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We employ numerical simulations to study active transistor-like switches made from two-dimensional (2D)
granular crystals containing two types of grains with the same size but different masses. We tune the mass
contrast and arrangement of the grains to maximize the width of the frequency band gap in the device. The input
signal is applied to a single grain on one side of the device, and the output signal is measured from another grain
on the other side of the device. Changing the size of one or many grains tunes the pressure, which controls the
vibrational response of the device. Switching between the on and off states is achieved using two mechanisms:
(1) pressure-induced switching where the interparticle contact network is the same in the on and off states and (2)
switching through contact breaking. In general, the performance of the acoustic switch, as captured by the gain
ratio and switching time between the on and off states, is better for pressure-induced switching. We show that in
these acoustic switches the gain ratio between the on and off states can be larger than 104 and the switching time
(multiplied by the driving frequency) is comparable to that obtained recently for sonic crystals and less than that
for photonic transistor-like switches. Since the self-assembly of grains with different masses into 2D granular
crystals is challenging, we describe simulations of circular grains with small circular knobs placed symmetrically
around the perimeter mixed with circular grains without knobs. Using umbrella sampling techniques, we show
that grains with six knobs most efficiently form the hexagonal crystals that yield the largest frequency band
gap. Using the simulation results, we estimate the time required for vibration experiments to generate granular
crystals of millimeter-sized steel beads with maximal band gaps.

DOI: 10.1103/PhysRevE.99.062901

I. INTRODUCTION

A number of recent studies have demonstrated the potential
for granular crystals to serve as switches [1], rectifiers [2],
and other logic elements [3] in circuits that use mechani-
cal rather than electrical signals. These mechanical devices
have potential applications in vibration isolation [4], acoustic
cloaks [5], and one-way sound propagation [6]. Many prior
studies have used one-dimensional (1D) granular chains as
model systems [7,8] and relied on the nonlinear Hertzian
interparticle contact law to tailor the acoustic response [9–11].
For example in Ref. [3], researchers developed an acoustic
switch by taking advantage of the fact that 1D granular chains
composed of steel beads possess a high-frequency cutoff ωmax,
beyond which an input signal cannot propagate. Thus, when
the system is driven at ω0 > ωmax, the response is extremely
small, i.e., it exists in the “off” state. However, when the
system is also driven at frequency ωc < ωmax, nonlinearities
from the Hertzian interactions between grains can induce a
strong response at ω0 (i.e., produce an “on” state), as well as
linear combinations of ω0 and ωc. The authors showed that the
amplitude of the response at ω0 in the on state was 3.5 orders
of magnitude larger than that of the off state [3]. This seminal
work demonstrated the ability to actively control mechanical
signal propagation in 1D granular chains.

Transistors are fundamental components of modern elec-
trical devices that perform logic operations by amplifying or
switching electrical signals [12]. In this study, we numerically
design a transistor-like acoustic switch using 2D granular
crystals composed of grains with two different masses mL and
mS . In a typical field-effect transistor, the drain-to-source cur-
rent is controlled by the voltage applied between the gate and
source terminals. Analogously, in our system, the mechanical
response will be controlled by the applied pressure. As shown
in Fig. 1, we will consider three-port devices. We will send
mechanical signals to a single particle (port 3) on one side of
the system, apply pressure by changing the size of a single or
many grains (port 2), and measure the power spectrum of the
displacements of another grain on the other side of the system
(port 1).

Granular crystals composed of two types of grains with the
same size, but with mass contrast mL/mS > 1, possess band
gaps in their vibrational density of states [8,13]. The width
of the band gap depends strongly on pressure [14]. Thus,
by varying the pressure at fixed driving frequency, we can
change the range of the frequency band gap so that the driving
frequency occurs within or outside the band gap. When the
system is excited at a frequency within the band gap, the signal
will not propagate and the switch is off. When the system is
excited at a frequency outside the band gap, it will propagate
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FIG. 1. (a) A schematic of a metal-oxide-semiconductor field-
effect transistor (MOSFET) with gate (G), source (S), and drain (D)
ports and (b) a schematic of a switch made from a 2D granular crystal
with three ports for the (1) output, (2) control, and (3) input signals.

and the switch is on. Thus, by changing the pressure, we can
actively switch the device between the off and on states. In
addition, using 2D granular crystals allows us to determine the
effects of the polarization of the mechanical signal and contact
breaking [15,16], where grains come in and out of contact
during vibration, on the performance of acoustic switches.

We will quantify the performance of the acoustic switch
by measuring its gain, which is the ratio of the amplitude of
the displacement spectrum at the driving frequency for the
output versus that of the input particle (via ports 1 and 3).
We find that the ratio of the gain for the on and off states
of the device can be four orders of magnitude or larger. We
also characterize the time required to switch between the on
and off states and vice versa. We find that there is a trade-off
between the switching time and gain ratio. We achieve the
fastest switching times for devices with the smallest gain
ratios between the on and off states. In addition, we inves-
tigated the effect of contact breaking on the performance of
granular acoustic switches. We find that when changes in
pressure cause contact breaking in the device, the performance
of the switch is degraded. In particular, devices with contact
breaking can only achieve modest gain ratios, where the gain
for the on state is 1.5 orders of magnitude larger than that
for the off state. We also studied the performance of the
acoustic switch when we adjust the sizes of a single versus
multiple grains to induce changes in pressure. Adjusting the
sizes of multiple grains allows the device to achieve larger
gain ratios. In addition, since it is typically difficult to generate
2D granular crystals containing grains with different masses
in both simulations and experiments [17,18], we also describe
a method to generate granular crystals in 2D using circular
grains that include small circular knobs on their surfaces. We
employ discrete element method simulations with advanced
sampling techniques to determine the number and placement
of the knobs that yield the most efficient 2D crystallization.
We then estimate the time required to achieve crystallized
configurations in vibration experiments on granular materials.

