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We enumerate all minimal energy packings (MEPs) for small single linear and ring polymers composed

of spherical monomers with contact attractions and hard-core repulsions and compare them to corre-

sponding results for monomer packings. We define and identify ‘‘dividing surfaces’’ in polymer packings,

which reduce the number of arrangements that satisfy hard-sphere and covalent-bond constraints.

Compared to monomer MEPs, polymer MEPs favor intermediate structural symmetry. We also examine

the packing-preparation dependence for longer single chains using molecular dynamics simulations. For

slow temperature quenches, chains form crystallites with close-packed cores. As the quench rate

increases, the core size decreases and the exterior becomes more disordered. By examining the contact

number, we connect the suppression of crystallization to the onset of isostaticity in disordered packings.

DOI: 10.1103/PhysRevLett.105.068001 PACS numbers: 64.70.km, 45.70.�n, 64.60.Cn, 82.70.Dd

Over the past several decades significant research
activity has focused on understanding dense packings of
hard spheres, since they serve as model systems for
atomic and colloidal liquids and glasses, jammed granu-
lar media, and compressed foams and emulsions. An
intriguing property of hard-sphere systems is that they
can be prepared in crystalline, partially ordered, and
amorphous packings [1]. Packings of ‘‘sticky’’ hard
spheres with contact attractions have been used to inves-
tigate self-assembly of colloidal particles with depletion
attractions. Arkus et al. recently combined graph theory
and geometrical techniques [2,3] to enumerate minimal
energy packings (MEPs), i.e., those with the maximum
number of contacts, for N � 10 sticky hard spheres.
Their predictions agreed with experiments on attractive
colloids [4].

However, there have been few studies of packings of
sticky tangent hard-sphere polymers, which can model
polymer collapse, protein folding, and protein interactions
[5]. Recent simulations [6,7] and experiments [8] have
investigated polymer packings; however, they considered
nonsticky spheres with only hard-core repulsions, where
free volume, not energy, is relevant. Thus, there is little
understanding of how covalent-bond and chain uncross-
ability constraints affect structural and mechanical proper-
ties of sticky hard-sphere polymer packings and the
probabilities with which these occur.

In this Letter, we perform exact enumeration studies of
MEPs for sticky, tangent, monodisperse hard-sphere poly-
mers (both linear and cyclic) and contrast the results with
those for sticky hard spheres without polymer constraints.
Our studies begin to address several overarching questions.
(1) How do the probabilities for obtaining polymer MEPs
differ from those for sticky hard-sphere MEPs? (2) How do
the properties of single compact polymers depend on col-
lapse dynamics; e.g., do they collapse into crystalline or
amorphous clusters?

Our results show that polymer constraints reduce the
ways in which hard spheres can be arranged into MEPs,
and the strength of this effect varies for different macro-
states (i.e., structurally distinct packings). We demonstrate
that the large reduction in the number of arrangements may
be understood in terms of dividing surfaces. These split
polymer packings into disjoint regions and eliminate
particle-label permutations that do not correspond to poly-
mer chains. We find that polymer MEPs with intermediate
structural symmetry are more frequent relative to the
monomer case, where entropy favors low symmetry
MEPs [4].
In addition, using molecular dynamics (MD) simula-

tions of temperature quenches at various rates _T, we
show that single chains display glassy dynamics during
collapse, and that the final polymer packings depend on _T.
In the slow quench rate limit, the chains undergo a sharp
[9] transition to crystallites, with a jump in the energy and
number of contacts Nc (including covalent bonds) at tem-
perature T ¼ Tmelt. The crystallites possess a close-packed
core surrounded by a ‘‘surface’’ whose size and disorder
increase with j _Tj. For slow quenches, Nc at Tmelt jumps
from below the minimal number Nmin

c ¼ 3N � 6 required
for mechanical stability [11] to Nslow

c , where a significant
fraction of the monomers possess 12 contacts. In the large
j _Tj limit, the clusters are disordered with &Nmin

c contacts
even as T ! 0, showing that rigidification can hinder
crystallization.
We first describe exact enumeration methods for mono-

mer and polymer MEPs [12]. To generate possible pack-
ings for a given number of spheres N and contact number
Nc, we iterate over all N � N adjacency matrices �A sat-
isfying

P
j>iAij ¼ Nc. The elements of �A are 1 for con-

tacting particles and 0 for noncontacting particles and
diagonal entries. Covalent bonds link sticky spheres to
form a polymer chain with length N; Ai;iþ1 ¼ 1 for 1 �
i < N for linear chains, and additionally A1;N ¼ 1 for
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rings. The distinction between permanent covalent and
thermally fluctuating noncovalent bonds is not important
for static packings; we include both types in Nc.

