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We predict the existence of a new class of phases in weakly coupled, three-dimensional stac
two-dimensional (2D)XY models. These “sliding phases” behave like decoupled, independent 2DXY
models with zero free-energy cost for macroscopic relative rotation of spins in different layers
algebraic decay of two-point spin correlation functions with in-plane separation. Our results, wh
contradict past studies because we include higher-gradient couplings between layers, also ap
crystals and may explain recently observed behavior in cationic lipid-DNA complexes.
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Spatial dimensionality greatly affects the nature of o
der in condensed matter systems. Three-dimensional (3
XY systems such as superfluids and ferromagnets h
true long-range order with divergent correlation lengths
a second-order transition separating the high-temperat
disordered phase from the low-temperature ordered pha
Two-dimensional (2D)XY systems, in contrast, exhibit
power-law decay of correlations in the low-temperatu
phase. At high temperatures beyond the Kosterlit
Thouless (KT) transition temperature, thermally excite
vortices destroy the quasi-long-range order and cause c
relations to decay exponentially [1,2].

Many experimentally realizable systems such as layer
superconductors [3], free-standing liquid-crystal films [4
and lyotropic smectics with internal membrane order c
be viewed as stacks of two-dimensional layers with i
terlayer couplings [5] that can be varied substantially, f
example, by changing the layer spacing. What is the ph
behavior of such a system? If there is no coupling betwe
layers, each will exhibit 2D behavior; if the coupling is
strong, the system will exhibit 3D behavior. Shortly afte
the discovery of the KT transition, it was suggested th
a weakly coupled stack ofXY models might behave over
some temperature range as a stack of decoupled layers,
that such a system could proceed from three-dimensio
behavior at low temperatures to a 2D power-law phase
intermediate temperatures to a disordered phase at h
temperatures [3,6].

Subsequent work [7], however, demonstrated that if t
only interlayer couplings are Josephson [i.e., proportion
to cos�un 2 un11�, whereun is theXY -angle variable in
layern], the intermediate 2D power-law phase is squeez
out, and the system goes directly from the 3D long-ran
ordered phase to the disordered one with increasing te
perature. This happens because the “decoupling temp
ture” Td above which the Josephson coupling becom
irrelevant is greater than the Kosterlitz-Thouless tempe
ture TKT below which the 2D ordered phase is stab
against vortex unbinding. Thus, the temperature windo
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Td , T , TKT over which the 2D sliding phase can exi
disappears.

In this paper, we revisit this old and seemingly dead
sue and show that a thermodynamically stable phase
hibiting 2D power-law correlations is, in fact, possibl
The new ingredient in our analysis, which was not pres
in previous treatments, is competing higher-order gradi
couplings between layers [8]. These gradient couplings
the absence of Josephson couplings between layers,
duce two-point correlation functions that are identical
form to those of a stack of decoupled 2D layers. We w
refer to this phase as asliding and not a decoupled phas
because theXY -angle variables in different layers ca
slide relative to each other without changing the energy
the system and because nonzero couplings between la
(though not of the Josephson type) are, in fact, presen
our model, and, furthermore, are necessary for the e
tence of this phase. Remarkably, it is possible throu
judicious tuning of interlayer gradient couplings to sa
isfy Td , TKT and produce a stable sliding phase f
Td , T , TKT .

This investigation into whether or not a sliding pha
of XY models exists was inspired by recent work on t
possible sliding columnar phase in cationic lipid-DN
complexes [9]. In these complexes, DNA molecules a
intercalated between lipid bilayers and, within each lay
the molecules are situated on a one-dimensional latt
Experiments may be consistent with the existence o
sliding columnar phase in which lattices in neighborin
layers are able to slide over each other without ene
cost [10], in complete analogy to the sliding pha
just described forXY models. Indeed, we have show
theoretically, by methods analogous to those presen
here, that it is possible to have a sliding columnar pha
in these complexes and, in addition, it is possible to ha
a sliding phase in a layered crystal. Details on these t
systems will be presented in a future publication [11
for the remainder of this paper, we will focus onXY
models.
© 1999 The American Physical Society 2745
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The traditional theory for a stack of XY models begins
with a sum of independent XY Hamiltonians

H0 �
K
2

X
n

Z
d2r�=�un�r��2, (1)

where r � �x, y, 0� is a point in the x-y plane and =�

is the gradient operator acting on these two coordinates.
Josephson-like couplings between layers are then added;
these are given by