This article includes three additional sections and two Ap-
pendices. In Methods, we describe calculations of the vibra-
tional density of states for 2D granular crystals composed of
two types of grains with the same size, but with mass contrast
mL/mS > 1. We measure the width of the frequency band gap
as a function of the mass contrast, arrangement of the heavy
and light grains, and pressure. In addition, we describe the
input signal, how the output signal will be measured, and the
methods that will be used to change the pressure in the device.
In Results, we show our calculations of the gain ratios for

the on and off states in devices where the pressure is varied
and in regimes where the network of interparticle contacts
is fixed or fluctuates. We provide results for the gain ratios
for systems in steady state and study the gain as a function
of time after the device switches from on to off and vice
versa. We also describe discrete element method simulations
coupled with advanced sampling methods in 2D of circular
grains containing small circular knobs on their surfaces and
identify the number and placement of knobs that give rise
to the most efficient crystallization. From the probabilities
of achieving crystalline configurations in the simulations, we
estimate the time required to generate the crystalline configu-
rations in vibration experiments of typical granular materials.
In the final section, we summarize our most important results,
suggest future calculations, and discuss the possibility to build
mechanical circuits that can perform logical operations. The
two Appendices provide additional technical details that sup-
port the methods and results in the main text. In Appendix A,
we show that the numerical methods used to calculate the
discrete Fourier transform of the input and output signals do
not affect our results. In Appendix B, we show results for the
performance of 2D granular acoustic switches with small band
gaps.

II. METHODS

To narrow the parameter space, we focus on 2D granular
systems composed of frictionless circular disks in the absence
of gravity. For most studies, the systems include two types
of disks with the same diameter σ , but different masses,
mL and mS , with mL > mS . The N = NL + NS disks (where
NL and NS are the numbers of disks with mass mL and mS ,
respectively) interact via the pairwise, purely repulsive linear
spring potential,

U (ri j ) = ε

2

(
1 − ri j

σ

)2
�

(
1 − ri j

σ

)
, (1)

where ri j is the separation between the centers of disks i and
j, ε is the energy scale of the repulsive interaction, and �(x)
is the Heaviside step function that sets U (ri j ) = 0 when the
disks are not in contact with ri j > σi j . For most studies, the
simulation cell is rectangular with area A = LxLy and dimen-
sions Lx = Nxσ , and Ly = Ny

√
3σ/2, where N = NxNy, and

Nx and Ny are the number of particles in the x and y directions,
so that it can accommodate a hexagonal lattice. We implement
periodic boundary conditions in the x direction, and fixed, flat
boundaries in the y direction. Interactions between a circular
grain and the wall are implemented by assuming that a ghost
particle is placed at a symmetric position behind the wall. We
focus on systems with relatively small N , from N = 30 to 100
grains, since it is difficult to self-assemble perfect crystalline
structures in large systems [17,18]. Below, lengths, energies,
stresses, and frequencies will be given in units of σ , ε, ε/σ 2,
and

√
ε/mSσ 2, respectively.

Most of the systems we consider are mechanically stable
with a full spectrum of 2N nonzero vibrational frequen-
cies, ωk , with k = 1, . . . , 2N . The vibrational frequencies
are obtained by calculating the eigenvalues λk = ω2

k of the
mass-weighted dynamical matrix [19] Mk j = M−1

ki Hi j , where
Hi j = ∂2U/∂ξi∂ξ j is the Hessian of the total potential energy
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FIG. 2. Mechanically stable packings of N = 100 disks with the same size, two different masses, and mass ratio mL/mS = 10 arranged on
a hexagonal lattice with periodic and fixed boundary conditions in the x and y directions, respectively. In (a), the system is homogeneous with
NL = 0 (dark blue) and NS = N (light blue). In (b), we set NL = 25 and NS = 75. The first row contains all small masses. In the second row,
the large and small masses alternate. The third row alternates between large and small masses, and this order repeats for a total of 10 rows.
In (c), NL = 50 and NS = 50 and large and small masses are distributed randomly on the hexagonal lattice. Panel (d) is similar to (b) except
inverted with NL = 75 and NS = 25.

U = ∑
i> j U (ri j ), ξi = xi, yi, and Mi j = mL,Sδi j is the diag-

onal mass matrix. We also determine the eigenvectors �λk that
correspond to each eigenfrequency ωk with �λk · �λk = 1, where
�λk = {xk

1, yk
1, . . . , xk

N , yk
N }.

We calculate the eigenfrequency spectrum of the mass-
weighted dynamical matrix for several arrangements of the
large and small masses on a hexagonal lattice with N = 100
shown in Fig. 2. We illustrate in Fig. 3 that for a hexagonal
lattice with a uniform mass distribution [Fig. 2(a)], the fre-
quency spectrum is nearly continuous with a high-frequency
cutoff ωmax ≈ 25. For mixtures of large and small masses
with a mass ratio mL/mS = 10 [Figs. 2(b) and 2(c)], a small
frequency band gap develops in the range 5 � ω � 8. For
each eigenfrequency spectrum, we identify the maximum
frequency difference w = maxk (ωk+1 − ωk ).

We find that the arrangement of large and small masses
that gives rise to the largest band gap w is the alternating
pattern in Fig. 2(d). In Fig. 4, we show that for the optimal
arrangement of large and small masses [i.e., Fig. 2(d)], w

increases with mL/mS , reaching a plateau of w ≈ 16 in the
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FIG. 3. Eigenfrequencies of the mass-weighted dynamical ma-
trix ωk , sorted in ascending order and indexed by k, for the N =
100 configurations in Fig. 2. (a) Circles, (b) Xs, (c) plusses, and
(d) squares with periodic and fixed boundary conditions in the x and
y directions, respectively. w indicates the maximum band gap in the
eigenfrequency spectrum.

mL/mS → ∞ limit. For most of our studies, we use a mass
ratio, mL/mS = 10, with w ≈ 10.

