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Abstract

Motivation: Advances in high-throughput chromatin conformation capture have provided insight into the three-
dimensional structure and organization of chromatin. While bulk Hi-C experiments capture spatio-temporally averaged
chromatin interactions across millions of cells, single-cell Hi-C experiments report on the chromatin interactions of
individual cells. Supervised and unsupervised algorithms have been developed to embed single-cell Hi-C maps and identify
different cell types. However, single-cell Hi-C maps are often difficult to cluster due to their high sparsity, with state-of-
the-art algorithms achieving a maximum Adjusted Rand Index (ARI) of only < 0.4 on several datasets while requiring
labels for training.

Results: We introduce a novel unsupervised algorithm, Single-cell Clustering Using Diagonal Diffusion Operators
(SCUDDO), to embed and cluster single-cell Hi-C maps. We evaluate SCUDDO on three previously difficult-to-cluster
single-cell Hi-C datasets, and show that it can outperform other current algorithms in ARI by 2 0.2. Further, SCUDDO
outperforms all other tested algorithms even when we restrict the number of intrachromosomal maps for each cell type
and when we use only a small fraction of contacts in each Hi-C map. Thus, SCUDDO can capture the underlying latent
features of single-cell Hi-C maps and provide accurate labeling of cell types even when cell types are not known a priori.
Availability: SCUDDO is freely available at www.github.com/lmaisuradze/scuddo. The tested datasets are publicly
available and can be downloaded from the Gene Expression Omnibus.
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Introduction that gene expression profiles and cell morphology can differ

. . . even between genetically identical cells (3; 4; 5). In addition
Elucidating the structure and dynamics of chromatin in cell . & ) Y . (3 4 5) . ’
.. . . the size and location of chromatin loops and topologically
nuclei is essential for understanding numerous cellular processes L i K
L. N . associating domains (TADs) can vary between the Hi-C maps
such as DNA transcription and replication (1). Advances in o K .
. of individual cells for a given organism (6; 7; 8; 9). As a

whole-genome analyses, e.g. chromosome conformation capture . . .. .
. . . . L. . result, the loci that posses high contact frequencies in bulk Hi-
techniques such as Hi-C, have provided important insights into K K . L.
L. . . . . C maps can differ from those that are in close spatial proximity

long-ranged chromatin interactions and hierarchical chromatin R K K o . .
N . . . . in fluorescence in situ hybridization (FISH) experiments, in
organization (2). Hi-C experiments provide chromatin contact L .
part due to the heterogeneity in chromatin structure across

individual cells (10; 11; 12; 13; 14). Thus, bulk Hi-C maps
cannot be used to capture the structure and organization of

maps, often represented as a symmetric matrix A, where A;;
gives the number of times that loci ¢ and j of chromatin

come into close proximity. Bulk Hi-C contact maps provide .
. . . . . chromatin in individual cells.
information on chromatin fragment interactions averaged over . X .
. ) . . Several single-cell Hi-C technologies have been developed to
millions of cells. In contrast, single-cell Hi-C maps give the L. X L
capture chromatin interactions for large numbers of individual

cells (15; 16; 17; 18; 19). Single-cell Hi-C techniques
enable studies of genome organization in individual cells, as

frequency of chromatin contacts in each individual cell.
It is now well established that chromatin structure and

organization can differ significantly across cell populations (1; X . .
L. . . . well as comparisons of chromatin structure and organization
3). Transcription analyses and imaging studies have shown K . . .

across different cell types. Using data from single-cell Hi-C
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Fig. 1. (A) A psuedo-bulk Hi-C map (log, A;;) for chromosome 5 using
pooled mouse oocyte cells before division from the Collombet (25) dataset
(normalized so that max(A;;) = 1). (B) An example single-cell Hi-C map

from the Collombet dataset for chromosome 5 of a mouse oocyte cell using

the same normalization.

experiments, computational studies have focused on TAD, loop,
and compartment identification for individual cells within a
population (18; 19). However, despite the rapid advances in
genome-wide assays, single-cell Hi-C maps are still sparse, only
capturing a fraction of the interactions that are obtained in
bulk Hi-C experiments (20; 21). For example, in Fig. 1, we
show a psuedo-bulk Hi-C map for chromosome 5 in mouse
oocyte cells (25) and compare it to a single-cell Hi-C map
for the same chromosome and cell type. The single-cell Hi-C
map shows significant sparsity, with most of the off-diagonal
elements having a count of 0, as well as large variability for
elements near the diagonal.