HJ�sn� � 2VJ �sn�
Z

d2r cos

"X
p

spun1p�r�

#
, (2)

where sn is an integer-valued function of layer number
n satisfying

P
n sn � 0 if there are no external fields

inducing long-range order. If all VJ�sn� are zero, then
in the low-temperature phase �u2

n�r��0 � h log�L�b� and
cos�un�r� 2 un�0�� � r2h , where

h �
T

2pK
, (3)

L is the sample width, b is a short-distance cutoff in the
x-y plane, and �?�0 refers to an average with respect to
H0. The averages of the Josephson Hamiltonians with re-
spect to H0 scale as �HJ�sn�� � L22h�sn� where h�sn� �
h
2

P
p s2

p . Clearly, the most relevant Josephson coupling
is the one with the smallest value of h�sn�, which re-
sults when sn is nonzero on the smallest number of planes.
Since

P
n sn � 0, the smallest value of h�sn� is obtained

for couplings between two layers separated by p layers
with sn � sp

n � dn,0 2 dn,p. For these two-layer cou-
plings, hp � h�sp

n � � h for all values of p. Thus, the
decoupling temperature above which all Josephson cou-
plings are irrelevant is Td � 4pK . The 2D KT transi-
tion for decoupled layers is TKT � pK�2; this implies
TKT�Td � 1�8 , 1, and there is no decoupled phase with
power-law correlations.

Josephson couplings are not, however, the only ones
permitted by symmetry. Gradients of un in different layers
may also be coupled. The Hamiltonian for the ideal sliding
phase is HS � H0 1 Hg, where

Hg �
1
2

X
n,m

Z
d2r

Um

2
	=��un1m�r� 2 un�r��
2. (4)

This Hamiltonian is invariant with respect to un�r� !
un�r� 1 cn for any constant cn; i.e., the energy is un-
changed when angles in different layers slide relative to
one another by arbitrary amounts. The sliding Hamiltonian
can be written as

HS �
1
2

X
nn0

Z
d2r Knn0=�un�r� ? =�un0�r� , (5)

where Knn0 � Kfn2n0 with fn � �1 1
P

m gm�dn,0 2
1
2

P
m gm�dn,m 1 dn,2m� and gm � Um�K . Also, the

Fourier transform

f�k� � 1 1
X
m

gm�1 2 coskm� (6)
2746
of the reduced coupling fn will be used extensively
below.

Correlations in the sliding phase can easily be calcu-
lated from Eq. (5). We find

�un�r�un0 �r0��S � hf21
n2n0�ln�L�b� 2 E�jr 2 r0j�� , (7)

where �?�S is an average with respect to HS and E�r� �R
dq�1 2 J0�qr���q tends to zero as r ! 0 and to

ln�r�b0� with b0�b � 0.2 as r ! `. The inverse cou-
pling f21

p is defined by

f21
p �

1
p

Z p

0
dk

coskp
f�k�

. (8)

Thus we find �u2
n�r��S � hS�0� ln�L�b� and

gS�r, p� � ��un1p�r� 2 un�0��2�S

� 2�h̃S�p� ln�L�b� 1 hS�p� ln�r�b0�� (9)

for large r . The coefficients of the logarithms are

h̃S�p� � h� f21
0 2 f21

p � and hS�p� � hf21
p . (10)

Note that hS�p� � hdp,0 and h̃S�p� � h�1 2 dp,0�
when Hg � 0. Using Eq. (9) we find that the correlation
function GS�r, p� � �cos�un1p�r� 2 un�0���S satisfies

GS�r, p� �
Ω

�L�b�2h̃�p�, p fi 0 ,
�r�b0�2hS �0�, p � 0 .

(11)

Thus, the two-point spin correlation function for spins in
different layers vanishes in the L ! ` limit, whereas that
for spins in the same layer has exactly the same form as
it would for a stack of decoupled layers. Now, however,
the exponent hS�0� depends on the detailed form of the
interlayer gradient couplings via f�k�. The two-point spin
correlation function is zero for spins in different layers;
nonetheless, nonvanishing couplings between layers cause
other correlation functions that are zero for the totally
decoupled layers to become nonzero.

Having established that the sliding phase (if it has
not melted) behaves like a stack of decoupled layers,
we now ask what happens when the Josephson inter-
layer couplings of Eq. (2) are turned on. From Eq. (7),
we find that �HJ�sn��S � L22h̃S �sn� where h̃S�sn� �
h

P
n,n0 snsn0f21

n2n0 . As for the decoupled case, the mini-
mum value of h̃S�sn� is obtained when sn � sp

n . Thus the
decoupling temperature for couplings with sn � sp

n is

Td�p� �
4pK

f21
0 2 f21

p

, (12)

which depends on p. The temperature above which all
Josephson couplings are irrelevant is Td � maxpTd�p�.
We will show later that this maximum over all p is finite.