We enumerate all adjacency matrices satisfying the
above conditions and then identify those that also fulfill
hard-sphere and minimal rigidity constraints. Hard-sphere
constraints imply that the center-to-center distances rij
between unit spheres i and j obey rij � 1, where the

equality holds for contacting pairs. Necessary conditions
for rigidity are that each monomer possesses at least three
contacts and Nc � Nmin

c [13].
To enforce these constraints, we implemented geomet-

rical rules developed by Arkus et al. [2,3] that eliminate
invalid adjacency matrices. For the remaining configura-
tions, we solved the system of quadratic equations

j~ri � ~rjj2 ¼ d2ij (1)

for sphere positions ~ri to an accuracy of 10�9. We also
calculated the dynamical matrix [all second derivatives of
the energy in Eq. (2) with respect to monomer displace-
ments] for all configurations, which allowed us to identify
rigid (with 3N � 6 nonzero eigenvalues) and floppy con-
figurations [13] (with fewer nonzero eigenvalues) [12].

From this procedure, we obtain microstates and macro-
states for a given N and Nc that satisfy hard-sphere and
minimal rigidity constraints and the relevant polymeric
constraints. Each macrostate is characterized by an adja-
cency matrix that is nonisomorphic to and a set of inter-
particle distances frijg that is different from those

characterizing other macrostates [12]. With this definition,
no macrostate can be rotated or reflected such that it yields
a different macrostate. Every connected sticky hard-sphere
macrostate admits a linear polymer macrostate [14]. Thus,
sticky-sphere and linear polymer packings have identical
macrostates. We have also verified this for ring packings
for N � 10.

A microstate is a particular labeling of the particles 1
through N that comprise an N-particle macrostate with Nc

contacts. Many microstates correspond to each macrostate
due to particle permutations for monomer packings [4],

and for polymers, the multiple possible paths through a
given macrostate. The total number of microstates �m,
�p, and �r is given by the sum of microstates for each

macrostate for monomers, linear polymers, and rings, re-
spectively [12]. For monomer packings, which lack cova-
lent bonds, the number of microstates for each macrostate
(ignoring chirality) is given simply by a geometric factor
�i

m ¼ Pi, where Pi is the number of allowed permutations
of particle indices for macrostate i [3]. For polymer pack-
ings, the number of microstates is not given by this relation
since one must ensure that particle indices are consecutive.
Exact enumeration results are displayed in Table I,

which shows the number of macrostates M, fraction f of
adjacency matrices with Nc contacts obeying minimal
rigidity that also satisfy hard-sphere constraints, and �m,
�p, and �r for 5 � N � 10. f corresponds to the proba-

bility to obtain a packing for an ‘‘ideal’’ protocol that
samples adjacency matrices uniformly. From Table I, we
see that f decreases approximately exponentially with N
for N � 5, and even faster for N > 9. Part of the reason for
the strong decrease in f between N ¼ 9 and 10 is the
decrease in macrostates from 52 to 3. This occurs because
N ¼ 10 MEPs possess Nc ¼ Nmin

c þ 1, which exceeds the
number of degrees of freedom. Equation (1) is then over-
constrained, and its solutions possess special symmetries.
The increase in Nc signals the onset of crystal nucleation
and the formation of a close-packed core. The ability to
enumerate the numbers of isostatic (Nc ¼ Nmin

c ) and hy-
perstatic (Nc > Nmin

c ) packings will yield insight into sys-
tems where glass and crystallization transitions compete.
For the N studied here, hard-sphere constraints are more

difficult to satisfy for minimally rigid polymer packings
compared to monomer packings: fr < fp < fm [17]. A key

mechanism for the reduction in f is the occurrence of
‘‘dividing surfaces’’ in polymer packings. A dividing sur-
face is any minimal subset of a connected cluster of con-
tacting monomers that geometrically splits it into two. Any
polymer path that traverses a dividing surface that does
not also topologically divide the polymer is blocked
and invalid. Specifically, if m consecutive monomers

TABLE I. Statistics for MEPs with N spheres and Nc contacts. M is the number of macrostates, fr, fp, and fm are the fraction of
microstates obeying minimal rigidity constraints that also satisfy hard-sphere constraints, respectively, for rings, linear polymers, and
monomers, and �r, �p, and �m are the total numbers of microstates satisfying both minimal rigidity and hard-sphere constraints.

