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Sliding Phasesin XY Models, Crystals, and Cationic Lipid-DNA Complexes
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We predict the existence of a new class of phases in weakly coupled, three-dimensional stacks of
two-dimensional (2DXY models. These “sliding phases” behave like decoupled, independektr2D
models with zero free-energy cost for macroscopic relative rotation of spins in different layers and
algebraic decay of two-point spin correlation functions with in-plane separation. Our results, which
contradict past studies because we include higher-gradient couplings between layers, also apply to
crystals and may explain recently observed behavior in cationic lipid-DNA complexes.

PACS numbers: 61.30.Cz, 61.30.Jf, 64.70.Md

Spatial dimensionality greatly affects the nature of or-T;, < T < Tkt over which the 2D sliding phase can exist
der in condensed matter systems. Three-dimensional (3@jisappears.
XY systems such as superfluids and ferromagnets have In this paper, we revisit this old and seemingly dead is-
true long-range order with divergent correlation lengths asue and show that a thermodynamically stable phase ex-
a second-order transition separating the high-temperatutgbiting 2D power-law correlations is, in fact, possible.
disordered phase from the low-temperature ordered phaséhe new ingredient in our analysis, which was not present
Two-dimensional (2D)XY systems, in contrast, exhibit in previous treatments, is competing higher-order gradient
power-law decay of correlations in the low-temperaturecouplings between layers [8]. These gradient couplings, in
phase. At high temperatures beyond the Kosterlitzthe absence of Josephson couplings between layers, pro-
Thouless (KT) transition temperature, thermally excitedduce two-point correlation functions that are identical in
vortices destroy the quasi-long-range order and cause cdierm to those of a stack of decoupled 2D layers. We will
relations to decay exponentially [1,2]. refer to this phase asshiding and not a decoupled phase

Many experimentally realizable systems such as layeretecause theXY-angle variables in different layers can
superconductors [3], free-standing liquid-crystal films [4], slide relative to each other without changing the energy of
and lyotropic smectics with internal membrane order carthe system and because nonzero couplings between layers
be viewed as stacks of two-dimensional layers with in(though not of the Josephson type) are, in fact, present in
terlayer couplings [5] that can be varied substantially, forour model, and, furthermore, are necessary for the exis-
example, by changing the layer spacing. What is the phagence of this phase. Remarkably, it is possible through
behavior of such a system? If there is no coupling betweejudicious tuning of interlayer gradient couplings to sat-
layers, each will exhibit 2D behavior; if the coupling is isfy T, < Txr and produce a stable sliding phase for
strong, the system will exhibit 3D behavior. Shortly after7;, < T < Tkr.
the discovery of the KT transition, it was suggested that This investigation into whether or not a sliding phase
a weakly coupled stack afY models might behave over of XY models exists was inspired by recent work on the
some temperature range as a stack of decoupled layers, i.pgssible sliding columnar phase in cationic lipid-DNA
that such a system could proceed from three-dimension@omplexes [9]. In these complexes, DNA molecules are
behavior at low temperatures to a 2D power-law phase dhtercalated between lipid bilayers and, within each layer,
intermediate temperatures to a disordered phase at highe molecules are situated on a one-dimensional lattice.
temperatures [3,6]. Experiments may be consistent with the existence of a

Subsequent work [7], however, demonstrated that if thesliding columnar phase in which lattices in neighboring
only interlayer couplings are Josephson [i.e., proportionalayers are able to slide over each other without energy
to co$6, — 6,+1), whered, is the XY-angle variable in cost [10], in complete analogy to the sliding phase
layern], the intermediate 2D power-law phase is squeezeglst described forXY models. Indeed, we have shown
out, and the system goes directly from the 3D long-rangé¢heoretically, by methods analogous to those presented
ordered phase to the disordered one with increasing teninere, that it is possible to have a sliding columnar phase
perature. This happens because the “decoupling temperithese complexes and, in addition, it is possible to have
ture” T, above which the Josephson coupling becomes sliding phase in a layered crystal. Details on these two
irrelevant is greater than the Kosterlitz-Thouless temperasystems will be presented in a future publication [11];
ture Txt below which the 2D ordered phase is stablefor the remainder of this paper, we will focus gt
against vortex unbinding. Thus, the temperature windownodels.
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The traditional theory for a stack of XY models begins
with a sum of independent XY Hamiltonians

