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We introduce the deformable particle (DP) model for cells, foams, emulsions, and other soft particulate
materials, which adds to the benefits and eliminates deficiencies of existing models. The DP model
combines the ability to model individual soft particles with the shape-energy function of the vertex model,
and adds arbitrary particle deformations. We focus on 2D deformable polygons with a shape-energy
function that is minimized for area a0 and perimeter p0 and repulsive interparticle forces. We study the
onset of jamming versus particle asphericity, A ¼ p2

0=4πa0, and find that the packing fraction grows with
A until reachingA� ¼ 1.16 of the underlying Voronoi cells at confluence. We find that DP packings above
and below A� are solidlike, which helps explain the solid-to-fluid transition at A� in the vertex model as a
transition from tension- to compression-dominated regimes.
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There are many physical systems that can be modeled
as packings of soft, deformable particles, including cell
monolayers [1–3], developing tissues [4–6], compressed
foams [7], and emulsions [8]. We introduce the deformable
particle (DP) model, which has advantages over previous
models used to describe these systems. The DP model
considers deformable particles described by an energy
function that depends on particle shape, allows motion
of individual particles, can include different particle inter-
actions over a range of packing fractions ϕ, and is easily
defined in two (2D) and three (3D) spatial dimensions.
The key feature of the DP model is that the particle shape

is described by many degrees of freedom (d.o.f.). The shape
and position of the particles evolve under Newton’s
equations of motion according to a shape-energy function,
inter-particle forces, and external forces. Models based
only on particle centers, such as the soft disk model [9,10],
are not deformable in this sense. Even if the particle
perimeter and area can change, as in Voronoi-based models
[11–13], the particle shape in these models is completely
determined by the particle center, although they can include
complex multiparticle interactions. In the vertex model
[14,15], each vertex is shared by at least 3 cells, which also
constrains particle shapes. In addition, the vertex and
Voronoi-based models are limited to confluent systems,
ϕ ¼ 1. An extension of the vertex model to nonconfluent
systems has been developed [13], but it uses Voronoi

tessellation with a finite-size cutoff to determine particle
shape, and the particle boundary is not described by
independent d.o.f.
Soft disk models allow studies of the onset of jamming of

2D soft particulate materials as a function of ϕ, whereas the
vertex model allows studies of the onset of jamming as a
function of particle shape, e.g., the asphericity,A ¼ p2=4πa,
where p and a are the particle perimeter and area [16]. The
DPmodel enables studies of jamming as a function of bothϕ
andA. We focus on 2D and modelN deformable “particles”
(indexed by m ¼ 1;…; N) as polygons with Nv vertices
(indexed by i ¼ 1;…; Nv) to represent Nv − 1 shape d.o.f.
The location of the ith vertex in polygonm is v⃗m;i, the bond

vector ⃗lm;i ¼ v⃗m;iþ1 − v⃗m;i ¼ lm;il̂m;i connects vertices iþ 1

and i, and pm ¼ PNv
i¼1 lm;i. A general 2D shape-energy

function that can describe soft, particulate systems is

U ¼ klNv
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Equation (1) includes five terms: (1) a contractility term,
where adjacent vertices are connected via linear springs, with
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spring constant per vertex kl and equilibrium length l0, (2) a
compressibility term, which is quadratic in am with a
minumum at a0, (3) a line tension term proportional to
γlm;i, (4) a bending energy term with bending rigidity kb,
and (5) a repulsive interaction energy, Uint, which prevents
overlaps between polygons. The prime on the sum in the last
term indicates that it is cyclic, so that ⃗lm;Nv

connects vertex
i ¼ Nv and 1. The factors of Nv and N−1

v in the first and
fourth terms ensure that Eq. (1) is independent of Nv in the
large-Nv limit.
By tuning the parameters in Eq. (1), it can be used to

model a variety of soft, particulate systems. (See
Supplemental Material [17].) For example, if we set
kl ¼ kb ¼ 0, γ > 0, and ka > 0, Eq. (1) can model bubbles
and emulsions [18]. We can model soft, solid particles by
setting γ ¼ 0, kl > 0, ka > 0, and kb > 0. In this Letter, we
focus on the shape-energy function with kl > 0, ka > 0,
and γ ¼ kb ¼ 0, which has been used to model cell
monolayers [14]:

U ¼ klNv

2

XN

m¼1

XNv

i¼1

ðlm;i − l0Þ2 þ
ka
2

XN

m¼1

ðam − a0Þ2 þ Uint.