The width of the frequency band gap can also be tuned by
changing the pressure of the system. When all of the disks
are at contact and placed on a hexagonal lattice, the packing
fraction is φxtal = π/2

√
3 ≈ 0.91 for systems with periodic

boundary conditions in both the x and y directions (and ≈0.89
for systems with fixed boundaries in the y direction and
periodic boundaries in the x direction), and the pressure p =
A−1 ∑

i> j
�fi j · �ri j/2 is nearly zero, where �fi j = −dU/d�ri j is

the repulsive force on disk i arising from disk j. We can
change the pressure of the system by increasing or decreasing
the diameter of the disks by an increment in packing fraction
�σ/σ = �φ/φ or equivalently by bringing the fixed walls in
the y direction closer together or further apart. We define the
packing fraction as φ = A−1 ∑N

i=1 πσ 2
i /4, even for systems in

which the grains overlap. In Fig. 5(a), we show the spectrum
of eigenfrequencies of the mass-weighted dynamical matrix
for the configuration in Fig. 2(d) with mL/mS = 10 at low p =
10−3 and high pressure p = 1. For the system at low pressure,
we can set the driving frequency at ω0 ≈ 9 in the band gap,

100 101 102 103 104
4

6

8

10

12

14

16

FIG. 4. The width w of the maximum band gap in the eigen-
frequency spectrum of the mass-weighted dynamical matrix for the
configuration in Fig. 2(d) (and inset) as a function of the mass ratio
mL/mS .
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FIG. 5. (a) Spectrum of eigenfrequencies of the mass-weighted
dynamical matrix sorted in ascending order with index k for systems
with N = 100 disks, mL/mS = 10, and arranged on a hexagonal
lattice in the optimal configuration in Fig. 2(d) at pressure p = 10−3

(circles) and 1 (Xs). The dashed line indicates a driving frequency
at which the acoustic switch can operate. (b) The Fourier transform
of the velocity correlation function D(ω) for the mechanically stable
packing in Fig. 2(d) at pressure p = 10−4 after adding velocities to all
grains such that the eigenfrequencies of the mass-weighted dynami-
cal matrix are included with equipartition of the total kinetic energy
K0. The color scale from dark red to violet represents decreasing
D(ω) on a linear scale.

and the system exists in the off state. When we compress the
system to high pressure, all of the eigenfrequencies decrease,
and the width of the band gap also decreases. At high pressure,
the driving frequency is no longer in the band gap, and the
system exists in the on state. Thus, 2D granular crystals can
be switched from on to off and vice versa by changing the
pressure.

Contact breaking, a significant source of nonlinearity in
granular materials [16,20,21], can also be used to switch
between the on and off states and vice versa in 2D granular
crystals. Contact breaking occurs when the system is driven at
sufficiently large amplitudes (e.g., through vibration or shear)
so that the network of interparticle contacts changes. The
characteristic driving amplitude at which contact breaking
occurs decreases with pressure. When the system can break

interparticle contacts and form new ones, the frequencies of
strong peaks in the Fourier transform of the velocity autocor-
relation function of the disks will differ from the spectrum of
eigenfrequencies of the mass-weighted dynamical matrix.

To illustrate contact breaking and its effect on the vibra-
tional response, we excite a 2D granular crystal by setting the
velocities of the grains such that all eigenmodes of the mass-
weighted dynamical matrix are included with equipartition
of the total kinetic energy, K0. To determine the vibrational
response, we calculate the Fourier transform of the normalized
velocity autocorrelation function,

D(ω) =
∫ ∞

0
dt

〈�v(t0 + t ) · �v(t0)〉
〈�v(t0) · �v(t0)〉 eiωt , (2)

where 〈.〉 indicates an average over all of the disks and time
origins t0. In Fig. 5(b), we show D(ω) as a function of
K0/N for the optimal configuration in Fig. 2(d) at p = 10−4.
At small vibration amplitudes, D(ω) is large at all of the
2N eigenfrequencies of the mass-weighted dynamical matrix.
When the vibration amplitude exceeds K0/N ≈ 10−9 existing
contacts begin to break and new contacts begin to form, D(ω)
broadens and spreads to lower frequencies. In particular, for
amplitudes above 10−9, there is a very weak response at high
frequencies. Thus, contact breaking can also be used to switch
between the on and off states. For example, when the system
is driven at ω0 = 18 at small K0/N , the switch is on. However,
when the system is driven at the same ω0 with amplitude
K0/N � 10−9, the switch is off.

For the specific device geometry, we consider a three-port
switch built from the 2D granular crystal shown in Fig. 6. We
will add sinusoidal displacements with amplitude A0 at driv-
ing frequency ω0 to a single disk on the bottom wall (port 3),

x3(t ) = x0
3 + A0 sin(ω0t ), (3)

where x0
3 is the position of disk 3 in the mechanically stable

packing. When we add a continuous input signal, we also
include a viscous damping force for each disk i, �Fi = −b�vi,
where b is the damping coefficient. After the system reaches
a steady state, we determine the response of the system by
measuring the Fourier transform of the x displacement of disk
1 that is several layers away from disk 3 in the top wall (port
1): F1(ω) = ∫ ∞

0 [x1(t ) − x0
1]eiωt dt . The Fourier transform is

calculated numerically as discussed in Appendix A. The gain
of the system is defined as the ratio of the response at the
output port 1 to strength of the signal at the input port 3 at the
driving frequency ω0:

G(ω0) = F1(ω0)

F3(ω0)
. (4)

Note that we chose the input and output signals to be in the x
direction, which we assume has a significant overlap with the
eigenmodes of the system. We deliberately did not consider
input and output signals along eigenmodes since they are
difficult to measure experimentally in 2D granular media.