3y = 53 [ v, M

where r = (x,y,0) is a point in the x-y plane and V|
is the gradient operator acting on these two coordinates.
Josephson-like couplings between layers are then added;
these are given by

Hls,] = _VJ[Sn]] d*r COS|:Zsp0n+p(r):|, 2
P

where s, is an integer-valued function of layer number
n satisfying >, s, = 0 if there are no external fields
inducing long-range order. If all V,[s,] are zero, then
in the low-temperature phase (62(r))o = n log(L/b) and
cod 8, (r) — 6,(0)] ~ r~", where

T

77=H, ©)

L is the sample width, b is a short-distance cutoff in the
x-y plane, and (-)o refers to an average with respect to
H,. The averages of the Josephson Hamiltonians with re-
spect to H, scaleas(H,[s,]) ~ L>~ " where 5[s,] =
%Zp s,z,. Clearly, the most relevant Josephson coupling
is the one with the smallest value of %[s,], which re-
sultswhen s, is nonzero on the smallest number of planes.
Since Y, s, = 0, the smallest value of 7[s,] is obtained
for couplings between two layers separated by p layers
with s, = s? = 6,9 — 6,,. For these two-layer cou-
plings, n? = n[s] = n for all values of p. Thus, the
decoupling temperature above which all Josephson cou-
plings are irrelevant is T, = 47 K. The 2D KT transi-
tion for decoupled layers is Txt = wK/2; this implies
Txr/T; = 1/8 < 1, and thereis no decoupled phase with
power-law correlations.

Josephson couplings are not, however, the only ones
permitted by symmetry. Gradientsof 6, in different layers
may also be coupled. The Hamiltonian for theideal sliding
phaseis Hs = Hy + H,, where

3‘[8 - ;,,%f d2r %{Vl[enwwn(r) - Gn(r)]}z (4)

This Hamiltonian is invariant with respect to 6,(r) —
0,(r) + ¢, for any constant ¢,; i.e., the energy is un-
changed when angles in different layers dide relative to
one ancther by arbitrary amounts. The diding Hamiltonian
can be written as

3y =33 [ @rkn¥i6m V6w, ©

nn'

where Kuw = Kfn—n’ with fn = (] + Zm 7n1)5n,0 -
3% Ym(Bum + 8u-m) and v, = U, /K. Also, the
Fourier transform

fk) =1+ D yu(1 — coskm) (6)
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of the reduced coupling f, will be used extensively
below.

Correlations in the diding phase can easily be calcu-
lated from Eq. (5). Wefind

(0,0, (x")s = nf,  [IN(L/b) — E(Ir — x')], (7)

where (-)s is an average with respect to H and E(r) =
[dg[1 — Jo(qr)]/q tends to zero as r — 0 and to
In(r/b’) with b'/b = 0.2 as r — . The inverse cou-
pling f, ! is defined by

1 7 coskp
Iy —Wfo dk ) (8)

Thus we find (82(r))s = ns(0)In(L/b) and

gs(r,p) = ([0,+,(x) — 6,(00)s
= 2[#s(p)In(L/b) + ns(p)In(r/b)]  (9)

for large r. The coefficients of the logarithms are
fs(p) = n(fe' = f,) and =ns(p) =nf,'. (10

Note that ns(p) = ndp0 and #s(p) = n(1 = &,0)
when H, = 0. Using Eq. (9) we find that the correlation
function Gs(r, p) = (co96,+,(r) — 6,(0)])s satisfies

(L/b)—ﬁ(n),

#0,
Gs(r,p) ~ {(r/b/)_ng(o) p

p=0. (11)

Thus, the two-point spin correlation function for spins in
different layers vanishes in the L — o limit, whereas that
for spins in the same layer has exactly the same form as
it would for a stack of decoupled layers. Now, however,
the exponent 75(0) depends on the detailed form of the
interlayer gradient couplingsvia f (k). The two-point spin
correlation function is zero for spins in different layers;
nonethel ess, nonvanishing couplings between layers cause
other correlation functions that are zero for the totaly
decoupled layers to become nonzero.

