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Abstract

Motivation: Advances in high-throughput chromatin conformation capture have provided insight into the three-
dimensional structure and organization of chromatin. While bulk Hi-C experiments capture spatio-temporally averaged
chromatin interactions across millions of cells, single-cell Hi-C experiments report on the chromatin interactions of
individual cells. Supervised and unsupervised algorithms have been developed to embed single-cell Hi-C maps and identify
different cell types. However, single-cell Hi-C maps are often difficult to cluster due to their high sparsity, with state-of-
the-art algorithms achieving a maximum Adjusted Rand Index (ARI) of only ≲ 0.4 on several datasets while requiring
labels for training.
Results: We introduce a novel unsupervised algorithm, Single-cell Clustering Using Diagonal Diffusion Operators
(SCUDDO), to embed and cluster single-cell Hi-C maps. We evaluate SCUDDO on three previously difficult-to-cluster
single-cell Hi-C datasets, and show that it can outperform other current algorithms in ARI by ≳ 0.2. Further, SCUDDO
outperforms all other tested algorithms even when we restrict the number of intrachromosomal maps for each cell type
and when we use only a small fraction of contacts in each Hi-C map. Thus, SCUDDO can capture the underlying latent
features of single-cell Hi-C maps and provide accurate labeling of cell types even when cell types are not known a priori.
Availability: SCUDDO is freely available at www.github.com/lmaisuradze/scuddo. The tested datasets are publicly
available and can be downloaded from the Gene Expression Omnibus.
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Introduction

Elucidating the structure and dynamics of chromatin in cell

nuclei is essential for understanding numerous cellular processes

such as DNA transcription and replication (1). Advances in

whole-genome analyses, e.g. chromosome conformation capture

techniques such as Hi-C, have provided important insights into

long-ranged chromatin interactions and hierarchical chromatin

organization (2). Hi-C experiments provide chromatin contact

maps, often represented as a symmetric matrix A, where Aij

gives the number of times that loci i and j of chromatin

come into close proximity. Bulk Hi-C contact maps provide

information on chromatin fragment interactions averaged over

millions of cells. In contrast, single-cell Hi-C maps give the

frequency of chromatin contacts in each individual cell.

It is now well established that chromatin structure and

organization can differ significantly across cell populations (1;

3). Transcription analyses and imaging studies have shown

that gene expression profiles and cell morphology can differ

even between genetically identical cells (3; 4; 5). In addition,

the size and location of chromatin loops and topologically

associating domains (TADs) can vary between the Hi-C maps

of individual cells for a given organism (6; 7; 8; 9). As a

result, the loci that posses high contact frequencies in bulk Hi-

C maps can differ from those that are in close spatial proximity

in fluorescence in situ hybridization (FISH) experiments, in

part due to the heterogeneity in chromatin structure across

individual cells (10; 11; 12; 13; 14). Thus, bulk Hi-C maps

cannot be used to capture the structure and organization of

chromatin in individual cells.

Several single-cell Hi-C technologies have been developed to

capture chromatin interactions for large numbers of individual

cells (15; 16; 17; 18; 19). Single-cell Hi-C techniques

enable studies of genome organization in individual cells, as

well as comparisons of chromatin structure and organization

across different cell types. Using data from single-cell Hi-C
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Fig. 1. (A) A psuedo-bulk Hi-C map (log2 Aij) for chromosome 5 using

pooled mouse oocyte cells before division from the Collombet (25) dataset

(normalized so that max(Aij) = 1). (B) An example single-cell Hi-C map

from the Collombet dataset for chromosome 5 of a mouse oocyte cell using

the same normalization.

experiments, computational studies have focused on TAD, loop,

and compartment identification for individual cells within a

population (18; 19). However, despite the rapid advances in

genome-wide assays, single-cell Hi-C maps are still sparse, only

capturing a fraction of the interactions that are obtained in

bulk Hi-C experiments (20; 21). For example, in Fig. 1, we

show a psuedo-bulk Hi-C map for chromosome 5 in mouse

oocyte cells (25) and compare it to a single-cell Hi-C map

for the same chromosome and cell type. The single-cell Hi-C

map shows significant sparsity, with most of the off-diagonal

elements having a count of 0, as well as large variability for

elements near the diagonal.