We will actively control the response of the device (i.e.,
through port 2) by varying the pressure in the device. We will
adjust the pressure by changing the size of grain i: �i(t ) =
(σi(t ) − σ )/σ , where σ is the unperturbed diameter of the
grains. For the control signal, we can also vary the fraction
of grains f whose sizes are changed by �. Below, we will
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FIG. 6. (a) An illustration of a three port acoustic switch with
fixed, flat boundary conditions in the y direction and periodic bound-
ary conditions in the x direction. The device includes N = 30 disks
(with NL = 21 (dark), NS = 9 (light), and mL/mS = 10) arranged
on a hexagonal lattice. The solid white lines indicate the Nc = 90
distinct contacts between disks. Disk 3 is the input port, indicating
where the system will be driven. The gain of the system is measured
via the output port, labeled disk 1. The switch can be turned on
and off by varying the pressure of the system through port 2, e.g.,
by changing the size of a single disk or all disks in the system.
Here, the device changes from pressure p = 10−6 (dashed outline) to
10−1 (solid outline) when all disks increase in size. (b) Illustration
of the device in (a) at p = 10−6 with disk 3 driven at A0 = 10−6

and frequency ω0 = 16.0, which causes contact breaking. In this
snapshot, the device has four fewer contacts than in (a). The central
grain with the dashed outline provides the pressure control when we
use single-particle control for port 2.

consider the extremes f = 1/N (one grain) and 1 (all grains).
The case f = 1 is depicted in Fig. 6(a).

III. RESULTS

We describe the results on acoustic switches constructed
from 2D granular crystals in four subsections. In Sec. III A,
we focus on acoustic devices that can switch between the on
and off states by changing the size of all particles in the system
to control the pressure, and both the on and off states have
the same network of interparticle contacts. These devices can
achieve large gain ratios of at least four orders of magnitude
between the on and off states. However, the switching times
are rather large, exceeding hundreds of oscillations of the
driving frequency. Further, there is a trade-off between gain

0 10 20 30 40 50 60
0

5

10
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20

FIG. 7. The eigenfrequencies of the mass-weighted dynamical
matrix plotted in increasing order with index k for the acoustic device
in Fig. 6 at pressure p = 10−1 (the “on” state, circles) and 3.2 × 10−2

(the “off” state, Xs). The horizontal line at ω = 14.9 indicates a
potential driving frequency that yields a large gain ratio between the
on and off states.

ratios and switching times, i.e., the largest gain ratios are
achieved for the slowest switching times. In Sec. III B, we
discuss acoustic devices in which contact breaking occurs,
i.e., the on and off states possess different interparticle contact
networks. In general, these devices have worse performance
(smaller gain ratios) than those for which the interparticle
contact networks are the same in the on and off states. How-
ever, switching between the on and off states in these devices
can be achieved at much lower pressures. In Sec. III C, we
discuss the pressure operating regime for the acoustic device
when the size of only a single control particle is used to
tune between the on and off states. In general, devices with
a single control particle possess smaller gain ratios than those
with many control particles. In Sec. III D, we describe a novel
simulation technique, where we add small circular knobs to
the surface of circular grains, that can robustly generate the
ordered disk packing with the optimal arrangement of more
and less massive grains in Fig. 2(d). A similar technique can
be used in experiments to generate 2D granular crystals.

A. Pressure-induced switching

In Fig. 7, we show the eigenfrequencies of the mass-
weighted dynamical matrix for the device in Fig. 6(a) in the
high-pressure regime, p = 10−1 and 3.2 × 10−2. Changes in
the pressure of the device allow us to tune the frequency range
of the band gap. When we drive the system at ω0 = 14.9 with
p = 10−1, we expect the gain to be large since the density
of states has weight at the driving frequency. In contrast,
when we drive the system at the same frequency and p =
3.2 × 10−2, there is no weight in the density of states at the
driving frequency and we expect the gain be much smaller,
even though the interparticle contact network is the same as
that for the device at p = 10−1.

In Fig. 8(a), we show the Fourier transform F1(ω) of
the x displacement of the output disk 1 in the device after
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FIG. 8. (a) The Fourier transform F1(ω) of the x displacement of
disk 1 for the acoustic device with pressure p = 10−1 (dashed line)
and 3.2 × 10−2 (solid line) obtained by driving disk 3 sinusoidally
with amplitude A0 = 10−6 and frequency ω0 = 14.9. The dotted line
shows the Fourier transform F3(ω) of the x displacement of the input
disk 3. (b) The gain G(ω0) [defined in Eq. (4)] plotted as a function
of the driving amplitude A0 with driving frequency ω0 = 14.9 for the
device at pressure p = 10−1 (open circles) and 3.2 × 10−2 (Xs).

driving the input disk 3 sinusoidally according to Eq. (3)
with amplitude A0 = 10−6 and frequency ω0 = 14.9. Since
displacing disk 3 in the x direction is not a pure eigenmode
of the mass-weighted dynamical matrix for the full system,
there are contributions to F1(ω) over a wide range of frequen-
cies. Despite this, there is a strong response at the driving
frequency ω0. We also show the Fourier transform F3(ω) of
the x displacement of the input disk 3 and calculate the gain
G(ω0) = F1(ω0)/F3(ω0). We find that the gain in this high-
pressure regime is independent of the amplitude of the driving
[see Fig. 8(b)]. The gain for the on state at high pressure
p = 10−1 is G(ω0) ≈ 1, whereas the gain for the off state
at lower pressure p = 3.2 × 10−2 is more than two orders
of magnitude smaller. In Fig. 9(a), we show the variation of
the gain G(ω0) with pressure for several values of the driving
frequency ω0. We verify that we can accurately measure the
gain (G(ω0) ≈ 3.5) near each resonance in Fig. 9(b). For each
driving frequency, ω0 = 13.1, 14.9, and 15.7, the ratio of the
maximum gain (at pon, on state) and minimum gain (at poff ,
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101(a)
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(c)