Having established that the dliding phase (if it has
not melted) behaves like a stack of decoupled layers,
we now ask what happens when the Josephson inter-
layer couplings of Eq. (2) are turned on. From Eq. (7),
we find that (H[s,])s ~ L* L] where #g[s,] =
0w SuSutfrow. As for the decoupled case, the mini-
mum value of 7g[s, ] isobtained when s, = s?. Thusthe
decoupling temperature for couplings with s, = s? is

47K
fol = £y
which depends on p. The temperature above which all
Josephson couplings are irrelevant is T, = max,T4(p).
We will show later that this maximum over al p isfinite.

To prove the stability of the diding phase, we must

show that, for some range of the couplings U,,, the decou-
pling temperature T,; calculated aboveislessthan Tk, the

Ta(p) = (12)
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temperature at which vortices unbind. To calculate Tk,
we must calculate the vortex energy. This calculation in
our model is similar to that for decoupled layers. Vortex
excitations in individual layers remain well defined when
the layers are coupled, although, when couplings are suffi-
ciently strong, the system becomestruly three dimensional,
and vortices should be viewed as segments of closed vor-
tex loops. Defining v, (r) = V6,(r), we have

f Vo d€ =27 kny, (13)
r /

where k,, ; istheinteger strength of the /th vortex in the nth
layer and I" is a contour in layer n enclosing the vortices.
Applying the Stokes theorem to Eq. (13) then gives

V. X v, =mir)z, (24)

where
mi(r) = 27 D kuy 82(r — r4)) (15)
1

is the vortex density in layer n and r,,; gives the position
of each vortex in the x-y plane. We then take the 2D curl
of both sides of Eq. (14) and Fourier transform to find
i€ij2q1,m;(q.)
valq1) = q—2 (16)
1

Using thisresult in Eq. (5), we obtain the vortex energy

_ kK d*q, mi(q)my(—q.)
EV - 9 n’zn;fn*n’ (277_)2 (/Ii

7K Z fn-;ﬂ(Z kn,l) <Z kn’,l’) ln(L/b)
l I

n,n'

— 7K Z fn—n’kn,lkn/,l’E(lrn,l

n,l,n'l'

=l (17)

where f,,—, is a positive definite matrix. The interaction
between like-sign vortices in different layers n and n' is
atractive if f,,—,» < 0 and repulsive if f,—,, > 0. Since
we assume that individual layers are stable in the absence
of couplings between layers, f, > 0 and like-sign vortices
within asingle layer repel.

We now consider configurationsin which each layer has
no more than one vortex and there is at least one vortex in
the system. These configurations, which have a logarith-
mically divergent energy, can be characterized by a layer
charge o, = >k, = 0,%1,*2,.... Boltzmann statis-
ticsimplies that the number of times a given configuration
of vortices occurs in the system scales with system size as
L277/KT[0'11], where

TK
nkrlo,] = T an—n’o'na'n’ (18)

n,n'

and the factor of L? counts the number of places in the
2D plane the configuration can be placed. Clearly, if

nlo,] < 2, the particular vortex configuration {o,,} will
proliferate. The “Kosterlitz-Thouless unbinding” for {o,}
therefore occurs at a temperature

K
TKT[Un] = 777 an—n’a-no'n’ . (19)

n,n'

If there is only one vortex in layer 0, then o, = 0¥ =
Sn0 and Txr[o?] = mKfo/2. If there is a +1 vortex
in layer zero and a =1 vortex in layer p, o, = o?* =
8n0 = 8, and Txr[o?*] = wK(fo = f,). Note that
when £, is nonzero Txr[o?*] is not twice Txr[ol]. In
fact, it is possible for Txt[o,] to be less than Txr[o?]
for one or more configurations {c,,}. The interactions be-
tween layers lead to composite multilayer vorticesthat cost
less energy to create than a single vortex in an individual
layer. Unbinding of bound pairs of any set of individual-
layer or composite vortices will destroy the rigidity within
those layers. Thus, the transition temperature to the dis-
ordered state is Txr = ming \Txrlo,], and the sliding
phase exists provided that

ming, Txrlo,]

= Tkr _ Mg, Tkrlonl (20)

P Tq max, T,(p)

We will now discuss how the interlayer gradient poten-
tiadls U,, can be chosen sothat 8 > 1. The basic strategy
isto choose the U,, so that f(k) has a minimum near zero
at some value of k. We consider a model with both first-
and second-neighbor interactions. We ensure that there is
aminimum in f (k) at ko by requiring

fko) = 1 + y1(1 — coskg) + vy2(1 — cokg) = A
(21)

and f/(kg) = 0. These two conditions determine y; and
vy intermsof kg and A. Intherange of £y and A we con-
sider y; > 0 > vy, and y; > |y»|. The minimum can be
tuned to zero by taking A to zero, in which case f (kg) = 0
but £ (k) > 0 for all k # ko. Forsmall A, fo' — f,1is
dominated by values of k near ky, and we have