While techniques like fluorescence-activated cell sorting can

be used to label single cells during chromosome conformation

capture methods, these techniques are more expensive, lower

throughput, and not as widely available as single-cell Hi-C

experiments. Thus, the development of classification algorithms

for single-cell Hi-C maps may enable researchers to identify

the key chromatin interactions that distinguish different cell

types. Algorithms developed for bulk Hi-C analysis, including

topologically associating domain callers (33), often work with

limited efficacy on raw single-cell Hi-C data. Thus, due to their

inherent variability and sparsity, specialized algorithms must be

developed to identify robust features in single-cell Hi-C maps.

In this article, we focus on the specific task of classifying single-

cell Hi-C maps based on the cell labels that have been provided

by the experimental studies. Most algorithms for clustering

single-cell Hi-C maps use dimensionality reduction, treating

each single-cell Hi-C map as a point in high-dimensional

space and then mapping each point to a lower-dimensional

space to cluster the data (20; 21; 22). Despite the fact

that there are more than a dozen algorithms to date for

clustering single-cell Hi-C maps, there are many single-cell

Hi-C datasets for which these methods achieve a maximum

adjusted Rand index ARI ≲ 0.4 (21; 36). Moreover, there are

many cases where one clustering method performs well on one

single-cell Hi-C dataset, but then performs poorly on another

dataset (20; 21), suggesting that current methods have trouble

identifying features that generalize across multiple single-cell

Hi-C datasets for clustering.

We develop a novel algorithm, SCUDDO (single-cell

clustering using diagonal diffusion operators), which is fully

unsupervised, fast, and easy to interpret to separate single-cell

Hi-C maps into distinct groups. We then compare the predicted

labels of the single-cell Hi-C maps to the cell types that are

provided by experimental studies. To quantify the accuracy of

the clustering, we calculate the ARI and normalized mutual

information (NMI) using the predicted and ground truth labels.

We find that SCUDDO outperforms current state of the art

methods on three difficult-to-cluster single-cell Hi-C datasets,

achieving an ARI and NMI greater than those for all of the

tested methods on each of the datasets. We also find that

SCUDDO achieves higher accuracy for clustering single-cell

Hi-C maps compared to other algorithms when using only a

fraction of the number of intrachromosomal maps and a fraction

of the diagonals in each map.

The remainder of the manuscript is organized as follows.

In the Materials and Methods section, we describe the key

elements and hyperparameters of SCUDDO for clustering

single-cell Hi-C maps. We then describe the three difficult-

to-cluster datasets for benchmarking the new algorithm and

the two metrics (ARI and NMI) for quantifying the clustering

accuracy. In the Results section, we provide the ARI and NMI

scores for SCUDDO and three current methods for clustering

single-cell Hi-C maps on each of the three difficult-to-cluster

Hi-C datasets. We also show SCUDDO’s performance across

different hyperparameter regimes and when limiting the number

of diagonals and intrachromosomal maps sampled. In the

Discussion, we include some interpretations of the results, our

conclusions, and promising future research directions.

Materials and Methods

The Materials and Methods is organized into three subsections.

We first define the necessary notation and summarize the

steps of the SCUDDO method to cluster single-cell Hi-C

maps. Second, we describe three difficult-to-cluster single-

cell Hi-C datasets that will be used to benchmark SCUDDO

alongside three other current algorithms. Finally, we define the

two metrics, ARI and NMI, which are used to quantify the

unsupervised clustering accuracy.