ð2Þ

By nondimensionalizing Eq. (2), one can define the shape
parameter, A ¼ ðNvl0Þ2=4πa0. For a rigid (regular) poly-
gon with Nv vertices, Av ¼ Nv tanðπ=NvÞ=π, which
reduces to Av ¼ 1 when Nv → ∞.
We implement two methods for calculating the repulsive

interactions. For the rough surface method (RS), we fix
disks with diameter δ ¼ l0 ¼ 1 at each polygon vertex
[Figs. 1(a) and 1(b)]. Repulsive interactions are obtained by
summing up repulsive linear spring interactions between
overlapping disks on contacting polygons:

Uint ¼
XN

m¼1

XN

n>m

XNv

j¼1

XNv

k¼1

kr
2
ðδ − jv⃗m;j − v⃗n;kjÞ2

× Θðδ − jv⃗m;j − v⃗n;kjÞ; ð3Þ

where kr gives the strength of the repulsive interactions,
v⃗m;j is the position of the jth vertex in polygon m and Θð:Þ
is the Heaviside step function. We also implemented a
smooth surface method (SS) by modeling polygon edges
as circulo-lines with width δ [16] [Figs. 1(c) and 1(d)].
We use Eq. (3) for the repulsive interactions between
polygons, except the overlap (δ − jv⃗m;j − v⃗n;kj) is replaced
by δ − dmin, where dmin is the minimum distance between
line segments lm;j and ln;k on contacting polygonsm and n.
The DP model includes two geometrical parameters: A

and the diameter of the vertices δ=l0 for the RS method (or
the width of the circulo-lines for the SS method). We seek
to characterize geometric properties of DP packings at
jamming onset, and thus we focus on the limit δ=Nvl0 → 0.
The geometric properties of DP packings at jamming onset
do not depend on the two dimensionless energy parameters
from Eqs. (2) and (3), K1 ¼ kl=kal20 and K2 ¼ kr=kl.
Without loss of generality, we set K1 ¼ K2 ¼ 1 below.
We study DP packings containing N ¼ 64 to 103

deformable polygons. To generate mechanically stable
(MS) packings, we perform isotropic compression with
each small increment, dϕ < 10−4, followed by molecular
dynamics with overdamped dynamics [19]. (See
Supplemental Material [17].)
We show the packing fraction at jamming onset ϕJ

(normalized by the maximum packing fraction for each
surface roughness model, ϕmax) versus asphericity A=Av
for N ¼ 64 DP packings in Fig. 2(a). Note that ϕmax ≈ 0.99
and 0.95 for the smooth and rough surface methods,
respectively, for Nv ¼ 12 and ϕmax for both methods
converges to 1 as Nv → ∞ [Fig. 2(b)]. ϕJ=ϕmax ≈
0.82–0.83ð0.88Þ for the rough (smooth) surface method
near A=Av ¼ 1 and ϕJ grows with increasing A=Av. The
results obtained near A=Av ¼ 1 are similar to previous
results for jammed packings of monodisperse, frictionless
(ϕJ ≈ 0.88–0.89 [20]) and frictional disks (ϕJ ≈ 0.8 [21]).
For A=Av > 1.02, ϕJ=ϕmax has similar dependence on
A=Av for the two surface roughness methods. We find
similar results for packings of bidisperse deformable
polygons (half large with Nl

v ¼ 17 and half small with
Ns

v ¼ 12 and perimeter ratio r ¼ 1.4). In Fig. 2(a), we show
that ϕJðAÞ is similar for N ¼ 64 and 103, emphasizing that
the system-size dependence is weak. As shown in Fig. 2(b),
the packings become confluent with ϕJ ≈ 1 for A > A� ≈
1.16 in the large-Nv limit (since the plateau value of 1 − ϕJ
decreases with Nv for each model). We note that the self-
propelled Voronoi model [12] gives a transition from a
disordered solidlike state for A < Ac to a liquidlike state
for A > Ac in the limit of zero particle activity [22], and
Ac ≈A�.