1 — cos( pko)e PVA/C

-1 _ =1
foo =4y JeA
ko — 2ml)?
z%+(p;7 \/—ACW)’ 22

wherethefina formisvalidfor pky ~ 271, [ isaninteger,
and C = f"(kg)/2. FromEq. (22), weseethat there exists
a curve Ty(p. ko) ~ [p/C + (pko — 2mwl)*/2/AC]!
for each value of p that specifies the decoupling tempera-
ture as a function of ky. For fixed ko, max,T4(p, ko) oc-
cursat p = [27l/ko]if 0 = 27l /ko} = 1/2andat p =
[27l/ko]l + 1 if 1/2 < {27l/ko} < 1, where [x] is the
greatest integer less than or equal to x and {x} = x — [x]
isthe fractional part of x. Asafunction of ky near 271/p,
T4(p, ko) reaches a maximum at ko = 27l/p and de-
creases sharply away from this point. Also, in the range
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of ky and A we have considered, we can prove that com-
posite like-sign vortices in nearest-neighbor planes p and
p + 1 with o, = 6,, + 6, ,+1 are the first to unbind
and thus Txt = 7TK(f() + fl) = 7TK(1 + ’)/1/2 + ‘)/2).
Since Tk is a smooth function of ky, we find that 8 =
Txt/T, has sharply peaked minimaat kg = 2#1/p. Di-
rect evaluation of 8 for A = 107> yields 8 > 1 in the
range 0.24 < ko/7 < 0.40, as shownin Fig. 1.

Transitions out of the sliding phase are of the Kosterlitz-
Thouless or roughening type. The transition to the high-
temperature disordered phase at Tkt is controlled by K
and the fugacity y.+ for composite like-sign vortices in
neighboring layers. The transition to the low-temperature
3D ordered phaseis controlled by thefirst vV, = V,[s?]to
become relevant and by U ,.

Aswe have seen, the Josephson couplings V,, areirrele-
vant with respect to the dliding phase for T, < T < Tkr.
If al Vv, are set to zero, the two-point correlation func-
tion Gs(r, p) vanishes for p # 0. Even though the V,
areirrelevant, they are not zero. They give rise to honzero
perturbative contributions to Gg(r, p) even when p is
nonzero. Consider for simplicity the nearest-neighbor
Josephson model (V, = V§,1). Then

v\’
Gs(r,p) = (ﬁ) f d’ry ...dzrp e~ Pwrpr)/2)

(23)

where  ®(ry,...,r,,r) = ([(A6y(0,r) + A (r,1p) +

et Aep(rp, r)]2>S and Aen(rl,rZ) = an(rl) - en(rZ)-
The evaluation of this function is quite complicated. In
another publication [12], we will show that Gg(0, p)
decays exponentialy with layer number p and discuss the
behavior of the correlation length as T, is approached.

The ideas presented here can also be applied to a three-
dimensional stack of two-dimensiona crystals [11]. An
interaction Hamiltonian analogous to H, in Eq. (4) that
couples gradients of displacements in different layers can
beintroduced. Power-law exponents and dislocation ener-
gies again depend on these couplings, and adliding crystal
phase between a low-temperature crystalline and a higher-
temperature hexatic phase [13] is possible. The dliding
crystal phase is similar to a model once proposed for the
smectic B phase in liquid crystals [14]. Also, interlayer
gradient couplings for the hexatic angle can be introduced
to produce a dliding hexatic phase. Thus the phase se-
guence 3D crystal — dliding crystal — 3D hexatic — dlid-
ing hexatic — disordered layers is in principle possible
in lamellar systems.
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FIG. 1. B = Txr/T, is plotted versus ko/7r. Loca minima
near ky/m = 21/p arelabeled by (I, p). Other possible integer
pairs either do not fall in the range 0.24 < kyo/7 < 0.40 or
yield larger values of B8 than those shown above.

helpful input, particularly regarding the interplane corre-
lation function, Eg. (23), and to C. Kane for emphasizing
the possibility of melting via composite vortices.
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