SCUDDO algorithm
The SCUDDO algorithm takes as input a set of intrachromosomal

Hi-C maps with nonnegative integer entries for a cells, each

with b chromosomes, totaling a × b intrachromosomal Hi-

C maps. As for bulk Hi-C maps, single-cell Hi-C maps are

represented as symmetric matrices with elements Aij that

represent the number of contacts between loci i and j on

chromatin. To distinguish between the cell and chromosome

indices, we define Ak
s,ij as the ijth element of the nk × nk
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Fig. 2. A schematic of the SCUDDO algorithm for clustering single-cell Hi-C maps. We illustrate the method using intrachromosomal Hi-C maps

from the Li, et al. dataset (25). SCUDDO first imputes the set of intrachromosomal Hi-C matrices (indexed by Ak
s ) for each cell and then samples

each diagonal (indexed by w) from each Hi-C matrix to form a feature matrix Kw for each sampled diagonal. Principal component analysis (PCA)

and nonmetric multi-dimensional scaling (MDS) are then applied to each feature matrix to form the matrix R, which is then embedded in a lower

dimensional latent space using the L1 norm to form the embedding, V.

Hi-C map for chromosome k of cell s. nk only depends on k

since the dimensions of the Hi-C map only vary across different

chromosomes. Given a set of intrachromosomal matrices,

SCUDDO returns a low-dimensional embedding of the Hi-C

matrices. This embedding is then used as an input into a

clustering algorithm, for example K-means++ (26), where each

cell is assigned to one of l predicted labels.

SCUDDO starts by pre-processing and performing imputation

on each intrachromosomal matrix Ak
s . First, each Ak

s is

reshaped into the same size r × r matrix, A′k
s , using a

bicubic interpolation kernel, where r =
∑b

k=1 nk/b. SCUDDO

then convolves each intrachromosomal matrix with a Gaussian

kernel:

A′′k
s,ij =

9∑
χ=1

9∑
ω=1

GχωA′k
s,(i−4+χ)(j−4+ω), (1)

where G is a two-dimensional 9 × 9 Gaussian kernel with

standard deviation σ = 0.5 that uses replicate padding, where

values outside of the bounds of the original Hi-C map are set to

the values of the nearest border entry. G smooths local regions

in each individual intrachromosomal matrix. The final pre-

processing step is to normalize each intrachromosomal matrix

and apply a diffusion kernel via a matrix exponential:

Bk
s = exp

(
−

A′′k
s∑

ij A′′k
s,ij

)
, (2)

which represents backwards diffusion over A′′k
s . Next, we

construct high-dimensional embeddings of the intrachromosomal

Hi-C maps for each cell. Let dw(Bk
s ) be the ordered set of Hi-C

map entries on the wth superdiagonal of the r × r matrix Bk
s :

d
w
(Bk

s ) = {Bk
s,1,1+w,Bk

s,2,2+w, . . . ,Bk
s,r−w,r}. (3)

For a given w, dw(Bk
s ) for each chromosome k for cell s is

concatenated to form the embedding vector:

e⃗
w

s = {dw
(B1

s), d
w
(B2

s), . . . , d
w
(Bb

s)}, (4)

where α = 1, . . . , b(r − w) indexes the entries in e⃗ w
s . Every

embedding vector, e⃗ w
s , is z-score normalized such that

e⃗s
′w

=
e⃗ w
s − µ√

1
b(r−w)−1

∑b(r−w)
α=1 |e⃗ w

s − µ|
, (5)

where µ =
∑b(r−w)

α=1 (e⃗ w
s )α/[b(r − w)]. This pooling approach

is similar to previous work (36; 37) that employs band

normalization for Hi-C matrices. Next, each embedding vector

is transformed into a signed difference vector:

f⃗
w

s = sgn(∇(e⃗
′ w
s )), (6)

where ∇(e⃗ ′ w
s )α = (e⃗ ′ w

s )α − (e⃗ ′ w
s )α+1 and sgn is

the sign function. (Note that we set the last entry of the

chromosome difference vector (f⃗ w
s )b(r−w) = (e⃗ ′ w

s )b(r−w).)

