (ϕ ϕc)

ζ〉= −〈 〉  , where ϕc is the packing fraction at 
jamming onset, B is the bulk modulus, and ζ 152 = (see Figure 9.13(a)). In 
the case of static packings of bidisperse elastic shell particles with 
A2D 

0 A2D 
min, k2D 

a >0, k2D 
l >0, k2D 

b >0= , and γ2D= 0, we also find 〈P〉=B〈ϕ−ϕc〉 
at small pressures as shown in Figure 9.13(a). However, at large pressures, 
the deformability of the elastic shell particles plays an important role and 〈P〉 
increases nonlinearly with 〈ϕ ϕc− 〉. To determine whether the nonlinearity is 
caused by the surface roughness of the particles, we also performed isotropic 
compression of static packings of rough disks that do not change shape with 
the same number of vertices Nµ 20=  as the elastic shells. Each rough disk is 
modeled as a regular polygon with the associated vertices that move together 
as a rigid body, such that the total potential energy of the packing obeys
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224 Chapter 9 

Figure 9.13 (a) Ensemble-averaged pressure 〈P〉 (in units of k2Da0a ) versus the
deviation in packing fraction ϕ ϕc〈 − 〉 from jamming onset at ϕc 
during compression for N = 128 (a) smooth disks with purely repulsive 
linear spring interactions (blue circles), rough disks (red triangles), 
and elastic shell particles with =A2DA2D

0 min, ka
2D>0, kl

2D>0, kb
2D>0, 

and γ 2D = 0 (magenta squares). The smooth disk packing is bidisperse 
with half large disks, half small disks, and diameter ratio of 1.4. The 
rough disk and elastic shell particle packings are also bidisperse with 
half large, half small, and polygon diameter ratio of 1.4. The results 
are averaged over 500 packings. The dashed lines show linear fits to 
〈P B ϕ ϕc〉= 〈 − 〉, where B 0.14, 0.36, and = 10−3 (ϕc 0.836, 0.79= , and 
0.783) for smooth disks, rough disks, and elastic shells, respectively. 
P versus ϕ for individual static packings for the same systems in (a): (b) 
smooth disks (circles and crosses), (c) rough disks (triangles and 
crosses), and (d) elastic shells (squares and crosses). The circles, 
triangles, and squares show results for static packings compressed 
starting from jamming onset. The crosses show results for packings 
decompressed from packings that were originally compressed to the ϕ 
indicated by the filled symbols. Static packings of smooth disks (e) 
before and (f) after a rearrangement that causes a change in the 
contact network (indicated by red lines) following compression by 
Δϕ≈10−5. The three green (before) and gray (after) regions highlight 
particle rearrangements. 

eqn (9.3).41 For both packings of smooth and rough disks, we find linear 
behavior, 〈P〉 =B〈ϕ−ϕc〉, for the ensemble-averaged pressure versus 
packing fraction relation. For individual static packings, irreversible 
particle rearrangements occur during compression, which cause dis 
continuities in the pressure versus packing fraction relation as shown in 
Figure 9.13(b)–(d). Note that static packings before and after particle re 
arrangements possess different ϕc. The ensemble-averaged 〈P〉 versus 
〈ϕ −ϕc〉 averages over the rearrangement events giving a smoothed rep 
resentation of the pressure versus packing fraction relation. See an 
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example of compression-induced particle rearrangements in static pack-
ings of smooth disks in Figure 9.13 (e) and (f). 