FIG. 9. (a) The gain G(ω0) for the acoustic device as a function
of pressure p for three values of the driving frequency ω0 = 13.1
(circles), 14.9 (Xs), and 15.7 (triangles). (b) The gain G(ω0 + �ω)
over a small frequency range �ω near the driving frequency ω0 =
14.9. The inset is a close-up of the gain to within 10−3 of ω0. (c) The
gain ratio Gon(ω0)/Goff (ω0) as a function of the normalized change
in pressure between the on and off states, (pon − poff )/pon, for pon =
3.2 × 10−1 (circles), 10−1 (Xs), and 3.2 × 10−2 (triangles) and the
sizes of all particles are changed to control the pressure. The vertical
dashed lines indicate the value of (pon − poff )/pon at which contacts
would begin breaking if the size of only a single particle was changed
to control the pressure. For all data, the driving amplitude is A0 =
10−6 and the damping parameter b = 10−3.
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FIG. 10. The gain ratio Gon(ω0)/Goff (ω0) between the on and off
states versus the damping parameter b at fixed driving frequency
ω0 = 14.9 for pressure-induced switching (solid line) and 16.0 for
switching with contact breaking (dashed line). The inset shows the
switching time ω0t1

s /2π from the on to the off state (open circles)
and ω0t2

s /2π from the off to the on state (Xs) versus b for the same
systems in the main panel.

off state) increases as a function of the normalized pressure
difference (pon − poff )/pon. For ω0 = 15.9, the increase in the
gain ratio Gon(ω0)/Goff (ω0) is the largest, reaching 104 at the
largest pressure difference [see Fig. 9(c)]. We can also vary
the gain ratio between the on and off states at fixed driving fre-
quency ω0 by changing the damping coefficient b. In Fig. 10,
we show that the gain ratio decreases as a power law with the
damping parameter, Gon(ω0)/Goff (ω0) ∼ b−1 for large b. In
contrast, the gain ratio plateaus in the limit of small b.

We have demonstrated that we can achieve gain ratios
between the on and off states for the acoustic device that
are at least four orders of magnitude. We will now analyze
the ability of the device to switch from the on to off states
and vice versa. We will change the sizes of all particles
in the device to instantaneously increase or decrease the
pressure and induce switching. In Fig. 11(a), we show the
Fourier transform F1(ω0) of the x displacement of disk 1,
while driving disk 3 sinusoidally at ω0 in the x direction.
We consider two situations: (1) The device is initiated in the
on state at pressure p = 10−1. The system remains in the
on state for a given amount of time. At time t∗, the system
is switched to the off state by decreasing the pressure to
3.2 × 10−2 and remains there. (2) The device is initiated in
the off state at p = 3.2 × 10−2 and remains in the off state for
a given amount of time. At time t∗, the pressure is increased
to p = 10−1 and remains there. In Fig. 11(a), we show that for
the case of pressure-induced switching, the switching time ts
from on to off and from off to on are comparable. For damping
parameter b = 10−2, ω0ts/2π ≈ 103, where ts is obtained by
determining the time at which F1(ω0) reaches the geometric
mean of the values of F1(ω0) in the on and off states.

Note that the switching time ts is rather large (∼103 os-
cillations for b = 10−2). This large timescale occurs because
the oscillation of a single input particle and a single output
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FIG. 11. (a) The Fourier transform F1(ω0) of the x displacement
of disk 1 as a function of time ω0(t − t∗)/2π when switching
the device at time t∗ from the “on” (pressure p = 10−1) to “off”
(p = 3.2 × 10−2) states (circles) and vice versa (Xs) using a damp-
ing coefficient b = 10−2. The horizontal dotted line indicates the
geometric mean F 1(ω0) of the on and off values of F1(ω0). The
switching times ts are obtained by finding when F1(ω0) crosses
F 1(ω0). (b) The Fourier transform F1(ω0) (open circles and left axes
labels) of the x displacement of disk 1 as a function of time t/�t
(after reaching an initial steady state at t = 0) during continuous
switching of the device between the “on” and “off” states using
b = 10−2. The pressure of the device (dashed line and right axes
labels) follows a square-wave signal with �t/ts ≈ 3.7. (c) Same as
(b) except �t/ts ≈ 0.7.
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particle are not pure eigenmodes of the mass-weighted dy-
namical matrix of the device. Thus, when switching from the
on to off state, there is residual energy in the eigenmode at
ω0 that must be removed via damping. When switching from
the off to on state, there is residual energy in eigenmodes
that are different from the one at ω0 that must be removed
via damping. This picture is consistent with the fact that the
switching timescale as ω0ts ∼ b−1 as shown in the inset to
Fig. 10 (solid lines). With this scaling behavior, ts can be
decreased by increasing b. However, as shown in Fig. 10, the
gain ratio also decreases with increasing b, which makes it
difficult to distinguish between the on and off states. Thus, the
optimal performance for the pressure-induced acoustic switch
is the relatively small value for the damping parameter, b ≈
10−2, where the gain ratio no longer increases dramatically
with decreasing b, yet ts is relatively small.

We also studied dynamic switching using a square-wave
input signal for the time dependence of the pressure. In this
case, the pressure is large for given amount of time �t and
then it is switched instantaneously to a lower pressure for
a time period �t . After an additional time period �t , the
pressure is again switched back to the large pressure value.
This process is then repeated for a given number of cycles.
[See the dashed lines in Figs. 11(b) and 11(c).] When �t
satisfies �t � ts, F1(ω0) tracks with the pressure signal and is
nearly able to reach the steady-state values of F1(ω0) at each
pressure as shown in Fig. 11(b). [The steady-state values of
F1(ω0) are ≈ 2 × 10−8 for the on state and ≈ 8 × 10−11 for
the off state.] For �t � ts, F1(ω0) is not able to track the input
signal [as shown in Fig. 11(c)] and thus the gain ratio between
the on and off states for dynamic switching is much smaller
than the gain ratio in steady state. The case �t � ts is similar
to the step function perturbation in Fig. 11(a).

