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We study numerically frictionless ellipse packings versus the aspect ratio �, and find that the jamming

transition is fundamentally different from that for spherical particles. The normal mode spectra possess

two gaps and three distinct branches over a range of �. The energy from deformations along modes in the

lowest-energy branch increases quartically, not quadratically. The quartic modes cause novel power-law

scaling of the static shear modulus and their number matches the deviation from isostaticity. These results

point to a new critical point at �> 1 that controls jamming of aspherical particles.
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A decade ago, Liu and Nagel proposed [1] that the onset
of jamming in disordered systems such as granular mate-
rials, colloids, and foams, where thermal fluctuations are
unimportant, is controlled by a special second-order criti-
cal point (Point J) [2]. A key ingredient in theoretical
descriptions of jammed systems is that they must satisfy
force and torque balance. In a static granular packing,
mechanical stability can be achieved only if the number
of contacts satisfies Nc � Nd, where Nd is the number of
degrees of freedom [3]. For N frictionless spherical grains
in d dimensions, static packings at Point J are isostatic
[4,5] with Nc ¼ Nd. Important properties of systems near
Point J, such as power-law scaling of the structural and
mechanical properties [2] and soft modes in the vibrational
spectra [6] have been attributed to isostaticity of packings
of frictionless, spherical grains.

In contrast to static packings of frictionless, spherical
particles, ellipsoid packings are hypostatic [7,8] with Nc <
Nd. The stability of hypostatic packings can be understood
in terms of ‘‘quartic’’ modes in their vibrational spectra
[7,8]. The quartic modes impart stability by preventing
only finite-amplitude motions, in contrast to quadratic
modes that cost energy even for infinitesimal displace-
ments. The hypostatic nature of ellipsoid packings raises
fundamental questions, for example, how does hypostatic-
ity alter low-energy excitations and mechanical response?

We investigate jamming of frictionless ellipses using
simulations of soft particles with purely repulsive interac-
tions at zero temperature. Static 2D packings are an im-
portant paradigm for understanding jamming in granular
systems since gravity does not play a role, accurate mea-
surements of grain contacts and forces can be obtained [9],
and grain-level tests of theoretical predictions can be per-
formed [10]. We find significant differences between the
behavior near jamming of ellipse-shaped and spherical
particles: (i) The lowest-energy vibrational excitations
are composed of predominantly rotational particle motion.
The mean-square frequency of these modes scales with
packing fraction � and aspect ratio � as h!2

1i /

ð���JÞð�� 1Þ, where �J is the jamming packing frac-
tion. At �J, the energy from deformations along these
‘‘quartic’’ modes increases quartically, not quadratically.
(ii) The number of quartic vibrational modes near jamming
exactly matches the deviation in the contact number from
the isostatic value. (iii) The number and energy of the
quartic modes determines the power-law scaling of the
static shear modulus G ¼ G0ð���JÞ�, where � ¼ 1,
which is different from that for spherical particles (� ¼
0:5). These results suggest that the mechanical properties
of ellipses are not controlled by purely translational soft
modes characteristic of point J.
Compression packing-generation protocol.—We gener-

ated static packings of frictionless ellipses at�J in systems
withN ¼ 120 to 1920 particles, using a numerical protocol
similar to that employed to create packings of spherical
particles [11,12]. In this method, soft, purely repulsive
ellipses are initially randomly placed in a square cell
with periodic boundaries at � ¼ 0:5. The configurations
are successively compressed in small steps (�� ¼ 10�4)
and then relaxed using energy minimization after each
step. Near �J, the configurations are expanded or com-
pressed by decreasing amounts until the system has vanish-
ingly small total potential energy per particle
Vmin < V < 2Vmin. We set Vmin ¼ 10�16, which implies
that we can locate �J to within 10�8. We employed the
linear repulsive spring potential with the Perram and
Wertheim overlap parameter �ij [13–16].

The vector r̂ij between centers of mass and orientations

ûi and ûj of particles i and j determine

�ij ¼ min
�

�0ð�Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �ð�Þ

2

P
�

�ð�Þr̂ij�ûi���1ð�Þr̂ij�ûj
1��ð�Þûi�ûj

r ; (1)

where �0, �, and � depend on � and the major (minor)
axes, a (b), of the particles [13]. Minimization of (1) with
respect to 0< �< 1 must be performed to determine �ij

for each pair of particles. We simulate bidisperse mixtures
in which one-third of the particles are large with the major
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axis 1.4 times that of the small particles [7] to suppress
ordering. We generated at least 100 packings, each char-
acterized by �J, from � ¼ a=b ¼ 1 to 2.