Values for f and � do not account for chiral twins [2]. In agreement with [2], we find 1 and 4 floppy macrostates (in the k ! 1 limit
[12]), respectively, for N ¼ 9 and (N ¼ 10, Nc ¼ 24). However, we find 2 and 55 more rigid macrostates�;# for these cases [12,15].
Adjacency matrices and coordinate solutions for all microstates are available online [16]. � � � indicates data not available.

N Nc M fr fp fm fr=fm fp=fm �r �p �m

5 9 1 1 1 1 1 1 5 6 10

6 12 2 0.435 0.463 0.494 0.88 0.94 34 50 195

7 15 5 0.102 0.114 0.134 0.76 0.85 273 486 5712

8 18 13 1:66� 10�2 1:91� 10�2 2:45� 10�2 0.68 0.78 2668 5500 231 840

9 21 52� 1:40� 10�3 2:46� 10�3 3:34� 10�3 0.42 0.74 30 663 71 350 12 368 160

10 24 278�;# 2:21� 10�4 2:55� 10�4 � � � � � � � � � 426 590 1 093 101 � � �
10 25 3 2:05� 10�6 1:98� 10�6 � � � � � � � � � 5905 12 138 � � �
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iþ 1; . . . ; iþm occupy an m-monomer dividing surface
S, any polymer path where the sets of monomers J and K
divided by S are anything other than 1; 2; . . . ; i and iþ
mþ 1; iþmþ 2; . . . ; N (or vice versa) is blocked. In
other words, any path that starts in J, enters S, and traverses
it (passes through all monomers in S) is blocked unless it
traverses all monomers in J before entering S. Figure 1(a)
schematically depicts the sets J and K and two dividing
surfaces for a N ¼ 8 macrostate. By definition, blocking
does not occur in monomer packings.

In Table I, we see that the blocking effect increases
sharply with N since fr=fm and fp=fm decrease signifi-

cantly. Blocking also reduces [17] the fractions of allowed
ring microstates relative to those for linear polymers fr=fp
since rings do not possess chain ends. Another clear feature
in Fig. 1(b) is that blocking changes the relative frequen-
cies with which macrostates of different symmetries are
populated. Ring and linear polymer packings are more
likely to possess intermediate symmetry than monomer
packings, whereas the opposite is true for macrostates
with the lowest and highest symmetries. Highly symmetric
macrostates possess many distinct blocking surfaces, and
low symmetry macrostates possess a surplus of closed
trimers as shown in Fig. 1(a).

The enumeration studies illustrate an interesting com-
petition between energy and entropy. For N � 10, MEPs
are overconstrained with Nc > Nmin

c . This suggests that if
the system becomes trapped in a metastable state (e.g.,

with Nc ¼ Nmin
c ), rearrangements into MEPs will be slow

because of their low entropy. Thus, glassy dynamics in
single polymer chains should be observable in systems
quenched at varying rates. For kBT � j�j, where �� is
the contact energy, polymers adopt random-coil configu-
rations with Nc � Nmin

c . As the polymer is cooled, one
expects quench rate effects to become important when
Nc ’ Nmin

c [18].
To demonstrate glassy dynamics for single linear poly-

mer chains, we employ MD simulations in which mono-
mers interact via the potential energy

UharmðrÞ ¼
���þ k

2 ð rD � 1Þ2 r < rc
0 r > rc;