While techniques like fluorescence-activated cell sorting can
be used to label single cells during chromosome conformation
capture methods, these techniques are more expensive, lower
throughput, and not as widely available as single-cell Hi-C
experiments. Thus, the development of classification algorithms
for single-cell Hi-C maps may enable researchers to identify
the key chromatin interactions that distinguish different cell
types. Algorithms developed for bulk Hi-C analysis, including
topologically associating domain callers (33), often work with
limited efficacy on raw single-cell Hi-C data. Thus, due to their
inherent variability and sparsity, specialized algorithms must be
developed to identify robust features in single-cell Hi-C maps.
In this article, we focus on the specific task of classifying single-
cell Hi-C maps based on the cell labels that have been provided
by the experimental studies. Most algorithms for clustering
single-cell Hi-C maps use dimensionality reduction, treating

each single-cell Hi-C map as a point in high-dimensional
space and then mapping each point to a lower-dimensional
space to cluster the data (20; 21; 22). Despite the fact
that there are more than a dozen algorithms to date for
clustering single-cell Hi-C maps, there are many single-cell
Hi-C datasets for which these methods achieve a maximum
adjusted Rand index ARI < 0.4 (21; 36). Moreover, there are
many cases where one clustering method performs well on one
single-cell Hi-C dataset, but then performs poorly on another
dataset (20; 21), suggesting that current methods have trouble
identifying features that generalize across multiple single-cell
Hi-C datasets for clustering.

SCUDDO (single-cell
clustering using diagonal diffusion operators), which is fully

We develop a novel algorithm,

unsupervised, fast, and easy to interpret to separate single-cell
Hi-C maps into distinct groups. We then compare the predicted
labels of the single-cell Hi-C maps to the cell types that are
provided by experimental studies. To quantify the accuracy of
the clustering, we calculate the ARI and normalized mutual
information (NMI) using the predicted and ground truth labels.
We find that SCUDDO outperforms current state of the art
methods on three difficult-to-cluster single-cell Hi-C datasets,
achieving an ARI and NMI greater than those for all of the
tested methods on each of the datasets. We also find that
SCUDDO achieves higher accuracy for clustering single-cell
Hi-C maps compared to other algorithms when using only a
fraction of the number of intrachromosomal maps and a fraction
of the diagonals in each map.

The remainder of the manuscript is organized as follows.
In the Materials and Methods section, we describe the key
elements and hyperparameters of SCUDDO for clustering
single-cell Hi-C maps. We then describe the three difficult-
to-cluster datasets for benchmarking the new algorithm and
the two metrics (ARI and NMI) for quantifying the clustering
accuracy. In the Results section, we provide the ARI and NMI
scores for SCUDDO and three current methods for clustering
single-cell Hi-C maps on each of the three difficult-to-cluster
Hi-C datasets. We also show SCUDDO’s performance across
different hyperparameter regimes and when limiting the number
of diagonals and intrachromosomal maps sampled. In the
Discussion, we include some interpretations of the results, our
conclusions, and promising future research directions.

Materials and Methods

The Materials and Methods is organized into three subsections.
We first define the necessary notation and summarize the
steps of the SCUDDO method to cluster single-cell Hi-C
maps. Second, we describe three difficult-to-cluster single-
cell Hi-C datasets that will be used to benchmark SCUDDO
alongside three other current algorithms. Finally, we define the
two metrics, ARI and NMI, which are used to quantify the

unsupervised clustering accuracy.

SCUDDO algorithm

The SCUDDO algorithm takes as input a set of intrachromosomal
Hi-C maps with nonnegative integer entries for a cells, each
with b chromosomes, totaling a X b intrachromosomal Hi-
C maps. As for bulk Hi-C maps, single-cell Hi-C maps are
represented as symmetric matrices with elements A;; that
represent the number of contacts between loci ¢ and j on
chromatin. To distinguish between the cell and chromosome

k

indices, we define Al;’i as the ijth element of the n* x n

J
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Fig. 2. A schematic of the SCUDDO algorithm for clustering single-cell Hi-C maps. We illustrate the method using intrachromosomal Hi-C maps

from the Li, et al. dataset (25). SCUDDO first imputes the set of intrachromosomal Hi-C matrices (indexed by Af) for each cell and then samples

each diagonal (indexed by w) from each Hi-C matrix to form a feature matrix K" for each sampled diagonal. Principal component analysis (PCA)

and nonmetric multi-dimensional scaling (MDS) are then applied to each feature matrix to form the matrix R, which is then embedded in a lower

dimensional latent space using the L' norm to form the embedding, V.