Vibrational spectra.—The mechanical stability of static

packings can be probed using the dynamical matrixMmn ¼
@2V=@ ~	m@ ~	n, whose eigenmodes describe low-energy ex-

citations [17]. For ellipses, ~	m ¼ fxm; ym; am
mg, where xm
and ym are center of mass coordinates for particle m, 
m
characterizes the particle’s orientation, and m, n ¼
1; � � � ; N. With periodic boundaries, Mmn has ð2d�
1ÞN � d nontrivial eigenvalues, where N ¼ N � Nr

and Nr is the number of ‘‘rattler’’ particles that are not
locally stable. If all particles have the same mass, the
square roots of the eigenvalues of Mmn (normalized by
N ) give the normal mode frequencies !i indexed by i,

with eigenvectors êi ¼ fej¼1
xi ; ej¼1

yi ; ej¼1

i ; � � � ; ej¼N

xi ;

ej¼N
yi ; ej¼N


i g that satisfy ê2i ¼ 1.

Over a range of �, the spectrum !i, sorted in order of
increasing frequency, possesses three distinct regimes
(cf. Fig. 1): (1) modes with indices i < i�ð�Þ below the
low-frequency gap, (2) modes with i� � i � it ¼
ðd� 1ÞN , where for � � �t, there is a second gap at
index it, and (3) modes with i > it. (We do not include the
d modes corresponding to translational invariance.) In the
inset to Fig. 1, we show that we are able to choose aspect
ratio dependent scaling factors !� and i� that collapse the
low-frequency part of the spectra including the first gap.
We find that !� scales as �ð�� 1Þ, while i� possesses
different scaling regimes for �� 1 � 1 and � * 1.
Below, we use the scaling of i� to relate the vibrational
spectra to hypostaticity of ellipse packings. We use the
eigenvectors to calculate the contributions of translations,

Ti ¼
PN

j¼1fðejxiÞ2 þ ðejyiÞ2g, and rotations, Ri ¼ 1� Ti to

mode i. As demonstrated in the inset to Fig. 2, modes in
regions 1 and 2 (3) are mainly rotational (translational).

Hypostaticity and quartic modes.—As in previous stud-
ies [7], we find that ellipse packings are hypostatic
(cf. Fig. 3). Analysis of the vibrational spectra shows that
ellipse packings at finite overcompression possess ð2d�
1ÞN � d nonzero, positive eigenvalues of the dynamical
matrix. If this behavior were to persist to zero overcom-
pression, it would imply that these systems are isostatic,
not hypostatic. To resolve this puzzle, we investigated the
vibrational modes versus overcompression.

We perturbed ellipse packings along each of the eigen-
directions of the dynamical matrix over a range of over-

compression �� 	 ���J. If ~	0 characterizes the
centers of mass and orientations of the original packing,
the perturbed configuration obtained after a shift by �
along eigenmode i and relaxation to the nearest local

energy minimum is ~	i ¼ ~	0 þ �êi. In Fig. 2, we plot the

change in potential energy, �Vi 	 Vð ~	iÞ � Vð ~	0Þ, from a
perturbation along mode i versus the amplitude � for N ¼
120, � ¼ 1:5, and two values of ��. As shown in Fig. 2,
for modes with indexes in regions (2) and (3) of the

frequency spectrum, �Vi / �2 for all � independent of
��. In contrast, there is range � > �c over which modes
in region (1) display quartic dependence on �, �Vi / �4,

whereas�Vi / �2 for � < �c. We find that �c � ��1=2 for
modes in region 1, and therefore quartic behavior persists
over the entire range of � in the zero-compression limit.
Thus, ‘‘just-touching’’ ellipse packings are stabilized by
quartic terms in the expansion of the potential energy
around the reference packing [7]. Moreover, even though
quartic modes attain a small amplitude quadratic contribu-
tion at nonzero ��, the quartic branch remains distinct
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FIG. 1 (color online). Normal mode frequencies !i from the
dynamical matrix vs index i, sorted by increasing frequency for
N ¼ 120 ellipse packings at nine aspect ratios, � ¼ 1:02
(black), 1.04 (red), 1.06 (green), 1.08 (blue), 1.1 (yellow), 1.2
(brown), 1.4 (gray), 1.6 (violet), and 1.8 (turquoise). There are
three distinct branches numbered 1, 2, and 3. In the inset, we
show the scaled frequency !i=!