Eq. 6 transforms e⃗ ′ w
s into a ternary vector with values

1, 0, or −1. For a given w, each cell’s difference vector,

f⃗ w
1 , f⃗ w

2 , . . . , f⃗ w
a is used to calculate the distance matrix
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between cells i and j using cosine similarity:

D
w
ij = 1 −

f⃗ w
i · f⃗ w

j

|f⃗ w
i ||f⃗ w

j |
, (7)

where |X⃗| indicates the magnitude of X⃗. A separate distance

matrix is calculated for e⃗ ′ w
s :

D
′w
ij = 1 −

e⃗ ′ w
i · e⃗ ′ w

j

|e⃗ ′ w
i ||e⃗ ′ w

j |
, (8)

and combined to form a final exponentiated distance matrix

using element-wise exponentiation:

Kw
ij = e

(D′w
ij

+Dw
ij
)(D′w

ij
Dw

ij
)
. (9)

Finally, SCUDDO uses nonmetric multidimensional scaling

(MDS) (32) to transform the a × a matrix Kw into a lower

dimensional representation, i.e. an a × p matrix where p < a,

which preserves the distances in Kw. The multidimensional

scaling is followed by principal component analysis to further

reduce the dimension to an a × q matrix Uw, where q < p

(p = 30 and q = 5). This procedure is performed for the

diagonal (w = 0) and a given number of superdiagonals (w =

ζ > 0), and each set of dimensionality-reduced representations

are concatenated, forming the a × (q(ζ + 1)) matrix R =

U0,U1, . . . ,Uζ . R is then normalized feature-wise using the

softmax function, R′
ij = eRij/

∑a
θ=1 eRθj , and a distance

matrix is constructed using the L1 metric:

Sij =

qw∑
λ=1

|R′
iλ − R′

jλ|. (10)

Another round of dimensionality reduction is performed using

multidimensional scaling to reduce the dimension of S to the

embedding size ϵ, which gives the a × ϵ matrix, V. Because

there is no guarantee of convexity associated with each cluster

when clustering single cell Hi-C matrices, we use spectral

decomposition before performing the clustering. In particular,

SCUDDO transforms V into the similarity matrix, Aij = e−Z2
ij ,

where Zij = |V⃗i∗ − V⃗j∗| and Vi∗ is the vector consisting of all

elements in the ith row of V. Next, we calculate the final a × l

spectral embedding C, where the columns of C are the smallest l

eigenvectors of the random-walk Laplacian matrix constructed

from A using the Shi-Malik algorithm (38) with log(a) nearest

neighbors. We then input C and the number of labels l into a

clustering algorithm, such as K-means++ (26), which returns

the predicted labels for each single-cell Hi-C map.

SCUDDO includes two tunable hyperparameters: ζ, the

set of (super)diagonals, w = 0, 1, . . . , ζ used to construct the

embedding vectors, and the dimension ϵ, to which V is reduced.

By default, SCUDDO outputs two embeddings: C and V. Both

ζ and ϵ are varied in the Results section to study their effects

on SCUDDO’s performance for each dataset. For all results in

this study unless otherwise noted, we use C as the input into

K-means++ and set ζ = 25 and ϵ = 5. Our results are not

sensitive to the values of the dimensions p and q.

Benchmarking of single-cell Hi-C clustering
algorithms
We focus our studies on three difficult-to-cluster datasets of

single-cell Hi-C maps from recent benchmarking studies (21;

31). In particular, we consider the Li, et al. (16) dataset (GEO

ID: GSE119171) consisting of a = 150 mouse embryonic stem

cells that are separated into l = 3 labels: “2i”, “Serum1”,

and “Serum2”, the Flyamer, et al. (18) dataset (GEO ID:

GSE80006) consisting of a = 134 cells from developing mouse

zygotes and oocytes with l = 3 cell types: “Oocyte”, “ZygP”,

and “ZygM” as labels, and the Collombet, et al. (25) dataset

(GEO ID: GSE129029) consisting of a = 648 mouse embryo

cells with labels that represent l = 5 different cell stages:

1-cell, 2-cell, 4-cell, 8-cell, and 64-cell stages. In previous

benchmarking studies (21), none of the eight tested methods

for single-cell Hi-C map clustering achieved ARI or NMI ≥ 0.6

on the Collombet, et al. dataset and in another study (36)

none of the eight methods tested achieved an ARI > 0.45 on

the Li, et al. dataset across any clustering algorithm (not just

k-means) . For each dataset, we use 1 Mb bin sizes for the

single-cell Hi-C maps, and re-bin those with higher resolution,

as discussed in Zhou, et al. (30). If the sum of all non-diagonal

nonzero pairs of elements in the intrachromosomal Hi-C maps

for a given cell is less than 5000, the data for this cell was not

included in the analysis. Also, for each individual chromosome

of size x for a cell, if the intrachromosomal Hi-C map for that

chromosome has a sum of non-diagonal contacts that is less

than x, all intrachromosomal Hi-C maps are not considered for

that cell.