Hi-C map for chromosome k of cell s. n*

since the dimensions of the Hi-C map only vary across different

only depends on k

chromosomes. Given a set of intrachromosomal matrices,
SCUDDO returns a low-dimensional embedding of the Hi-C
matrices. This embedding is then used as an input into a
clustering algorithm, for example K-means+-+ (26), where each
cell is assigned to one of [ predicted labels.

SCUDDO starts by pre-processing and performing imputation
First, each A" is
reshaped into the same size r X r matrix, .A'Sk7 using a
bicubic interpolation kernel, where r = 3°%_, n*/b. SCUDDO

then convolves each intrachromosomal matrix with a Gaussian

on each intrachromosomal matrix .A’;.

kernel:

9 9
/s”ij Z Z A, (z—4+x)(J 4tw)? )
where G is a two-dimensional 9 X 9 Gaussian kernel with
standard deviation o = 0.5 that uses replicate padding, where
values outside of the bounds of the original Hi-C map are set to
the values of the nearest border entry. G smooths local regions
in each individual intrachromosomal matrix. The final pre-
processing step is to normalize each intrachromosomal matrix
and apply a diffusion kernel via a matrix exponential:

A//k
Bf = exXp <_W> s (2)
5,15

which represents backwards diffusion over A'S'k. Next, we
construct high-dimensional embeddings of the intrachromosomal

Hi-C maps for each cell. Let d”(B¥) be the ordered set of Hi-C

map entries on the wth superdiagonal of the » X r matrix B’;

dY(BY) = {BS 111w Bhooiw - Bh b (3)

For a given w, d*(B¥) for each chromosome k for cell s is
concatenated to form the embedding vector:

& = {d"(8,),d"(B2),....d" (B))}, )
where a = 1,...,b(r — w) indexes the entries in €,*. Every
embedding vector, €., is z-score normalized such that

ey —
e, rw o _ M i (5)

b(r ) | =
\/b(r T =T a8 —

where p = Eb(r w)(_'“’) /[b(r — w)]. This pooling approach
is similar to previous work (36; 37) that employs band
normalization for Hi-C matrices. Next, each embedding vector
is transformed into a signed difference vector:

7Y =sen(V(EL™)), (6)

where V(€ ") = (€ L") — (€ L")a+t1
the sign function. (Note that we set the last entry of the
)b(r—w) = (6 )b('r‘ w))
into a ternary vector with values

and sgn is

¢
chromosome difference vector (f,*
Eq. 6 transforms & %
1, 0, or —1. For a given w,

IR LI A
1 »J2 s sda

each cell’s difference vector,
is used to calculate the distance matrix
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between cells ¢ and j using cosine similarity:

‘Fw . f_"w
DY =1-—2—"-—, (7)
! [fi 1151

where \X| indicates the magnitude of X A separate distance
> w,

matrix is calculated for €

=/ w =/ w
o €; "€
Dij 71_|é‘/w”é‘/w7 (8)

and combined to form a final exponentiated distance matrix
using element-wise exponentiation:

KZ‘; — DF+DE(DE DY) 9)
Finally, SCUDDO uses nonmetric multidimensional scaling
(MDS) (32) to transform the a X a matrix K" into a lower
dimensional representation, i.e. an a X p matrix where p < a,
which preserves the distances in K. The multidimensional
scaling is followed by principal component analysis to further
reduce the dimension to an a X ¢ matrix U", where ¢ < p
(p = 30 and ¢ = 5). This procedure is performed for the
diagonal (w = 0) and a given number of superdiagonals (w =
¢ > 0), and each set of dimensionality-reduced representations
are concatenated, forming the a X (g(¢ + 1)) matrix R =
Z/IO,Z/{l,...,L{C. R is then normalized feature-wise using the
softmax function, 'R;j = eR”/Eg=l e, and a distance
matrix is constructed using the L' metric:

qw
Sij =D IR ix — R\l (10)
A=1

Another round of dimensionality reduction is performed using
multidimensional scaling to reduce the dimension of S to the
embedding size €, which gives the a X € matrix, V. Because
there is no guarantee of convexity associated with each cluster
when clustering single cell Hi-C matrices, we use spectral
decomposition before performing the clustering. In particular,
SCUDDO transforms V into the similarity matrix, ;; = efZ?J,
where Z;; = |l_jl* — _‘j*| and V;. is the vector consisting of all

elements in the i*"

row of V. Next, we calculate the final a x [
spectral embedding C, where the columns of C are the smallest [
eigenvectors of the random-walk Laplacian matrix constructed
from 2 using the Shi-Malik algorithm (38) with log(a) nearest
neighbors. We then input C and the number of labels [ into a
clustering algorithm, such as K-means++ (26), which returns
the predicted labels for each single-cell Hi-C map.

SCUDDO includes two tunable hyperparameters: (, the
set of (super)diagonals, w = 0,1,...
embedding vectors, and the dimension €, to which V is reduced.
By default, SCUDDO outputs two embeddings: C and V. Both
¢ and € are varied in the Results section to study their effects

, ¢ used to construct the

on SCUDDO’s performance for each dataset. For all results in
this study unless otherwise noted, we use C as the input into
K-means++ and set ( = 25 and € = 5. Our results are not
sensitive to the values of the dimensions p and q.

Benchmarking of single-cell Hi-C clustering
algorithms

We focus our studies on three difficult-to-cluster datasets of
single-cell Hi-C maps from recent benchmarking studies (21;
31). In particular, we consider the Li, et al. (16) dataset (GEO

ID: GSE119171) consisting of a = 150 mouse embryonic stem
cells that are separated into I = 3 labels: “2i”, “Seruml”,
and “Serum2”, the Flyamer, et al. (18) dataset (GEO ID:
GSE80006) consisting of a = 134 cells from developing mouse
zygotes and oocytes with | = 3 cell types: “Oocyte”, “ZygP”,
and “ZygM” as labels, and the Collombet, et al. (25) dataset
(GEO ID: GSE129029) consisting of a = 648 mouse embryo
cells with labels that represent [ = 5 different cell stages:
1-cell, 2-cell, 4-cell, 8-cell, and 64-cell stages. In previous
benchmarking studies (21), none of the eight tested methods
for single-cell Hi-C map clustering achieved ARI or NMI > 0.6
on the Collombet, et al. dataset and in another study (36)
none of the eight methods tested achieved an ARI > 0.45 on
the Li, et al. dataset across any clustering algorithm (not just
k-means) . For each dataset, we use 1 Mb bin sizes for the
single-cell Hi-C maps, and re-bin those with higher resolution,
as discussed in Zhou, et al. (30). If the sum of all non-diagonal
nonzero pairs of elements in the intrachromosomal Hi-C maps
for a given cell is less than 5000, the data for this cell was not
included in the analysis. Also, for each individual chromosome
of size z for a cell, if the intrachromosomal Hi-C map for that
chromosome has a sum of non-diagonal contacts that is less
than x, all intrachromosomal Hi-C maps are not considered for
that cell.

After considering previous single-cell Hi-C map clustering
studies (21; 29; 31; 36), we selected consistent top performers
across several datasets to compare with SCUDDO: i.e. the
Higashi (29), HiCRep/MDS (35; 22), and scHiCluster (30)
algorithms. While HiCRep/MDS is not as accurate as Higashi
and scHiCluster, we include it in our analysis since it is the most
widely used and best performing method that uses MDS similar
to SCUDDO to the best of our knowledge. Importantly, all
algorithms that we tested are unsupervised or self-supervised,
and do not require labels for training. Other algorithms that
require labels or significant pretraining are unable to cluster
unlabeled single-cell Hi-C datasets, and thus they are not
included in this manuscript. For each algorithm, we used the
default hyperparameters and used the final embeddings (with
no further processing) as input into K-means++ clustering to
benchmark our calculations.

Metrics for clustering accuracy

To assess the accuracy of the predicted labels, we calculate
the adjusted rand index (ARI) (27) and normalized mutual
information (NMI) (28). Let Q7 (s) and Qg(s) be functions
that map each cell index s (from 1 to a) to the integers I’
and I"" respectively, where I’ is the ground truth label for
cell s and 1" is the predicted label for cell s. We then define
Pr = {X1,X5,...X;} as the “ground-truth” label set, where
X denotes the set of cells such that Qp(s) = I’, and Pg =
{¥1,Y2,...Y1} as the “predicted” label set, where Y}~ is the set
of cells such Qg (s) =1".