To prove the stability of the sliding phase, we must
show that, for some range of the couplings Um, the decou-
pling temperature Td calculated above is less than TKT , the
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temperature at which vortices unbind. To calculate TKT ,
we must calculate the vortex energy. This calculation in
our model is similar to that for decoupled layers. Vortex
excitations in individual layers remain well defined when
the layers are coupled, although, when couplings are suffi-
ciently strong, the system becomes truly three dimensional,
and vortices should be viewed as segments of closed vor-
tex loops. Defining vn�r� � =�un�r�, we haveI

G
vn ? d� � 2p

X
l

kn,l , (13)

where kn,l is the integer strength of the lth vortex in the nth
layer and G is a contour in layer n enclosing the vortices.
Applying the Stokes theorem to Eq. (13) then gives

=� 3 vn � mz
n�r�ẑ , (14)

where

mz
n�r� � 2p

X
l

kn,ld
2�r 2 rn,l� (15)

is the vortex density in layer n and rn,l gives the position
of each vortex in the x-y plane. We then take the 2D curl
of both sides of Eq. (14) and Fourier transform to find

vn�q�� �
ieijzq�jmz

n�q��
q2

�

. (16)

Using this result in Eq. (5), we obtain the vortex energy

EV �
K
2

X
n,n0

fn2n0

Z d2q�

�2p�2

mz
n�q��mz

n0�2q��
q2

�

� pK
X
n,n0

fn2n0

√X
l

kn,l

! √X
l0

kn0,l0

!
ln�L�b�

2 pK
X

n,l,n0,l0
fn2n0kn,lkn0,l0E�jrn,l 2 rn0,l0 j� , (17)

where fn2n0 is a positive definite matrix. The interaction
between like-sign vortices in different layers n and n0 is
attractive if fn2n0 , 0 and repulsive if fn2n0 . 0. Since
we assume that individual layers are stable in the absence
of couplings between layers, f0 . 0 and like-sign vortices
within a single layer repel.

We now consider configurations in which each layer has
no more than one vortex and there is at least one vortex in
the system. These configurations, which have a logarith-
mically divergent energy, can be characterized by a layer
charge sn �

P
l kn,l � 0, 61, 62, . . . . Boltzmann statis-

tics implies that the number of times a given configuration
of vortices occurs in the system scales with system size as
L22hKT�sn�, where

hKT�sn� �
pK
T

X
n,n0

fn2n0snsn0 (18)

and the factor of L2 counts the number of places in the
2D plane the configuration can be placed. Clearly, if
h�sn� , 2, the particular vortex configuration 	sn
 will
proliferate. The “Kosterlitz-Thouless unbinding” for 	sn

therefore occurs at a temperature

TKT�sn� �
pK
2

X
n,n0

fn2n0snsn0 . (19)

If there is only one vortex in layer 0, then sn � s0
n �

dn,0 and TKT�s0
n� � pKf0�2. If there is a 11 vortex

in layer zero and a 61 vortex in layer p, sn � sp6
n �

dn,0 6 dn,p and TKT�sp6
n � � pK� f0 6 fp�. Note that

when fp is nonzero TKT�sp6
n � is not twice TKT�s0

n�. In
fact, it is possible for TKT�sn� to be less than TKT�s0

n�
for one or more configurations 	sn
. The interactions be-
tween layers lead to composite multilayer vortices that cost
less energy to create than a single vortex in an individual
layer. Unbinding of bound pairs of any set of individual-
layer or composite vortices will destroy the rigidity within
those layers. Thus, the transition temperature to the dis-
ordered state is TKT � min	sn
TKT�sn�, and the sliding
phase exists provided that

b �
TKT

Td
�

minsn TKT�sn�
maxpTd�p�

. 1 . (20)

We will now discuss how the interlayer gradient poten-
tials Um can be chosen so that b . 1. The basic strategy
is to choose the Um so that f�k� has a minimum near zero
at some value of k. We consider a model with both first-
and second-neighbor interactions. We ensure that there is
a minimum in f�k� at k0 by requiring

f�k0� � 1 1 g1�1 2 cosk0� 1 g2�1 2 cos2k0� � D

(21)

and f 0�k0� � 0. These two conditions determine g1 and
g2 in terms of k0 and D. In the range of k0 and D we con-
sider g1 . 0 . g2 and g1 . jg2j. The minimum can be
tuned to zero by taking D to zero, in which case f�k0� � 0
but f�k� . 0 for all k fi k0. For small D, f21