After considering previous single-cell Hi-C map clustering

studies (21; 29; 31; 36), we selected consistent top performers

across several datasets to compare with SCUDDO: i.e. the

Higashi (29), HiCRep/MDS (35; 22), and scHiCluster (30)

algorithms. While HiCRep/MDS is not as accurate as Higashi

and scHiCluster, we include it in our analysis since it is the most

widely used and best performing method that uses MDS similar

to SCUDDO to the best of our knowledge. Importantly, all

algorithms that we tested are unsupervised or self-supervised,

and do not require labels for training. Other algorithms that

require labels or significant pretraining are unable to cluster

unlabeled single-cell Hi-C datasets, and thus they are not

included in this manuscript. For each algorithm, we used the

default hyperparameters and used the final embeddings (with

no further processing) as input into K-means++ clustering to

benchmark our calculations.

Metrics for clustering accuracy
To assess the accuracy of the predicted labels, we calculate

the adjusted rand index (ARI) (27) and normalized mutual

information (NMI) (28). Let ΩT (s) and ΩG(s) be functions

that map each cell index s (from 1 to a) to the integers l′

and l′′ respectively, where l′ is the ground truth label for

cell s and l′′ is the predicted label for cell s. We then define

PT =
{
X1, X2, ...Xl

}
as the “ground-truth” label set, where

Xl′ denotes the set of cells such that ΩT (s) = l′, and PG ={
Y1, Y2, ...Yl

}
as the “predicted” label set, where Yl′′ is the set

of cells such ΩG(s) = l′′.

The adjusted Rand index determines the similarity between

the sets of cells with given ground truth and predicted labels:

ARI =

∑l
i=1

∑l
j=1

(βij

2

)
− (
∑l

i=1

(Γi

2

)∑l
j=1

(∆j

2

)
)/
(a
2

)
1
2 (
∑l

i=1

(Γi

2

)
+
∑l

j=1

(∆j

2

)
) − (

∑l
i=1

(Γi

2

)∑l
j=1

(∆j

2

)
)/
(a
2

) ,
(11)

where βij = [Xi ∩ Yj ], ∩ is the intersection between two sets,

[X] is the number of elements in set X, Γk =
∑l

i=1 βki, ∆k =∑l
j=1 βjk, and

(m
n

)
= m!

n!(m−n)! . ARI = 1 indicates a perfect

match between PT and PG, whereas ARI = 0 indicates the



Short Article Title 5

A CB

0 0.25 0.5 0.751
NMI

0

0.25

0.5

0.75

1

A
R
I

Higashi
HiCRep/MDS

scHiCluster

SCUDDO

Li, et al.

0 0.25 0.5 0.75 1
NMI

0

0.25

0.5

0.75

1

A
R
I

Higashi

HiCRep/MDS

scHiCluster

SCUDDO

Flyamer, et al.

0 0.25 0.5 0.75 1
NMI

0

0.25

0.5

0.75

1

A
R
I

Higashi

HiCRep/MDS

scHiCluster

SCUDDO

Collombet, et al.

Fig. 3. Accuracy of the four single-cell Hi-C map clustering algorithms

(Higashi (29) (blue), HiCRep/MDS (35; 22) (orange), scHiCluster (30)

(green), and SCUDDO (red)) on three difficult-to-cluster single-cell Hi-C

datasets. We plot the adjusted Rand index (ARI) versus the normalized

mutual information (NMI) for each algorithm on the (A) Li, et al. (16),

(B) Flyamer, et al. (18), and (C) Collombet, et al. (25) datasets.

match between PT and PG is no better than that achieved by

random assignments in PG.