The adjusted Rand index determines the similarity between
the sets of cells with given ground truth and predicted labels:

ARI =

5:1 22:1 (55‘7) - (El':l (Fz') 2:1 (AQJ)) (5)
30 (5) + X5 (9) = (Sia () i (9)/6)
(11)
where 8;; = [X; NY;], N is the intersection between two sets,
[X] is the number of elements in set X, I'y = 25:1 Bri, Ax =
23:1 Bjk, and (7)) = #ln), ARI = 1 indicates a perfect
match between Pr and Pg, whereas ARI = 0 indicates the
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Fig. 3. Accuracy of the four single-cell Hi-C map clustering algorithms
(Higashi (29) (blue), HiCRep/MDS (35; 22) (orange), scHiCluster (30)
(green), and SCUDDO (red)) on three difficult-to-cluster single-cell Hi-C
datasets. We plot the adjusted Rand index (ARI) versus the normalized
mutual information (NMI) for each algorithm on the (A) Li, et al. (16),

(B) Flyamer, et al. (18), and (C) Collombet, et al. (25) datasets.

match between Pr and Pg is no better than that achieved by
random assignments in Pg.

We also quantify the accuracy of the clustering of the single-
cell Hi-C maps using the normalized mutual information (NMI).
NMI measures how much information can be learned about a
given clustering by observing a different, but related clustering.
NMI is defined as:

— o S MG iy
V(= Ly () logy H()) (= X5y H () log H())

(12)

where H(i) = P;’], H(G) = [‘;J], and H(i,j) = [Y#EXJ]

0 < NMI < 1, where NMI = 1 indicates that Pr = Pg and
NMI = 0 indicates that there is no correlation between Pr
and Pg. We calculate both ARI and NMI since they can differ
for different sized clusters: ARI is preferable when the sets in
Pr are similar in size, whereas NMI is preferable when the
sets in Pr are unbalanced. For all datasets and algorithms, we
calculate the ARI and NMI after using the native embedding
and K-means++ clustering.

Results

We carried out single-cell Hi-C map clustering on three difficult-
to-cluster datasets (Collombet, et al. (25), Flyamer, et al. (18),
and Li, et al. (16)) using three current algorithms (Higashi (29),
HiCRep/MDS (21), and scHiCluster (30)) and compared the
results to those obtained from SCUDDO. We plot ARI versus
NMI for each dataset and algorithm in Fig. 3 (A)-(C). Overall,
SCUDDO outperforms the other three methods for all datasets
tested. For the Li, et al. dataset in Fig. 3 (A), we find a
significant separation in accuracy between SCUDDO and the
next most accurate method (scHiCluster). SCUDDO achieves
an ARI ~ 0.45 and NMI = 0.42, while scHiCluster achieves
ARI =~ 0.29 and NMI = 0.25. For the Flyamer, et al. dataset
in Fig. 3 (B), we find that SCUDDO has ARI ~ NMI = 0.73,
whereas the next most accurate method, again SciHiCluster,
has ARI ~ NMI =~ 0.65. We also find that on some runs of K-
means++ for this dataset, SCUDDO can achieve ARI > 0.90.
Lastly, for the Collombet, et al. dataset in Fig. 3 (C), we find
that SCUDDO has ARI ~ NMI = 0.64, whereas the next most
accurate method, again SciHiCluster, has ARI ~ NMI < 0.5.
‘We next show that SCUDDO can accurately embed single-
cell Hi-C maps using a reduced amount of information for
already highly sparse single-cell Hi-C maps, surpassing the
accuracy of previous algorithms using fewer intrachromosomal

Short Article Title

| 5

matrices for each cell, as well as fewer sampled superdiagonals
for each matrix. We study the performance of SCUDDO after
restricting the single-cell Hi-C data available to it in two
ways: first by varying the hyperparameter ¢ for the number
of superdiagonals to sample for each intrachromosomal Hi-C
map, as well as varying the hyperparameter € for the embedding
dimension of V. In Fig. 4, we show heatmaps of the ARI and
NMI for the SCUDDO algorithm, while varying 0 < ¢ < 40
and 1 < e < 40. The pixels in the (-e¢ plane outlined in black
indicate ARI or NMI values for the SCUDDO algorithm that
exceed those for all other methods (when they use all of the
available single-cell Hi-C data).