0 2 f21
p is

dominated by values of k near k0, and we have

f21
0 2 f21

p �
1 2 cos�pk0�e2p

p
D�C

p
CD

�
p
C

1
�pk0 2 2pl�2

2
p

DC
, (22)

where the final form is valid for pk0 � 2pl, l is an integer,
and C � f 00�k0��2. From Eq. (22), we see that there exists
a curve Td�p, k0� � �p�C 1 �pk0 2 2pl�2�2

p
DC �21

for each value of p that specifies the decoupling tempera-
ture as a function of k0. For fixed k0, maxpTd�p, k0� oc-
curs at p � �2pl�k0� if 0 # 	2pl�k0
 # 1�2 and at p �
�2pl�k0� 1 1 if 1�2 , 	2pl�k0
 , 1, where �x� is the
greatest integer less than or equal to x and 	x
 � x 2 �x�
is the fractional part of x. As a function of k0 near 2pl�p,
Td�p, k0� reaches a maximum at k0 � 2pl�p and de-
creases sharply away from this point. Also, in the range
2747
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of k0 and D we have considered, we can prove that com-
posite like-sign vortices in nearest-neighbor planes p and
p 1 1 with sn � dn,p 1 dn,p11 are the first to unbind
and thus TKT � pK� f0 1 f1� � pK�1 1 g1�2 1 g2�.
Since TKT is a smooth function of k0, we find that b �
TKT�Td has sharply peaked minima at k0 � 2pl�p. Di-
rect evaluation of b for D � 1025 yields b . 1 in the
range 0.24 , k0�p , 0.40, as shown in Fig. 1.

Transitions out of the sliding phase are of the Kosterlitz-
Thouless or roughening type. The transition to the high-
temperature disordered phase at TKT is controlled by K
and the fugacity y11 for composite like-sign vortices in
neighboring layers. The transition to the low-temperature
3D ordered phase is controlled by the first Vp � VJ�sp

n � to
become relevant and by Up .

As we have seen, the Josephson couplings Vp are irrele-
vant with respect to the sliding phase for Td , T , TKT .
If all Vp are set to zero, the two-point correlation func-
tion GS�r, p� vanishes for p fi 0. Even though the Vp

are irrelevant, they are not zero. They give rise to nonzero
perturbative contributions to GS�r, p� even when p is
nonzero. Consider for simplicity the nearest-neighbor
Josephson model (Vp � Vdp,1). Then

GS�r, p� �

√
V
2T

!p Z
d2r1 . . . d2rp e2F�r1,...,rp ,r��2,

(23)

where F�r1, . . . , rp , r� � ��Du0�0, r1� 1 Du1�r1, r2� 1

· · · 1 Dup�rp , r��2�S and Dun�r1, r2� � un�r1� 2 un�r2�.
The evaluation of this function is quite complicated. In
another publication [12], we will show that GS�0, p�
decays exponentially with layer number p and discuss the
behavior of the correlation length as Td is approached.

The ideas presented here can also be applied to a three-
dimensional stack of two-dimensional crystals [11]. An
interaction Hamiltonian analogous to Hg in Eq. (4) that
couples gradients of displacements in different layers can
be introduced. Power-law exponents and dislocation ener-
gies again depend on these couplings, and a sliding crystal
phase between a low-temperature crystalline and a higher-
temperature hexatic phase [13] is possible. The sliding
crystal phase is similar to a model once proposed for the
smectic B phase in liquid crystals [14]. Also, interlayer
gradient couplings for the hexatic angle can be introduced
to produce a sliding hexatic phase. Thus the phase se-
quence 3D crystal ! sliding crystal ! 3D hexatic ! slid-
ing hexatic ! disordered layers is in principle possible
in lamellar systems.

This work was supported in part by the National Sci-
ence Foundation under Grants No. DMR97-30405 and
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work was initiated. We are grateful to Leo Golubović for
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FIG. 1. b � TKT�Td is plotted versus k0�p. Local minima
near k0�p � 2l�p are labeled by �l, p�. Other possible integer
pairs either do not fall in the range 0.24 , k0�p , 0.40 or
yield larger values of b than those shown above.

helpful input, particularly regarding the interplane corre-
lation function, Eq. (23), and to C. Kane for emphasizing
the possibility of melting via composite vortices.
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