We also quantify the accuracy of the clustering of the single-

cell Hi-C maps using the normalized mutual information (NMI).

NMI measures how much information can be learned about a

given clustering by observing a different, but related clustering.

NMI is defined as:

NMI =

∑l
i=1

∑l
j=1 H(i, j) log2

H(i,j)
H(i)H(j))√

(−
∑l

i=1 H(i) log2 H(i))(−
∑l

j=1 H(j) log2 H(j))
,

(12)

where H(i) = [Xi]
a , H(j) =

[Yj ]

a , and H(i, j) =
[Yi∩Xj ]

a .

0 < NMI < 1, where NMI = 1 indicates that PT = PG and

NMI = 0 indicates that there is no correlation between PT

and PG. We calculate both ARI and NMI since they can differ

for different sized clusters: ARI is preferable when the sets in

PT are similar in size, whereas NMI is preferable when the

sets in PT are unbalanced. For all datasets and algorithms, we

calculate the ARI and NMI after using the native embedding

and K-means++ clustering.

Results

We carried out single-cell Hi-C map clustering on three difficult-

to-cluster datasets (Collombet, et al. (25), Flyamer, et al. (18),

and Li, et al. (16)) using three current algorithms (Higashi (29),

HiCRep/MDS (21), and scHiCluster (30)) and compared the

results to those obtained from SCUDDO. We plot ARI versus

NMI for each dataset and algorithm in Fig. 3 (A)-(C). Overall,

SCUDDO outperforms the other three methods for all datasets

tested. For the Li, et al. dataset in Fig. 3 (A), we find a

significant separation in accuracy between SCUDDO and the

next most accurate method (scHiCluster). SCUDDO achieves

an ARI ∼ 0.45 and NMI ≈ 0.42, while scHiCluster achieves

ARI ≈ 0.29 and NMI ≈ 0.25. For the Flyamer, et al. dataset

in Fig. 3 (B), we find that SCUDDO has ARI ∼ NMI ≈ 0.73,

whereas the next most accurate method, again SciHiCluster,

has ARI ∼ NMI ≈ 0.65. We also find that on some runs of K-

means++ for this dataset, SCUDDO can achieve ARI ≥ 0.90.

Lastly, for the Collombet, et al. dataset in Fig. 3 (C), we find

that SCUDDO has ARI ∼ NMI ≈ 0.64, whereas the next most

accurate method, again SciHiCluster, has ARI ∼ NMI < 0.5.

We next show that SCUDDO can accurately embed single-

cell Hi-C maps using a reduced amount of information for

already highly sparse single-cell Hi-C maps, surpassing the

accuracy of previous algorithms using fewer intrachromosomal

matrices for each cell, as well as fewer sampled superdiagonals

for each matrix. We study the performance of SCUDDO after

restricting the single-cell Hi-C data available to it in two

ways: first by varying the hyperparameter ζ for the number

of superdiagonals to sample for each intrachromosomal Hi-C

map, as well as varying the hyperparameter ϵ for the embedding

dimension of V. In Fig. 4, we show heatmaps of the ARI and

NMI for the SCUDDO algorithm, while varying 0 ≤ ζ ≤ 40

and 1 ≤ ϵ ≤ 40. The pixels in the ζ-ϵ plane outlined in black

indicate ARI or NMI values for the SCUDDO algorithm that

exceed those for all other methods (when they use all of the

available single-cell Hi-C data).

For the Li, et al. dataset, we show in the left column of Fig. 4

(A) and (B) that for ≈ 84% and 82% of the ζ-ϵ plane SCUDDO

outperforms all methods in ARI and NMI. In particular, when

ζ > 2, SCUDDO gives mean ARI and NMI values over all ϵ

(including low-dimensional embeddings) that match the ARI

and NMI for the next best method (when they use all available

single-cell Hi-C data). Similarly, when ϵ > 1, SCUDDO gives

mean ARI and NMI values over all ζ that exceed the values for

all other methods. Even in regimes with low diagonal sampling

and embedding dimension, SCUDDO can obtain ARI values

that surpass the next best method (e.g. ζ = 3, ϵ = 2). The

maximum ARI and NMI for clustering the Li, et al. dataset

using SCUDDO in the sampled hyperparameter space were ≈
0.48 and ≈ 0.47 respectively.