B. Switching with contact breaking

In this subsection, we describe the results for acoustic
devices where switching between the on and off states is
achieved by changing the network of interparticle contacts.
In the systems we consider, the interparticle contact network
does not change during the vibrations in the on state. How-
ever, the interparticle contact network fluctuates during the
vibrations in the off state. In Fig. 12(a), we show the Fourier
transform F1(ω) of the x displacement of disk 1 for the
device in the low-pressure regime with p = 10−6 (on state)
and 10−8 (off state) obtained by driving disk 3 sinusoidally
with amplitude A0 = 3.2 × 10−7 and frequency ω0 = 16.0,
using damping coefficient b = 10−3. F1(ω) for the device
at p = 10−6 is similar to that in the high-pressure regime
[Fig. 8(a)]. However, F1(ω) at p = 10−8 has a broad and noisy
spectrum since the interparticle contact network fluctuates
during the vibrations. [See the contact-breaking regime for
D(ω) in Fig. 5(b).] In the low-pressure regime, the device can
be switched on and off by varying the amplitude of the driving
at fixed frequency ω0. In Fig. 12(b), we show the gain G(ω0)
of the device at pressures p = 10−6 and 10−8 and driving
frequency ω0 = 16.0. At small driving amplitudes, the gain
is relatively large, G(ω0) ≈ 1. As the amplitude is increased,
changes in the interparticle contact network begin to occur
at a characteristic amplitude A∗

0 that scales with pressure.
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FIG. 12. (a) The Fourier transform F1(ω) of the x displacement
of disk 1 for the device with pressure p = 10−6 (dashed line) and
10−8 (solid line) obtained by driving disk 3 sinusoidally with am-
plitude A0 = 3.2 × 10−7 and frequency ω0 = 16.0, using damping
coefficient b = 10−3. The dotted line shows the Fourier transform
F3(ω) of the x displacement of the input disk 3. (b) The gain G(ω0)
[defined in Eq. (4)] plotted as a function of the driving amplitude A0

with driving frequency ω0 = 16.0 for a device at pressure p = 10−6

(dashed line) and 10−8 (solid line), using damping parameter b =
10−3. The vertical dotted line indicates the amplitude of the driving
A0 = 3.2 × 10−7 in (a).

See Fig. 6(b) for a device in which the interparticle contact
network has fewer contacts in the off state than in the on
state. For example, A∗

0 ≈ 10−8.5 for p = 10−8 and A∗
0 ≈ 10−6.5

for p = 10−6. The onset of contact breaking causes the gain
to drop abruptly by more than two orders of magnitude. We
show in Fig. 12(b) that if we drive the device at amplitude
A0 = 3.2 × 10−7 and frequency ω0, it is in the on state at
pressure p = 10−6 and the off state at 10−8. We can obtain
similar behavior if we drive the device in the amplitude range
5 × 10−9 � A0 < 3.2 × 10−7.

We show the ratio of the gain in the on versus the off state
Gon(ω0)/Goff (ω0) as a function of the damping parameter b
for devices that experience contact breaking in Fig. 10. As
for devices with no contact breaking, the gain ratio decreases
with b for large b, whereas it forms a plateau for small
b. However, at small b, the gain ratio is nearly two orders
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of magnitude smaller for devices that incorporate contact
breaking compared to those that do not.

In Fig. 13(a), we show the performance of the acoustic
device in switching from the on to off states and vice
versa using damping parameter b = 10−3 in the regime
where contact breaking occurs. An interesting feature is that
the times t1

s and t2
s for switching the device from the on

to the off state and from the off to the on state, respectively,
are different. As shown in the inset in Fig. 10, the switching
time from the on to the off state, ω0t1

s /2π ∼ 102, is nearly
independent of the damping parameter b, and is less than the
switching time from the off to the on state (t1

s < t2
s ) since t2

s
grows with decreasing b.

We show the results for dynamic switching with contact
breaking for the device in Fig. 13(b) for the case �t/t1

s ≈ 2.7.
F1(ω0) can roughly track the pressure signal, but the signal for
the off state is noisy. When we decrease �t such that �t/t1

s ≈
0.68, there is no significant difference between F1(ω0) in the
on and off states and F1(ω0) is not strongly affected by the
relatively rapid changes in pressure.

C. Single-particle control signal

For systems without contact breaking, the gain ratio be-
tween the on and off states Gon(ω0)/Goff (ω0) is determined by
the difference in pressure that can be achieved, for example,
by changing all particle sizes. In Fig. 9(c), we showed that the
gain ratio increases with the normalized pressure difference
(pon − poff )/pon. When we use all particles in the device to
change the pressure, we can achieve a wide range of normal-
ized pressure differences from 0 to 0.8, and thus we can obtain
a wide range of gain ratios from 1 to 104. However, when
we use only a single control particle [e.g., the central grain in
Fig. 6(b)], the maximum change in the normalized pressure
that can be achieved scales as 1/N . In Fig. 14, we show that
for N = 30, the maximum normalized pressure difference is
∼10−1 using a single control particle. Operating the device
in the regime where the interparticle contact network remains
intact further restricts the normalized pressure difference that
can be used. If we limit (pon − poff )/pon < 10−1, the maxi-
mum gain ratio that can be achieved is Gon(ω0)/Goff (ω0) ≈
102.5, which is less than the value of 104 achieved for devices
that change the sizes of all particles. [See the vertical lines in
Fig. 9(c).]

As expected, the performance of devices that only have a
single control particle is also degraded in the regime where
contact breaking occurs. In Fig. 15(a), we show the gain
G(ω0) for a device driven at frequency ω0 = 16.0 versus the
amplitude A0 and compare it to the gain from systems in which
the size of a single control particle has been decreased by an
amount �σ/σ . The reference system (with �σ/σ = 0) is in
the on state with G(ω0) ≈ 1 for small driving amplitudes. As
the driving amplitude increases, the gain decreases abruptly
when the interparticle contact network begins to fluctuate.
Similar behavior is found in Fig. 12(b). When the change in
the size of the control particle is small, i.e., �σ/σ = 5.1 ×
10−7, G(ω0) is similar to that for the reference system. When
�σ/σ is increased further, G(ω0) develops an intermediate
plateau between that for the on state [G(ω0) ≈ 1] and the off
state [G(ω0) ≈ 10−3]. Thus, by changing the size of only one
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FIG. 13. (a) The Fourier transform F1(ω0) of the x displacement
of disk 1 as a function of time ω0(t − t∗)/2π when switching the
device from the “on” (pressure p = 10−6) to “off” (p = 10−8) states
(circles) and vice versa (Xs) at time t∗ using a damping coefficient
b = 10−3. The driving frequency and amplitude are ω0 = 16.0 and
A0 = 3.2 × 10−7. (b) The Fourier transform F1(ω0) of the x displace-
ment of disk 1 (circles and left axes labels) as a function of time
t/�t when continuously switching the device between the “on” and
“off” states using b = 10−3. The dashed line shows the pressure of
the device (right axes labels), which has a square-wave form with
�t/ts ≈ 2.7 (where ts is the time for the device to switch from
the off to the on states). (c) Same as (b) except �t/ts ≈ 0.68. For
(a)–(c), the off and on states possess different interparticle contact
networks.
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FIG. 14. The normalized change of pressure (pon − poff )/pon,
where pon and poff are the pressures in the on and off states,
respectively, as a function of the normalized change in the size
(σon − σoff )/σon of a single control particle for pressures pon = 10−2