(2)

where k is the spring constant and D ¼ 1 is the monomer
diameter. The temperature T is controlled via a Langevin

thermostat. The unit of time is � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mD2=�

p
, where m is

the monomer mass. The cutoff radius rc=D ¼ 1 for co-

valently bonded monomers and 1þ ffiffiffiffiffiffiffiffiffiffiffi
2�=k

p
for noncova-

lently bonded monomers. Uharm reduces to the energy for
tangent sticky hard spheres [19] in the limit k ! 1 and
possesses the same MEPs. For N � 10, the MEPs from
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FIG. 1 (color online). (a) Schematic of dividing surfaces S and
S0 [colored triangles formed by monomers (B;C;D) and (D;E;
F), respectively] for an N ¼ 8 macrostate. For S, region J con-
sists of monomer A and region K of monomers (E;F;G;H), or
vice versa. (b) Fraction of microstates for packings from each
symmetry group for cyclic (open circles) and linear (downward
triangles) polymers and monomers (filled circles) with N ¼ 8.
Results in (b) do not account for chiral structures.
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FIG. 2 (color online). (a) Potential energy per particle
(�U=N�), (b) number of particles with 12 contacts (Ncp), and

(c) total number of contacts (Nc) versus kBT=� for single linear
polymers with N ¼ 100 at different quench rates. Data [top to
bottom, (b),(c); bottom to top, (a)] are for quench rates
kB _T�=� ¼ �10�3, �10�4, �10�5, �10�6, and �10�7. The
critical quench rates are jkB _T�=�j 	 10�7=� and jkB _T��=�j 	
10�3=�. All results are averaged over several independent initial
configurations. The horizontal (vertical) dotted lines indicate
Nc ¼ Nmin

c (kBT=� ¼ 0:37).
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simulations agree with those from complete enumeration
for k * 1600� (rc & 1:04D).

Figure 2(a) shows the potential energy per particle
�U=N� for different quench rates _T. At low _T, a sharp
transition between coils and crystallites [9,10] is observed
at Tmelt ’ 0:37�=kB. The crystallites consist of a close-
packed core with Ncp monomers (each with 12 contacts)

and a less-ordered exterior. The crystallization transition
coincides [Fig. 2(b)] with a sharp transition in Ncp, which

implies a change of symmetry within the core, from liquid-
like to close packed.

At higher rates, the dynamics becomes glassy near Tmelt,
and the systems do not approach the ground state energy
even as T ! 0. We associate the suppression of crystalli-
zation with the onset of rigidity. Evidence for this is given
in Fig. 2(c). The data show two ‘‘critical’’ quench rates: _T�
and _T��. For j _Tj< j _T�j, the jump in Nc and Ncp resembles

a first-order transition. For j _Tj> j _T��j, the systems do not
form minimally rigid clusters even at T ¼ 0. Even though
the critical rates and Tmelt are N dependent, the trends are
clear. For N ¼ 100 systems, we estimate jkB _T�=�j 	
10�7=� and jkB _T��=�j 	 10�3=�.

The effects of quench rate on end states of quenches to
T ¼ 0 are visualized in Fig. 3. Monomers are color-coded
by the number of contacts: dark blue (red) [dark gray (light
gray)] indicates close packing (�12 contacts). The left-
hand panel shows a typical configuration after a fast
quench with kB _T ¼ �10�4�=�; we see a small close-
packed core surrounded by a disordered exterior. The
middle and right-hand panels show a collapsed structure
at T ¼ 0 from a slow quench (kB _T ¼ �10�7�=�). The
close-packed core is much larger, and the exterior is
more crystalline. The large gaps visible in the rightmost
panel indicate the order is (stack-faulted) hcp [20].

We examined minimal energy packings of sticky tangent
hard-sphere linear and cyclic polymers, and compared
them to monomer packings for small N. The packings
are the same, but polymer packings possess significantly
smaller entropies compared to monomer packings due to
dividing surfaces, which arise from covalent-bond con-
straints. Entropic suppression via blocking is strongest
for structures of both very high and low symmetry. In
both monomer and polymer cases, the fraction of states
satisfying hard-sphere constraints decreases at least expo-
nentially with increasing N, and faster when Nc > Nmin

c .

We also performed MD simulations of single linear chains
with larger N, which link glassy dynamics to the onset of
rigidity. This work sets the stage for future studies that
investigate whether cooperative dynamics from chain con-
nectivity and uncrossability constraints improves or im-
pedes the glass-forming ability of single polymers
compared to colloidal systems.
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