9.4.3 Vibrational Density of States 
The vibrational response of individual deformable particles, as well as mech-
anically stable packings of deformable particles, can be obtained by calculating 
the eigenmodes of the dynamical matrix M, which gives the second derivatives 
of the total potential energy U with respect to the vertex positions: 

Mµi,βj = ∂2 U 
∂→rµi∂→rβj 

. (9.28) 

For a system with Ndof degrees of freedom, M is a Ndof Ndof×  matrix with 
Ndof eigenvalues λk and eigenvectors êk, where k ranges from 1 to Ndof and 
êk êk 1. = . We will report dimensionless eigenvalues λ~ k λk/

(
k2D 
a a0  

)
in 2D 

and λ~ = λ / k3D 4 
k k v (v0) /3 ( )

=
in 3D, where a0 and v0 are the average equilibrium area 

and volume of the deformable particles in 2D and 3D, respectively. The vi-
brational response can be used to determine the necessary conditions for 
rigidity of a single particle, as well as the collective rigidity of particle 
packings. For example, packings of spherical particles become mechanically 
stable with no non-trivial zero eigenmodes when they are isostatic,53,54 and 
the number of interparticle contacts (that give rise to Nc constraints) mat-
ches the number of degrees of freedom Ndof. 

A deformable particle in 2D with Nµ vertices has Ndof 2Nµ=  degrees of 
freedom. The shape-energy function for floppy particles with 
A2D 2D 2D 2D 2D

0 >Amin, ka >0, kl >0, kb 0, and 2D γ = 0 = imposes Nc Nµ 1= +  con-
straints. Hence, floppy particles have Ndof Nc Nµ 1− = −  unconstrained de-
grees of freedom, which matches the number of zero eigenmodes of M as 
shown in Figure 9.14 (a). (Note that three of the Nµ 1 − zero modes corres-
pond to two rigid translational modes and one rotational mode.) To remove 
the non-trivial zero energy modes in a single deformable particle, we can 
either increase the number of constraints without prestress or induce 
prestress in the particle, e.g. by setting k2D 

b >0 with θµi0= 2π/Nµ for all i 
(elastic shell) or setting k2D 

b = 0 and γ2D >0 (surface-energy dominated par-
ticle). Note that both elastic shells and surface-energy dominated particles 
are circular when they are not subjected to external stresses. Indeed, M for an 
elastic shell and for a surface-energy dominated particle possesses only three 
trivial zero modes as shown in Figure 9.14(a). 

In Figure 9.14(b), we show the eigenvalue spectrum λ~ k of M for static packings 
of “floppy” particles, elastic shells, and surface-energy dominated particles with 
rough interactions at jamming onset in 2D. In addition to the two zero modes 
that correspond to rigid translations arising from periodic boundary conditions, 
we find that low-frequency modes occur in “floppy” particle packings that are 
absent in packings of elastic shells and surface-energy dominated particles. 
These low-frequency modes in floppy-particle packings have been identified as
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Figure 9.14 (a) Eigenvalues λ~ k of the dynamical matrix M for a “floppy” particle 
(blue circles), elastic shell (red triangles), and surface-energy domin-
ated particle (black squares) with Nµ 10=  vertices in 2D. The “floppy” 
particle has A2D 

0 1.04=  , k2D 
a >0, k2D 

l >0, k2D 
b 0= , and γ2D 0= . The 

elastic shell has A2D 
0 A2D 

min,=  k2D 
a >0, k2D 

l >0, k2D 
b >0, and γ2D 0 . 

The surface-energy dominated particle has A2D 2D 
0 Amin 

=
 , k2D 

a >0, 
k2D>0l , k2D= 0b , and γ2D >0  The eigenvalues λ~ k are sorted in as-
cending order. Modes with

=
.  

 λ~ k<10−13 are considered “zero” modes. 
(b) λ~ k for jammed packings of “floppy” (blue circles), elastic shell (red 
triangles), and surface-energy dominated (black squares) particles in 
2D at pressure P 10−7 = in units of k2D 

a a0, where a0 is the equilibrium 
area. Each packing has N= 16 particles, half with Nsmall 

µ 10=  and half 
with large Nµ 14  vertices. (c) Change in potential energy ΔU (in units of 
k2D 2
a a0 

 
=

 ) in the packing of “floppy” particles in (b) when it is perturbed 
by amplitude Δr in units of (a0)1/2 along each eigenmode of M. The 
dot-dashed (dashed) line represents ΔU~(Δr)κ with κ 4 (2). λ~ k 
plotted versus pressure P for the packings in (b) containing 

= 
(d) 

“floppy” particles, (e) elastic shells, and (f) surface-energy dominated 
particles. The colors in (c)–(f) indicate the mode indexes from k= 1 
(dark blue) to N N

(
small 
µ +N large 

µ = 384
)

 (dark red).