FIG. 1. Schematic of deformable polygons with Nv ¼ 34
vertices (with the position of the jth vertex in the mth polygon
given by v⃗m;j), area am, and perimeter pm. lm;j ¼ pm=Nv is the
line segment between vertices j and jþ 1 in polygon m. Two
methods were used to model edges of deformable polygons. In (a)
and (b), we show the RS method, which fixes centers of disks
with diameter δ at polygon vertices. In (c) and (d), we show the
SS method, which models polygon edges as circulo-lines with
width δ. dmin is the minimum distance between line segments lm;j

and ln;k.
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In Fig. 2(c), we show the coordination number at
jamming onset zJ versus A=Av for deformable polygons
for the RS model. Near A=Av ¼ 1, zJ < 4, which is
consistent with studies of packings of frictional disks
[23–26]. In contrast, we have shown before that the SS
model yields packings with zJ ≈ 4 near A=Av ¼ 1 [16]
(when rattler polygons with fewer than 2 interparticle
contacts are not included). This result is consistent with
isostatic packings [27] of frictionless, monodisperse, and

bidisperse disks. For both roughness models, zJðA=AvÞ −
zJð1Þ increases as a power law in A=Av − 1. We find that
zJ ¼ 5.8� 0.1 at confluence when A ¼ A�. In contrast,
prior work has suggested that zJ ¼ 5 is the isostatic contact
number for the vertex model [11].
We also measured the effective friction coefficient μc ¼

jF⃗t
mnj=jFr

mnj at each contact c between polygons m and n
in DP packings using the RS model. jF⃗r

mnj (jF⃗t
mnj) is the

normal (tangential) component of the repulsive contact
force. For each packing, we find the maximum μc over all
contacts, averaged over at least 500 packings. From
previous studies [26], we know that the effective friction
coefficient for the RS model scales as μ ∼ ffiffiffiffiffi

a0
p

=Nvδ, for
A ≈ 1. Thus, we can study DP packings with fixed friction
coefficient and A → 1 by having increases in Nv offset
by corresponding increases in

ffiffiffiffiffi
a0

p
. In the large-Nv limit

and for δ ¼ l0 ¼ 1, μ reaches a plateau value, μ ≈ 0.65
[Fig. 2(d)]. The contact numbers at jamming onset for μ ≈
0.65 andA → 1, zJð1Þ ≈ 3.3 [25,26] (bidisperse) and larger
for monodisperse packings [21], are consistent with pre-
vious studies. For fixed Nv ¼ 12, we show that μ increases
by an order of magnitude as A increases from ≈1 to 1.25.
We find similar increases for μðAÞ using larger Nv. Despite
the strong increase in μ for the RS model, both smooth and
rough models yield similar results for ϕJðAÞ and zJðAÞ
away from the rigid-disk limit. Thus, particle deformation
weakens the influence of surface friction on the structural
properties of DP packings. Note that the RS model can
mimic static friction in packings of nonspherical particles
for all A. (See Supplemental Material [17].)
To understand the value A� ≈ 1.16 above which DP

packings are confluent, we calculate the free area versus
A using surface-Voronoi tessellation [28–30]. Figure 3
shows example packings at three A approaching A�. At
A ¼ 1.03, well below A�, the deformable polygons are
quasicircularwith a relatively large amount of free area. AsA
increases, the “effective” sides of the deformable polygons

FIG. 2. (a) Packing fraction at jamming onset ϕJ (normalized
by ϕmax), (b) deviation of ϕJ from the confluent value, 1 − ϕJ,
(c) coordination number zJ, and (d) average friction coefficient μ
(for the RS model) for DP packings versus asphericity A. In (a)
and (c), A is normalized by Av of a regular polygon with Nv
vertices. The dashed lines in (a) and (b) indicate A ¼ A� ≈ 1.16.
In (a), we also show ϕJ=ϕmax ≈ 0.81 (with ϕmax ¼ 1) for N ¼ 64
monodisperse, frictional discs using the Cundall-Strack (CS)
model with μ ¼ 0.65 (filled diamond). In (c), the dashed line
indicates zJðA=AvÞ¼zJð1Þþz0ðA=Av−1Þβ, where zJð1Þ ≈ 3.3,
μ ¼ 0.65, z0 ≈ 3.9, and β ≈ 0.25.