For the Li, et al. dataset, we show in the left column of Fig. 4
(A) and (B) that for ~ 84% and 82% of the ¢-e plane SCUDDO
outperforms all methods in ARI and NMI. In particular, when
¢ > 2, SCUDDO gives mean ARI and NMI values over all €
(including low-dimensional embeddings) that match the ARI
and NMI for the next best method (when they use all available
single-cell Hi-C data). Similarly, when € > 1, SCUDDO gives
mean ARI and NMI values over all ¢ that exceed the values for
all other methods. Even in regimes with low diagonal sampling
and embedding dimension, SCUDDO can obtain ARI values
that surpass the next best method (e.g. { = 3,¢ = 2). The
maximum ARI and NMI for clustering the Li, et al. dataset
using SCUDDO in the sampled hyperparameter space were =
0.48 and =~ 0.47 respectively.

On the Flyamer,

et al. SCUDDO outperforms

the other methods over a more restricted region of the

dataset,

hyperparameters ¢ and €, as shown in the middle column of
Fig. 4 (A) and (B), with &~ 50% and ~ 43% of (¢, €) input pairs
into SCUDDO resulting in ARI and NMI scores that surpassed
the next best method’s ARI and NMI scores respectively. We
find that unlike the other two datasets, SCUDDO requires
generally higher ¢ values (more sampled diagonals) to perform
state of the art for the Flyamer, et al. dataset. We find that
when ¢ > 16 (across all €) and when € > 16 (across all (),
SCUDDO achieves a larger mean ARI and NMI than the next
best method. SCUDDO also achieves exceptional accuracy at
e=5 ¢=3and e =7, ( =6 with ARI =~ 0.93 and 0.94 and
NMI =~ 0.80 and 0.81 respectively.

For the Collombet, et al. dataset in the right column of
Fig. 4 (A) and (B), SCUDDO outperforms the next best method
in ARI and NMI over =~ 87% and ~ 90% of the (-¢ plane. For
¢ > 3, the mean ARI and NMI across all € values for SCUDDO
is larger than the other tested methods. Similarly, SCUDDO
outperforms the other methods in mean ARI and NMI when
e > 3 (across all ¢). Across the sampled hyperparameters, we
find that the maximum ARI and NMI are =~ 0.66 and ~ 0.67
respectively.

Previous single-cell clustering algorithms often require a
large number of dimensions (e > 100) to achieve reasonable
clustering accuracy on single-cell Hi-C maps (30). In addition,
the ARI and NMI can possess large fluctuations as a function of
the embedding dimension and depend strongly on the specific
dimensionality reduction technique that is implemented, for
instance with some methods requiring specific dimensionality
reduction techniques to be competitive (29). In contrast, we
have shown that the ARI and NMI scores for the SCUDDO
algorithm are large at both very low embedding dimensions
and when sampling only a few superdiagonals. This result is
true even when we treat € as the final embedding dimension
of the output for SCUDDO, despite the fact that SCUDDO
always outputs a ! dimensional embedding, where | < e for
all datasets studied. In addition, we find that SCUDDO does
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A Li, et al.

Flyamer, et al.

Collombet, et al.

Fig. 4. The clustering accuracy (ARI in (A) and NMI in (B)) for the SCUDDO algorithm for each of the three datasets, (left) Li, et al. (16), (middle)
Flyamer, et al. (18), and (right) Collombet, et al. (25), plotted as a function of the number of sampled superdiagonals ¢ and the embedding dimension
e. The pixels in the heatmap are outlined when the ARI or NMI for SCUDDO exceed those of the next best performing method, which is scHiCluster in
all cases. The faint horizontal and vertical white lines in each heatmap indicate the row and column for the default values for the SCUDDO algorithm,

¢ =25 and e = 5.

not depend sensitively on the specific dimensionality reduction
technique. For instance on the Collombet, et al. dataset,
SCUDDO performs roughly equivalently when V is embedded
spectrally (i.e. the default embedding) (ARI ~ NMI ~ 0.64),
embedded using UMAP (24) (ARI ~ NMI = 0.60), embedded
using t-SNE (23) (ARI =~ NMI ~ 0.57), and when there is no
further dimensionality reduction and using V directly (ARI =~
NMI = 0.56). While the default values for ¢ and € for SCUDDO
were not optimized to the three selected datasets, the default
parameters give excellent results for ARI and NMI for these
datasets. However, there are ((, €) pairs, e.g. { = 26,¢ = 7, that
give superior performance across all datasets in this manuscript.