(circles), 3.2 × 10−2 (Xs), and 10−1 (triangles). The vertical dashed
lines (from left to right) indicate the change in size above which
the control particle loses a contact with neighboring particles for
pon = 10−2, 3.2 × 10−2, and 10−1.

particle, a dynamic state with an intermediate value of the gain
occurs. This intermediate state represents a system in which
only the contacts that involve the control particle (not all
interparticle contacts) are fluctuating. As shown in Fig. 15(b),
the presence of the state with intermediate gain significantly
reduces the difference in F1(ω0) between the on and off states
during switching. For all changes in pressure that can be
achieved using a single control particle and induce contact
breaking between the control particle and its neighbors, we
find a dynamical state with intermediate gain between that
for the on state (with no contact breaking) and off state (with
contact breaking among all particles).

D. Generating 2D granular crystals

In Sec. III A, we described the performance of acoustic
switching devices composed of N = 30 monodisperse disks
(with diameter σ ) of two different masses (NL = 21 with mass
mL and NS = 9 with mass mS) arranged on a two-dimensional
hexagonal lattice similar to that in the inset of Fig. 4. To
realize these devices in experiments, an automated method of
making the 2D granular crystals must be developed. Methods
for generating granular crystals in experiments include vibra-
tion [22], cyclic shear [23], and combinations of vibration and
shear [24]. However, it is well known that generating defect-
free granular crystals is difficult, requiring an exponentially
large number of small amplitude vertical vibrations or shear
cycles [25]. Further, one way to generate a large frequency
band gap in granular crystals is to choose grains with large
mass ratios. However, vibration and shear in systems com-
posed of grains with large mass ratios often give rise to
demixing or segregation, where grains with similar masses
cluster together [26,27], instead of forming the alternating
pattern of grains with large and small masses shown in the
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FIG. 15. (a) The gain G(ω0) [defined in Eq. (4)] plotted as a
function of the driving amplitude A0 at fixed driving frequency
ω0 = 16.0 for a device with a single control particle at �σ/σ = 0
(dashed line), 5.1 × 10−7 (circles), 5.4 × 10−7 (Xs), and 5.5 × 10−7

(triangles), using damping parameter b = 10−3. (b) The Fourier
transform F1(ω0) of the x displacement of disk 1 as a function of
time ω0(t − t∗)/2π when switching the device from the on (�σ/σ =
0) to off (�σ/σ = 5.4 × 10−7) state (circles) and vice versa (Xs)
at time t∗ using a single control particle and damping parameter
b = 10−3. The driving frequency and amplitude are ω0 = 16.0 and
A0 = 6.3 × 10−8, respectively.

inset of Fig. 4 that maximizes the width of the frequency band
gap.

In this subsection, we describe a method to enhance crys-
tallization into the alternating pattern of grains shown in the
inset to Fig. 4, implement it in numerical simulations, and
provide an estimate for how long it would take to generate the
alternating disk pattern in experiments. We consider mixtures
of NL = 21 disks with diameter σ and NS = 9 disks with
the same size and mass of the others, but they possess small
circular knobs symmetrically placed around their perimeter
(see Fig. 16). The knobs have diameter σk = (2

√
3/3 − 1)σ

and the angular separation between the knobs is 2π/n, where
n = 0, 3, and 6 gives the number of knobs. The size and
spacing of the knobs is chosen so that they fit within the
interstices of the circular grains without knobs arranged on
a hexagonal lattice. The knobs will only fit within the in-
terstices when they are surrounded by grains without knobs
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FIG. 16. Circular particles with different numbers of circular
knobs, (a) n = 0, (b) 3, and 6, placed symmetrically around the
perimeter of the particle. The central disk has diameter σ and the
circular knobs have diameter σk = (2

√
3/3 − 1)σ .

(see Fig. 17). Thus, in mixtures of grains with and without
knobs, there is an effective repulsion between grains with
knobs that enhances crystallization into the alternating pattern
in the inset of Fig. 4.

As we will show below, we are able to create packings in
which grains with knobs and grains without knobs form an
alternating pattern on a hexagonal lattice. If, in experiments,
the grains with knobs are made of a composite material for
which part of the material can be preferentially dissolved, then
the knobs, as well as part of the core of the grain, can be
dissolved after the hexagonal assembly has been generated.
Thus, this procedure can generate an alternating pattern of
light and heavy grains.

To measure the degree to which a disk configuration in
the simulations matches the alternating pattern in the inset
to Fig. 4, we determine the number of contacting pairs of
grains with knobs, Nkk , of the inherent structures. To calculate
the inherent structures, we take instantaneous snapshots from
the discrete element method simulations and perform steepest
descent (with the knobs removed) to reach the nearest local
potential energy minimum for each snapshot. The alternating
pattern in the inset to Fig. 4 has Nkk = 0, and Nkk > 0 for
configurations in which the particle positions differ from those
for the alternating pattern. In Fig. 17, we show an instanta-
neous snapshot from the discrete element method simulations
[Fig. 17(a)] and its associated inherent structure with Nkk = 0
[Fig. 17(b)]. Figure 17(c) shows a more disordered inherent
structure with Nkk = 7.