226 Chapter 9

“quartic” modes. When perturbing a floppy-particle packing along a quartic 
mode with amplitude Δr, the change in potential energy ΔU first scales 
quadratically with Δr at small Δr and then quartically at large Δr (see 
Figure 9.14(c)). In comparison, ΔU∝ (Δr)2 for all Δr for higher frequency  
quadratic modes. (Note that quartic modes have also been observed in jam-
med packings of non-spherical particles55,56 and “breathing” particles with size 
degrees of freedom.57 ) The number of quartic modes equals the number of 
missing contacts Nm 2NNµ 1 Nvv= − − , where  Nvv is the number of vertex–vertex 
contacts between deformable particles in the packing. Further, since quartic 
modes arise from a higher-order expansion of the potential energy with 
respect to the vertex positions, they are pressure-dependent. In Figure 9.14(d), 
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we show that λ~ k increase linearly with pressure for quartic modes, while λ~ k are 
constant with pressure for quadratic modes. Since packings of elastic shells 
and surface-energy dominated particles do not possess quartic modes, their λ~ k 
do not increase strongly with pressure, as shown in Figure 9.14(e) and (f). 
We have also studied the vibrational response in 3D for a single (1) “floppy” 

particle, A3D >A3D , k3D>0, k3D 3D 
0 min v a >0, kb 0= , and γ3D 0= ; (2) elastic shell, 

A3D 
0 A3D 

min, k3D 
v >0, k3D 

a >0, k3D 
b >0= , with θµe0 that correspond to the equi-

librium bending angles for a polyhedron with A3D 
0 A3D 

min= , and  γ3D 0= ; and (3) 
surface-energy dominated particle, A3D 

0 A3D 
min=  , k3D 

v >0, k3D 
a >0, k3D 

b 0= , and 
γ3D >0. In Figure 9.15(a), we show that only the “floppy” particle (with N = 42 
vertices) possesses non-trivial zero modes

µ

 (Ndof Nµf 1 3Nµ (2Nµ 4) 1  − − = − − − =
Nµ 3 45)+ = . The elastic shell and surface-energy dominated particles pos-
sess only six zero modes, which correspond to three rigid translations and 
rotations. Only packings of floppy particles exhibit quartic modes as shown 
in Figure 9.15(b), where ΔU increases as (Δr)4 along a quartic eigenmode28 

(Figure 9.15(c)). Quadratic and quartic modes in 3D packings of deformable 
particles show the same pressure dependence as those in 2D (see 
Figure 9.15 (d)–(f)). 

In previous studies, we have shown that the presence of quartic vibrational 
modes strongly influences the pressure dependence of the shear modulus G 
of jammed packings.12 To measure G for packings of deformable particles, 
we apply a series of small simple shear strains Δγ, with each simple shear 
strain followed by potential energy minimization, and calculate the resulting 
shear stress. For each simple shear strain step, we apply the following 
transformation to the vertex positions consistent with Lees-Edwards 
boundary conditions:58 x′ µi= xµi+Δγyµi with Δγ 5 10−9×=  . Following the 
shear strain step and energy minimization, we calculate the shear stress 
Σ- Σ- xy and shear modulus G -∂Σ/∂γ. = − =

For jammed packings of purely repulsive smooth disks and spheres, the 
ensemble-averaged shear modulus 〈G〉 obeys the following scaling relation 
with pressure P:

G〈 〉−G0 

G0 
= 

P 
P0

( )ξ 

1+ c2 
P 
P0

( )ξ− η , (9.29) 

where G0, P0, and  c2 are constants, and ξ≈1 and η≈0.5 are scaling ex-
ponents.59 At large P, 〈G ~P η 〉 and the exponent is determined by the scaling 
of the excess contact number with pressure.52,59 For 2D packings of floppy 
particles in Figure 9.16(a), we find that η≈1 instead of 0.5 due to the pres-
ence of quartic modes. η>0.5 has been reported previously for jammed 
packings of non-spherical particles such as ellipses, which also possess 
quartic modes.12 We also calculate 〈G〉 versus P for packings of elastic shells 
and surface-tension dominated particles, which do not have quartic modes. 
In these systems, η≈0.5 as shown in Figure 9.16(a). We find similar results

Deformable Particles: Modeling and Applications 227

D
ow

nloaded from
 http://books.rsc.org/books/edited-volum

e/chapter-pdf/1935972/bk9781837673940-00196.pdf by Y
ale U

niversity, C
orey O

H
ern on 23 S

eptem
ber 2025



228 Chapter 9 

Figure 9.15 (a) Eigenvalues λk
~  of the dynamical matrix M for a single “floppy” 

particle (blue circles), elastic shell (red triangles), and surface-energy 
dominated particle (black squares) with Nµ = 42 vertices in 3D. The 
“floppy” particle has A3D  1.04, k3D>00 v= , k3D>0a , k3D  0b = , and γ 3D  0= .
The elastic shell has = A3DA3D

0 min, kv
3D>0, ka

3D>0, kb
3D>0, θµe0 that 

correspond to the equilibrium bending angles for a polyhedron with 
A3D  A3D 

min0 = , and γ 3D  0= . The surface-energy dominated particle has 
A3D  A3D 

0 min= , kv
3D>0, ka

3D>0, kb
3D  0= , and γ 3D>0. The eigenvalues ~λk 

are sorted in ascending order. Modes with ~λk<10−10 are considered 
“zero” modes. (b) ~λk for jammed packings of “floppy” particles (blue 
circles), elastic shells (red triangles), and surface-energy dominated 
particles (black squares) in 3D at pressure P    10−7 = in units of k3Dv0v ,
where v0 is the equilibrium particle volume. Each packing has N = 16 
particles with N   42 µ= vertices. (c) Change in potential energy ΔU (in 
units of 2k3Dvv 0 in the packing of “floppy” particles in (b) when it is 
perturbed by amplitude Δr in units of (v0)

1/3 along each eigenmode 
of M. The dot-dashed (dashed) line represents ΔU~(Δr)κ with κ = 4 
(2). ~λk plotted versus pressure P for the packings in (b) containing (d) 
“floppy” particles, (e) elastic shells, and (f) surface-energy dominated 
particles. The colors in (c)–(f) indicate the mode indexes from k = 1 
(dark blue) to 3NNµ = 2016 (dark red). 

for 3D packings of floppy particles, elastic shells, and surface-energy dom 
inated particles in Figure 9.16(b). 

9.5 Summary 
In this chapter, we describe the mechanics of single deformable particles 
and the collective properties of jammed packings of deformable particles 
using the recently developed deformable particle model. Using the shape-
energy function of the deformable particle model we can tune the particle 
mechanics to consider floppy particles, elastic shells, surface-energy dom 
inated particles, as well as bulk elastic particles. We also introduce rough 
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229 Deformable Particles: Modeling and Applications 

Figure 9.16  Ensemble-averaged shear modulus 〈G〉 plotted versus pressure P for 
jammed packings of N “floppy” particles (blue circles), elastic shells 
(red triangles), and surface-energy dominated particles (magenta 
squares) in (a) 2D and (b) 3D. G and P are expressed in units of 
k2Da0 a in 2D and k3Dv0 v in 3D, where a0 and v0 are the equilibrium 
particle area and volume in 2D and 3D, respectively. The dashed and 
dash-dotted lines in (a) and (b) have slopes of 0.5 and 1, respectively. 
N = 256 in 2D and 128 in 3D and 〈G〉 is averaged over 500 packings. 