� vs i=i�, which collapses the
low-frequency spectra at i=i� ¼ 1 (vertical dashed line).
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FIG. 2 (color online). Change in potential energy �Vi vs
displacement � along êi for N ¼ 120 and � ¼ 1:5 (i� ¼ 22).
�Vi (solid blue) for i ¼ 115> i� is quadratic in �. In contrast,
for i � i�, �Vi / �2 for � < �c, but �Vi / �4 for � > �c. For
i ¼ 24, we show that �c decreases from approximately 10�3 to
10�4 as �� varies from 10�6 (green) to 10�8 (purple). The
dashed black (red) line has slope two (four). Inset: The transla-
tional contribution Ti to the sum of the squares of the amplitudes
of each eigenvector êi of the dynamical matrix for � ¼ 1:01
(black), 1.2 (red), 1.5 (green), and 2.0 (blue).
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over a range of ��. We find that quartic modes represent
collective, primarily rotational motions of ellipses
(cf. Fig. 2 inset), which do not lead to cage breaking and
particle rearrangements. Thus, we expect that if the iso-
static counting argument is reformulated so that quartic
modes are not constrained, the average number of contacts
hzi will correspond to the minimum number of contacts
necessary to constrain the quadratic modes.

Isostaticity for frictionless ellipse packings assumes
N hziiso=2 ¼ ð2d� 1ÞN � dþ 1, which includes a de-
gree of freedom for particle compression. If it is unneces-
sary to constrain the quartic modes, this equation can be
rewritten:

N hzi
2

¼ ð2d� 1ÞN � dþ 1� N1; (2)

where N1 ¼ i�ð�Þ � dþ 1 is the number of quartic modes
in region 1 of the frequency spectrum. By measuring N1,
we can predict hzið�Þ, which, as shown in Fig. 3, agrees
with hzi measured in simulations. In the inset to Fig. 3, we
show that N =N1 � 1 has two power-law regimes:

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
�� 1

p
for �� 1 � 1 and �ð�� 1Þ for � * 1. In

these limits [7],

hzið�Þ ¼ hzið1Þ þ A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�� 1Þ

p
for �� 1 � 1 (3)

¼ hziiso � 1=ð1þ Bð�� 1ÞÞ for � * 1; (4)

where A, B> 0. Equation (4) implies hzi ¼ hziiso as � !
1, yet this remains an open question. We have demon-
strated that hypostaticity in ellipse packings originates
from quartic modes and that they are isostatic with respect
to only quadratic modes.

Hypostaticity of shape-annealed packings.—The ellipse
packings discussed to this point were generated using the
compression method at fixed �. Since ellipse packings are
hypostatic, it is possible to obtain packings with higher hzi
than found previously without increasing order. To inves-
tigate this possibility, we developed a shape-annealing
method that creates ellipse packings by incrementally in-
creasing �> 1. We initially generate bidisperse disk pack-
ings. Each particle is then assigned the same aspect ratio
1þ�� with the direction of the long axis chosen ran-
domly. A new ellipse packing is formed from this initial
state using the compression method. The particles of the
new packing are elongated again along their major axes,
and the protocol is repeated until a packing with the desired
� is reached. Shape-annealing generates packings with hzi
much closer to ziso (Fig. 3). The annealed packings still
exhibit quartic modes and N1 can be used to predict hzi
through (2). The predicted hzi shows excellent agreement
with simulations even though the variation of N1 with �
differs significantly from that for ‘‘compressed’’ packings.
Mechanical properties.—To investigate the effect of

quartic modes on mechanical properties of ellipse pack-
ings, we calculated the static bulk and shear moduli as a
function of ���J by measuring the response of the
pressure tensor p�� [18], with �, � ¼ x, y, to small

compression and shear strains followed by energy minimi-
zation. To obtain the bulk and shear moduli, we measured
B ¼ �dp=d� and G ¼ d�=d�, respectively, where pres-
sure p ¼ d�1