On the Flyamer, et al. dataset, SCUDDO outperforms

the other methods over a more restricted region of the

hyperparameters ζ and ϵ, as shown in the middle column of

Fig. 4 (A) and (B), with ≈ 50% and ≈ 43% of (ζ, ϵ) input pairs

into SCUDDO resulting in ARI and NMI scores that surpassed

the next best method’s ARI and NMI scores respectively. We

find that unlike the other two datasets, SCUDDO requires

generally higher ζ values (more sampled diagonals) to perform

state of the art for the Flyamer, et al. dataset. We find that

when ζ > 16 (across all ϵ) and when ϵ > 16 (across all ζ),

SCUDDO achieves a larger mean ARI and NMI than the next

best method. SCUDDO also achieves exceptional accuracy at

ϵ = 5, ζ = 3 and ϵ = 7, ζ = 6 with ARI ≈ 0.93 and 0.94 and

NMI ≈ 0.80 and 0.81 respectively.

For the Collombet, et al. dataset in the right column of

Fig. 4 (A) and (B), SCUDDO outperforms the next best method

in ARI and NMI over ≈ 87% and ≈ 90% of the ζ-ϵ plane. For

ζ > 3, the mean ARI and NMI across all ϵ values for SCUDDO

is larger than the other tested methods. Similarly, SCUDDO

outperforms the other methods in mean ARI and NMI when

ϵ > 3 (across all ζ). Across the sampled hyperparameters, we

find that the maximum ARI and NMI are ≈ 0.66 and ≈ 0.67

respectively.

Previous single-cell clustering algorithms often require a

large number of dimensions (ϵ ≳ 100) to achieve reasonable

clustering accuracy on single-cell Hi-C maps (30). In addition,

the ARI and NMI can possess large fluctuations as a function of

the embedding dimension and depend strongly on the specific

dimensionality reduction technique that is implemented, for

instance with some methods requiring specific dimensionality

reduction techniques to be competitive (29). In contrast, we

have shown that the ARI and NMI scores for the SCUDDO

algorithm are large at both very low embedding dimensions

and when sampling only a few superdiagonals. This result is

true even when we treat ϵ as the final embedding dimension

of the output for SCUDDO, despite the fact that SCUDDO

always outputs a l dimensional embedding, where l ≤ ϵ for

all datasets studied. In addition, we find that SCUDDO does
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Fig. 4. The clustering accuracy (ARI in (A) and NMI in (B)) for the SCUDDO algorithm for each of the three datasets, (left) Li, et al. (16), (middle)

Flyamer, et al. (18), and (right) Collombet, et al. (25), plotted as a function of the number of sampled superdiagonals ζ and the embedding dimension

ϵ. The pixels in the heatmap are outlined when the ARI or NMI for SCUDDO exceed those of the next best performing method, which is scHiCluster in

all cases. The faint horizontal and vertical white lines in each heatmap indicate the row and column for the default values for the SCUDDO algorithm,

ζ = 25 and ϵ = 5.

not depend sensitively on the specific dimensionality reduction

technique. For instance on the Collombet, et al. dataset,

SCUDDO performs roughly equivalently when V is embedded

spectrally (i.e. the default embedding) (ARI ≈ NMI ≈ 0.64),

embedded using UMAP (24) (ARI ≈ NMI ≈ 0.60), embedded

using t-SNE (23) (ARI ≈ NMI ≈ 0.57), and when there is no

further dimensionality reduction and using V directly (ARI ≈
NMI ≈ 0.56). While the default values for ζ and ϵ for SCUDDO

were not optimized to the three selected datasets, the default

parameters give excellent results for ARI and NMI for these

datasets. However, there are (ζ, ϵ) pairs, e.g. ζ = 26, ϵ = 7, that

give superior performance across all datasets in this manuscript.