Figure 9.17  Jammed bidisperse disk packings with N = 4 in fixed (a) square, (b) 
rectangular, and (c) parallelogram-shaped boundary conditions. 
(d) Illustration of a tessellation containing Nt  49 cells of the same 
jammed bidisperse disk packing in (c) with N 

=
 4 and fixed parallelo 

gram-shaped boundary conditions. (e) Illustration
=

 of a tessellation 
containing Nt  49=  cells of jammed bidisperse disk packings within 
deformable boundaries. The different colors indicate distinct particle-
filled cells. 
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230 Chapter 9 

and smooth interaction potential energies in the deformable particle model 
to control the effective friction coefficient between interacting deformable 
particles. For the collective properties, we focus on calculations of the 
packing fraction and stress tensor of packings of deformable particles. We 
then explore the vibrational properties of jammed packings of deformable 
particles. We show that jammed packings of floppy particles possess quartic 
modes, whereas packings of elastic shells and surface-energy dominated 
particles do not. The presence of quartic modes in packings of floppy par 
ticles gives rise to novel pressure scaling of the shear modulus compared to 
that for jammed packings of elastic spherical particles. 

As discussed in the introduction, the deformable particle model can be 
used to simulate a wide range of physical, biological, and human-engineered 
systems. Here, we highlight a future application of the deformable particle 
model to describe the mechanics of soft robotic systems. In most studies of 
soft particulate materials, the boundaries have a fixed shape, such as 
squares or rectangles in 2D, as shown in Figure 9.17 (a)–(c). In previous 
studies,60 we showed that particle packings in fixed boundaries can be used 
as cells to form a large tessellation (see Figure 9.17(d)). The shape and 
mechanics of the boundary will significantly impact the mechanical prop 
erties of the tessellation.61 In addition, particle-filled cells with deformable 
boundaries can be used to form curved or flexible tessellations as shown in 
Figure 9.17(e). To begin to address the question of what types of particle 
packings can occur within deformable boundaries, we show preliminary 

Figure 9.18 (a)–(e) All jammed packings of N = 4 monodisperse disks (blue disks) 
inside a deformable boundary (yellow band) with Nµ  100=  vertices, 
k2D

l >0, k2D 
a  0= , k2D  0 b = , and γ2D   0= . Red lines (areas) indicate con-

tacts between disks (disks and the boundary). θ gives the smaller of 
the interior angles of the parallelogram formed by the contacting 
disks. (f) θ for jammed N 

 
= 4 monodisperse disk packings with a 

deformable boundary with Nµ  100=  vertices, k2D>0l , k2D>0a , k2D 
b  0= ,

and γ 2D  0=  plotted as a function of the preferred shape parameter A2D 
0 

of the deformable boundary. The red dashed lines correspond to θ for 
the packings shown in (a)–(e). 
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231 Deformable Particles: Modeling and Applications 

results for jammed monodisperse disk packings within a floppy deformable 
boundary with k2D>0l , k2D  0a = , k2D  0b = , and k2D  0b = . In this case, we find only 
five possible jammed packings (Figure 9.18(a)–(e)). After including an area 
constraint on the deformable boundary, i.e. k2D>0a , which models filling the 
interior with fluid, we find a nearly continuous range of jammed packings as 
a function of the preferred shape parameter A0

2D of the boundary (see 
Figure 9.18(f)). One can imagine developing a method to actuate from one of 
the packings to another in the continuous range for locomotion and grip 
ping applications in soft robotics. The discontinuities in the shape of the 
disk packing as a function of A2D 

0 in Figure 9.18(f) can arise from a com 
bination of the finite number of vertices included in the boundary and the 
use of frictionless disks. 