P
�p��, shear stress � ¼ �pxy, and � is the

shear strain. p, �, B, and G are measured in units of

"=
ffiffiffiffiffiffi
ab

p
, where " is the spring energy. In the inset to

Fig. 4(a), we show that B is roughly independent of ��
�J for all �, which is identical to the near-affine scaling of
B found for packings of spherical particles [2]. In contrast,
in the main panel of Fig. 4(a), the shear modulus displays
novel power-law scalingG ¼ G0ð�Þð���JÞ� with � ¼ 1
compared to � ¼ 0:5 for packings of spherical particles,
and G0ð�Þ � ð�� 1Þ�0:5. The scaling exponent crosses
over from 1 to 0.5 for �� * �� 1.
To link the new scaling behavior of G with ���J to

the existence of quartic modes, we calculated the overlap

of the displacement vector � ~	 ¼ ~	� ~	0 (defined by sub-
tracting the configuration variables of the strained packing
~	 from those of the ‘‘unperturbed’’ packing ~	0) with each

eigenvector of the dynamical matrix evaluated at ~	0. In

Fig. 4(b), we plot Cð!iÞ ¼ � ~	=�	 � êi versus !i for all
shear strains (squares) and compressions (circles) used to
calculate G and B at � ¼ 1:05 and �� ¼ 10�3 for N ¼
480. The solid (dashed) lines represent the average over
shear (compression) strains. The three discrete frequency
regimes in Fig. 4(b) correspond to branches 1, 2, and 3 in
Fig. 1. We find that compression does not excite quartic
modes in branch 1 and only weakly excites modes in the
quadratic rotational branch 2. In contrast, shear excites
large contributions from the quartic modes, which are
comparable to contributions from branches 2 and 3.
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FIG. 3 (color online). Contact number hzi vs � for compres-
sion (triangles) and shape-annealing [�� ¼ 0:005 (open
squares) and 0.05 (closed circles)] packing-generation methods
for N ¼ 480. The filled diamonds represent hzi from Eq. (2) for
compression. The inset shows system size dependence of
N =N1 � 1 for compression, where N1 is the number of quartic
modes, for N ¼ 120 to 1920 (from bottom to top). The red
(black) dashed line has slope 0.5 (1.0). The solid line interpolates
between power laws of 0.5 (1.0) for �� 1 � 1 (� * 1), and
was used to fit hzi in the main plot (solid blue line).
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Thus, the existence of quartic modes changes the me-
chanical properties of ellipse packings. We can explain the
dependence of G on ���J using the following scaling
arguments. The shear modulus is related to the change in
potential energy from shear strain:

G ’ ��1�Vð�Þ ¼ X

i

h� ~	 � êii!2
i ¼

X3

�¼1

N�c�h!2i�; (5)

where the first sum is over vibrational modes i, N� is the

number of modes in branch �, and we have assumed ci ¼
h� ~	 � êii is nearly constant within each branch. We find
that the mean-square frequency of the quartic modes, h!2i1
scales as ���J, whereas the mean-square frequencies of
the branches 2 and 3 are independent of� in this regime. In
addition, c� and N� depend strongly on �, but not���J.
The scaling G / ð���JÞ can, therefore, be ascribed to
the frequency dependence of the quartic modes, and thus
the shear response of ellipse packings is significantly dif-
ferent from that for packings of spherical particles [2].

In conclusion, we find that particle asphericity qualita-
tively changes the jamming transition. Packings with
spherical grains are exceptional: they are isostatic, and
all nontrivial vibrational modes increase quadratically
with deformation amplitude. In contrast, ellipse packings
possess quartic modes characterized by collective rota-
tional motions. These modes control the scaling of the
shear modulus with ���J, and thus strongly affect the
rigidity of ellipse packings. These results point to a new
critical point at �> 1 that controls the structure and dy-
namics of aspherical particles.
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Note added in proof.—During the workshop ‘‘Dynami-

cal Heterogeneities in Glasses, Colloids, and Granular
Media’’ in Leiden, we learned of similar work on vibra-
tional modes in ellipsoid packings [19].
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FIG. 4 (color online). (a) Static shear modulus G vs ���J

for ellipse packings with N ¼ 480 at � ¼ 1 (circles), 1.002
(squares), 1.01 (diamonds), 1.1 (upward triangles), 1.5 (leftward
triangles), and 2.0 (downward triangles). The solid (dashed) line
has slope 1 (0.5). Dot-dashed lines show G ¼ 0:6ð��
�JÞ=ð�� 1Þ0:5. Inset: Bulk modulus B vs ���J. (b) Over-

lap Cð!iÞ of displacements � ~	 following shear (squares) and
compression (circles) with eigenvectors êi of the dynamical

matrix at ~	0 vs !i for strains used to calculate G and B at � ¼
1:05 and �� ¼ 10�3 for the system in (a). The solid (dashed)
lines represent an average over shear (compression) strains.
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