In Fig. 5, we calculate ARI and NMI for the three datasets

versus the number of intrachromosomal maps b that we sample.

For these calculations, we sample all chromosomes with an

index less than or equal to b, for instance if we set b = 4,

the SCUDDO algorithm samples only chromosomes 1, 2, 3,

and 4. For the Li, et al. and Collombet, et al. datasets in the

left and right panels, we find that the ARI and NMI for the

SCUDDO algorithm first exceed those for the next best method

when b ≳ 4 and 2, respectively. However, for the Flyamer, et

al. dataset in the center panel, most of the chromosomes are

needed to achieve high accuracy, with comparable performance

with the next best method at b = 11. We also note that the

ARI and NMI for the Flyamer, et al. dataset fluctuates more

than the values for the other datasets. For instance, there are

large step changes in the ARI and NMI in Fig. 5 (B) for b = 16

and 17.

Discussion

In this article, we develop a novel algorithm, SCUDDO, to

determine a low-dimensional representation and then cluster

single-cell Hi-C maps. We focused on three difficult-to-cluster

single-cell Hi-C map datasets, where the datasets include

ground-truth labels for each single-cell Hi-C map. We compared

Fig. 5. The clustering accuracy, ARI (red squares) and NMI (blue

circles), for the SCUDDO algorithm plotted as a function of the number

of sampled chromosomes b for the three datasets: (left) Li, et al. (16),

(middle) Flyamer, et al. (18), and (right) Collombet, et al. (25). The

faint horizontal red and blue lines represent the values of ARI and NMI

for the scHiCluster method, which is the next best performing method

for these datasets.

the ARI and NMI metrics for clustering accuracy from the

SCUDDO algorithm to those from three other clustering

algorithms that were the most accurate in previous single-

cell Hi-C map clustering benchmarking studies (21; 31). The

SCUDDO algorithm is for all cases more accurate in terms of

both ARI and NMI compared to the other three methods for

all datasets. We also find that the SCUDDO algorithm can

accurately cluster single-cell Hi-C maps using a fraction of the

intrachromosomal Hi-C maps and their diagonals, as well as

fewer embedding dimensions.

The SCUDDO algorithm has several advantages over other

existing methods for clustering single-cell Hi-C maps. First,

SCUDDO uses, to our knowledge, a new and relatively simple

imputation technique for single-cell Hi-C maps, smoothing over

local neighborhood features in single-cell Hi-C map and then

using backwards diffusion using a 2D Gaussian kernel followed

by a diffusion operator. This technique improves the accuracy

for datasets where there are few cells (e.g. the Li, et al.
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and Flyamer, et al. datasets), since it both short-range and

long-range information transfer within an intrachromosomal

Hi-C map. Additionally, SCUDDO mainly uses PCA and

MDS for dimensionality reduction, both of which are much

more interpretable than dimensionality reduction techniques

like UMAP and t-SNE or using complex inscrutable networks

that require training to find features.

The SCUDDO algorithm combines two key features: the

diffused (normalized) diagonals of each single-cell Hi-C map

and the trinarized differences along the diffused diagonals. The

algorithm then calculates the angles between these features for

each diagonal (using cosine similarity) and performs several

steps of dimensionality reduction to achieve a final embedding.

We find that for some datasets both features are necessary to

achieve the best clustering accuracy, e.g. for the Flyamer et al,

dataset using only one feature scores at best an ARI of only 0.5.

While the details of the features and SCUDDO algorithm are

easy to interpret mathematically, the biophysical interpretation

of these features is less clear. For example, it is unclear whether

the diffusion and smoothing steps used by SCUDDO have a

clear biophysical interpretation.

Interesting future studies involve coupling molecular

dynamics simulations of polymer models of chromosomes (34)

with the SCUDDO algorithm to further improve clustering

accuracy and to better understand the biophysical mechanisms

that support the efficacy of the methods used in the SCUDDO

algorithm. In addition, the SCUDDO algorithm can be applied

to synthetic datasets with labels with tunable noise and

sparsity, as well as to experimental datasets without labels to

predict cell fate.
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