In Fig. 5, we calculate ARI and NMI for the three datasets
versus the number of intrachromosomal maps b that we sample.
For these calculations, we sample all chromosomes with an
index less than or equal to b, for instance if we set b = 4,
the SCUDDO algorithm samples only chromosomes 1, 2, 3,
and 4. For the Li, et al. and Collombet, et al. datasets in the
left and right panels, we find that the ARI and NMI for the
SCUDDO algorithm first exceed those for the next best method
when b > 4 and 2, respectively. However, for the Flyamer, et
al. dataset in the center panel, most of the chromosomes are
needed to achieve high accuracy, with comparable performance
with the next best method at b = 11. We also note that the
ARI and NMI for the Flyamer, et al. dataset fluctuates more
than the values for the other datasets. For instance, there are
large step changes in the ARI and NMI in Fig. 5 (B) for b = 16
and 17.

Discussion

In this article, we develop a novel algorithm, SCUDDO, to
determine a low-dimensional representation and then cluster
single-cell Hi-C maps. We focused on three difficult-to-cluster
single-cell Hi-C map datasets, where the datasets include
ground-truth labels for each single-cell Hi-C map. We compared

Li, et al. Flyamer, et al. Collombet, et al.
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Fig. 5. The clustering accuracy, ARI (red squares) and NMI (blue
circles), for the SCUDDO algorithm plotted as a function of the number
of sampled chromosomes b for the three datasets: (left) Li, et al. (16),
(middle) Flyamer, et al. (18), and (right) Collombet, et al. (25). The
faint horizontal red and blue lines represent the values of ARI and NMI
for the scHiCluster method, which is the next best performing method

for these datasets.

the ARI and NMI metrics for clustering accuracy from the
SCUDDO algorithm to those from three other clustering
algorithms that were the most accurate in previous single-
cell Hi-C map clustering benchmarking studies (21; 31). The
SCUDDO algorithm is for all cases more accurate in terms of
both ARI and NMI compared to the other three methods for
all datasets. We also find that the SCUDDO algorithm can
accurately cluster single-cell Hi-C maps using a fraction of the
intrachromosomal Hi-C maps and their diagonals, as well as
fewer embedding dimensions.

The SCUDDO algorithm has several advantages over other
existing methods for clustering single-cell Hi-C maps. First,
SCUDDO uses, to our knowledge, a new and relatively simple
imputation technique for single-cell Hi-C maps, smoothing over
local neighborhood features in single-cell Hi-C map and then
using backwards diffusion using a 2D Gaussian kernel followed
by a diffusion operator. This technique improves the accuracy
for datasets where there are few cells (e.g. the Li, et al.



and Flyamer, et al. datasets), since it both short-range and
long-range information transfer within an intrachromosomal
Hi-C map. Additionally, SCUDDO mainly uses PCA and
MDS for dimensionality reduction, both of which are much
more interpretable than dimensionality reduction techniques
like UMAP and t-SNE or using complex inscrutable networks
that require training to find features.

The SCUDDO algorithm combines two key features: the
diffused (normalized) diagonals of each single-cell Hi-C map
and the trinarized differences along the diffused diagonals. The
algorithm then calculates the angles between these features for
each diagonal (using cosine similarity) and performs several
steps of dimensionality reduction to achieve a final embedding.
We find that for some datasets both features are necessary to
achieve the best clustering accuracy, e.g. for the Flyamer et al,
dataset using only one feature scores at best an ARI of only 0.5.
‘While the details of the features and SCUDDO algorithm are
easy to interpret mathematically, the biophysical interpretation
of these features is less clear. For example, it is unclear whether
the diffusion and smoothing steps used by SCUDDO have a
clear biophysical interpretation.

Interesting future studies involve coupling molecular
dynamics simulations of polymer models of chromosomes (34)
with the SCUDDO algorithm to further improve clustering
accuracy and to better understand the biophysical mechanisms
that support the efficacy of the methods used in the SCUDDO
algorithm. In addition, the SCUDDO algorithm can be applied
to synthetic datasets with labels with tunable noise and
sparsity, as well as to experimental datasets without labels to
predict cell fate.
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