9.6 Appendix A 

9.6.1  Maximum Effective Friction Coefficient for the Smooth 
Interaction Potential 

In this appendix we calculate the maximum friction coefficient for two 
elastic shells with smooth interactions undergoing a simple shear test. In 
Figure 9.8(d), we show µeff(xβµ)

m
 for this system. We find that the maximum 

effective friction coefficient effµ  occurs in the configuration indicated by the 
star in Figure 9.8(d), between frames 4 and 5 in Figure 9.8(c). 

The regime for the maximum friction coefficient between smooth particles in 
the simple shear test occurs when (1) the right vertex on the top edge of particle 
β interacts with the bottom vertex on particle µ and (2) the lowest vertex on 
particle µ is in contact with the top edge of particle β (see Figure 9.19(a) and (b)). 
In this configuration, the net force from particle β on particle µ is 

~Fmb ~F
convex
mb

~F
edge
mb ;= + (9.30)

where convex → → UconvexF =∇ /2µβ →rµt µt,βr  is the contribution from the vertex–vertex
interaction between the vertex r, the top right vertex on particle β, and vertex 
t, the bottom vertex on particle µ (Figure 9.19(c)), and edge →Fµβ Uedge→=∇ →r µt µt,β(r     1) /2 +
is the contribution from the interaction between vertex t on particle µ and 
edge r + 1 on particle β (Figure 9.19(d)). 

To investigate the dependence of the friction coefficient on the inter-
particle overlap and horizontal displacement in this regime, we calculated 
µeff while varying →rβr,µt =→rµt −→rβr , the displacement between the lower vertex 
on particle µ and the upper right vertex on particle β, and maintaining fixed 
particle shape (see Figure 9.19(e)). We varied the x-component of →rβr,µt by 
changing the x-component of →rµt from that of →rβ(r + 1) to that of →rβr . We also 
varied the y-component of →rβr,µt by changing the y-component of →rµt from 
configurations that yield the maximum overlap between the two particles to 
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232  Chapter 9 

Figure 9.19  (a) Illustration of the configuration of two elastic shells with smooth 
interactions that corresponds to the star in Figure 9.8(d) with the 
maximum effective friction coefficient during the simple shear test. 
The top particle µ and bottom particle β are labeled and →rβµ gives the 
separation vector between the centers of the particles. (b) A close-up of 
the dotted region in (a). The bottom vertex t on particle µ and the 
upper right vertex r on particle β are labeled, and →rβr,µt is the separ 
ation vector from vertex r to vertex t. In this configuration, the net 
force on particle µ from particle β, convex edge→F → µβ = F µβ + →F µβ , has two 
contributions. (c) A schematic of the vertex–vertex interaction between 
vertex r on particle β and vertex t on particle µ,

convex  →F µβ . (d) A schematic 
of the vertex–edge interaction between vertex t on particle µ and edge 
r + 1 on particle β,

edge→ F µβ . (e) The effective friction coefficient µeff as a 
function of the displacement of particle µ. We vary →rβr,µt by fixing the 
particle shapes and orientations in (a) and translating particle µ. The 
horizontal displacements of particle µ range from vertex t occurring 
directly above vertex r + 1 on particle β to above vertex r on particle β, 
and the vertical displacements range from zero vertical separation 
between vertex r on particle β and vertex t on particle µ to the zero-
overlap limit. The particles remain in contact for all →rβr,µt shown. The 
“x” marks →rβr,µt for the starred configuration in (a). 

the  limit of zero overlap. We find that  →Fµβ is nonzero over the full range and the 
only configurations with µeff  = 0 have  →F µβ aligned with →rβµ. Thus,  µeff is nonzero 
even in the zero-overlap limit, meaning that the smooth interactions are not 
completely smooth, but they give rise to much smaller maximum friction co 
efficient than for similar two-particle configurations with rough interactions. 

We find that mµeff  0.190=  obtained in Section 9.3.3 is consistent with the 
maximum friction we measure by varying the x-component of →rβr,µt with the 
same ŷ component used in the starred configuration, maxµeff = 0.190, marked 
with an “x” in Figure 9.19(e). 
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