FIG. 3. DP packings for the RS model with Nv ¼ 34 and (a) A ¼ 1.03, (b) 1.08, and (c) 1.16, near A�. Polygonal cells (solid lines)
surrounding each deformable particle are obtained from surface-Voronoi tessellation.
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straighten and fill the surface-Voronoi cells.WhenA ∼A�, it
is difficult to distinguish the deformbale polygons from the
surface-Voronoi cells. (See Supplemental Material [17].)
Prior studies showed that the areas of Voronoi polygons

for hard disks follow k-gamma distributions [31,32]:

PðxÞ ¼ kk

ðk − 1Þ! x
k−1 expð−kxÞ; ð4Þ

where x ¼ ðat − aminÞ=ðhati − aminÞ, at is the area of each
Voronoi polygon, amin is the area of the smallest Voronoi
polygon, hati is an average over Voronoi polygons,
k ¼ ðhati − aminÞ2=σ2a, and σ2a ¼ hðat − aminÞ2i controls
the width of the distribution. In Fig. 4(a), we show that
the distribution PðxÞ for DP packings resembles a k-gamma
distribution with k values that depend onA. The inset shows
k increases from 2.5 to 3.5 over the range 1 < A < 1.25.
Prior studies reported k values for Voronoi-tessellated hard
disks [31] (k ¼ 3.6) and jammed bidisperse foams
[7] (k ≈ 6).
Figures 4(b) and 4(c) depict the bulk B and shear G

moduli for DP packings (RS model with Nv ¼ 12) versus
A for several N. (See Supplemental Material [17] for
details of the calculations.) B is roughly independent of N
and changes by more than 2 orders of magnitude withA. In
contrast, at each N, G increases only by a factor of 3 as A
increases from 1 to 1.25. As a result, B=G varies from 103 to
105, indicating that the system is in the isotropic elastic
limit, over this range ofA [33]. The inset of Fig. 4(c) shows
that even though DP packings at jamming onset are
solidlike with G > 0 for any finite N, G scales as N−1

for all A. Similar system-size scaling was found for G in
packings of frictionless [34] and frictional [35] disks. The
system-size dependence of G is related to the fact that
contacts begin forming and breaking at successively

smaller pressures as N increases. MS packings can be
stabilized with G > 0 in the large-system limit by com-
pressing them above ϕJ. In the Supplemental Material [17],
we show that U=N at confluence drops significantly as
A → A�, which is similar to the behavior observed in the
vertex model [11].
Other than being confluent forA > A�, what is different

about DP packings above versus below A�? In the
Supplemental Material [17], we show that the excess
perimeter ξ ¼ p − pconv for DP packings, where pconv is
the perimeter of the convex hull of each polygon [36].
p ≈ pconv (with ξ ¼ 0) for A < A�. ξ becomes nonzero for
A > A� when deformable polygons buckle and develop
invaginations. Thus, DP packings at confluence are under
tension for A < A� and under compression for A > A�.
In summary, we developed the DP model, which can be

used to study packings of 2D deformable particles, includ-
ing foams, emulsions, and cell monolayers, over a range of
packing fraction, particle shape, and deformability. We
focused on the DP model for cell monolayers with nonzero
kl and ka and showed that ϕJ grows with A, reaching
confluence at A� ≈ 1.16. A� coincides with the asphericity
at which deformable polygons fill the cells from surface-
Voronoi tessellation of DP packings. By calculating their
shear modulus G, we show that DP packings are solidlike
above and below A�. For A > A�, deformable polygons
possess invaginations that grow with A −A�. Thus, at
confluence, DP packings are under compression for
A > A� and under tension for A < A�.
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FIG. 4. (a) Distribution of areas at of surface-Voronoi tessellated polygons for A ¼ 1.03 (squares), 1.12 (circles), and 1.22 (triangles)
for N ¼ 1000 monodisperse deformable particles with Nv ¼ 12 and the RS model. The distributions PðxÞ are plotted against
x ¼ ðat − aminÞ=ðhati − aminÞ, where amin is the minimum tessellated area for each packing. Fits to the k-gamma distribution [Eq. (4)]
are shown as solid, dot-dashed, and dashed lines for A ¼ 1.03, 1.12, and 1.22, respectively. Inset: shape parameter k versus A from fits
of PðxÞ to Eq. (4). (b) Bulk B and (c) shear Gmoduli for DP packings using the model in (a) versusA for N ¼ 32 (upward triangles), 64
(circles), 200 (squares), 512 (stars), and 1000 (leftward triangles). The inset to (c) shows system-size scaling of G. The dashed lines have
slope −1.
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