Note that there are some configurations with Nkk = 0 that
do not perfectly match the alternating pattern in the inset

FIG. 17. (a) Snapshot of a disk configuration generated using the
accelerated discrete element method simulations after four rounds of
acceleration. The light disks have n = 6 knobs and the dark disks
have zero knobs. The inherent structures with zero kinetic energy
and (b) Nkk = 0 and (c) 7 were obtained after removing the knobs.
Contacts between the light-colored grains in (c) are indicated by the
dotted lines.

0 0.1 0.2 0.3 0.4 0.5

2

4

6

8

10

12

14

FIG. 18. The average maximum difference between adjacent
eigenfrequencies 〈w〉 of the mass-weighted dynamical matrix versus
the number of contacts between the grains with knobs Nkk/N for
a hexagonal packing with NL = 21 and NS = 9 and mass ratio
mL/mS = 100 (circles), 20 (Xs), 10 (triangles), and 5 (squares). The
means and standard deviations (error bars) are obtained by averaging
over 50 configurations in which the masses of the grains are chosen
randomly as either mL and mS to yield a given Nkk/N .

to Fig. 4 [e.g., the configuration in Fig. 17(b)]. However,
we show in Fig. 18 that the average width of the bandgap
〈w〉 is well defined when we average over an ensemble of
configurations with the same Nkk .

As previously shown in Fig. 4, w increases with the
mass ratio mL/mS . In addition, we find that 〈w〉 increases
as Nkk → 0, reaching a maximum that depends on the mass
ratio. Thus, especially for small mass ratios, it is necessary to
have packings with Nkk → 0 to achieve robust band gaps. In
Appendix B, we discuss the performance of acoustic switch-
ing devices (made from 2D granular crystals) with small band
gaps.

To generate static packings of grains with and without
knobs, we first performed discrete element method simula-
tions at constant pressure beginning at high temperature in the
liquid state and then cooled the system to low temperature as
a function of the cooling rate, which we adjusted by varying
the damping parameter b. The interactions between the large
circular disks, between the large disks and small knobs, and
between the small knobs have the same form as Eq. (1). Even
though we varied the cooling rate over more than four orders
of magnitude, we did not find a significant decrease in Nkk/N
from its value in the liquid state (Nkk > 6) for n = 0, 3, and 6.

To obtain configurations with small Nkk/N , we imple-
mented an umbrella sampling method to enhance the proba-
bility of rare events [28–30]. We started with 10 independent
liquidlike configurations with Nkk/N ≈ 0.21 for their inherent
structures. For each of the 10 configurations, we generated 10
systems with the same particle positions, but different random
velocities. For each of these systems, we performd constant
pressure simulations at a sufficiently high temperature to
explore different configurations over Nsim = 106 time steps.
During the simulation, we record the 10 snapshots with the
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FIG. 19. The average Nkk/N from inherent structures as a func-
tion of the number of rounds of the accelerated MD simulations for
the systems in Fig. 17 with n = 0 (circles), 3 (Xs), and 6 (triangles)
knobs. The inset shows a scatter plot of Nkk versus the number of
rounds for the system with n = 6 knobs.

smallest Nkk for their inherent structures. This constitutes
round 1. For each snapshot, we rescale the temperature by a
factor of 0.95 and use these as initial conditions in constant
pressure simulations and run the simulations at the new tem-
perature for Nsim time steps. Successive rounds of selecting
configurations with the smallest Nkk and running them at
lower temepratures are carried out until Nkk does not further
decrease. We show Nkk/N versus the number of acceleration
rounds in Fig. 19 for mixtures of grains with n = 0, 3, and
6 knobs. We find that having six knobs allows the system to
reach smaller values of Nkk than mixtures of grains with n = 0
and 3 knobs.

As shown in Fig. 17, the umbrella sampling method can
achieve configurations with Nkk = 0 for the inherent struc-
tures after four acceleration rounds for mixtures with n = 6
knobs. We will now estimate the time required to achieve
inherent structures with Nkk = 0 in typical experiments of
vibrated granular media. In the discrete element method
simulations, we used a time step of �ts = 1.6 × 10−4 s,
using the characteristic timescale τs = √

mσ/ε = 0.032 s. For
millimeter-sized steel beads frequently used in experiments on
granular media, the characteristic timescale is τe = √

M/Ke ≈
2.1 μs, where M = 10 g is the mass, Ke = ER0/(1 − ν2)
is the stiffness, R0 ≈ 10 mm is the raidus, E ≈ 200 GPa is
the Young’s modulus, and ν ≈ 0.3 is the Poisson’s ratio.
Using these values, the simulation time step corresponds to
a time step of �te = (τe/τs)�ts ≈ 0.01μs for experiments on
vibrated mm-sized steel beads.

After four rounds of acceleration, the probability to achieve
an inherent structure with Nkk = 0 is P = 10−8. Since snap-
shots from the simulations were recorded every 105 time steps
out of a total of 106, the elapsed time between configura-
tions with Nkk = 0 is between 105�te ≈ 1 ms and 106�te ≈
10 ms. Thus, the average time required to achieve a con-
figuration with Nkk = 0 in vibration experiments is between
1 ms/10−8 ≈ 1 day and 10 ms/10−8 ≈ 10 days. These time

periods are achievable in expermiental studies of granular
media, and can be further reduced by carrying out vibration
studies on multiple experimental set-ups in parallel.

IV. CONCLUSIONS AND FUTURE DIRECTIONS

In this article, we describe active acoustic transistor-like
devices that can switch from the on to off states or vice versa
using 2D granular crystals. We focus on systems composed of
two types of grains with the same size but different masses,
since they possess frequency band gaps in the vibrational
density states that can be tuned by the mass ratio mL/mS

and arrangement of heavy and light grains. The input signal
is generated by oscillating a grain at one side of the device
and measuring the resulting output signal from a grain on the
other side of the device. The device can be switched between
the on and off states by changes in the size of one or many
grains, which controls the pressure. Switching can be achieved
through two mechanisms: (1) pressure-induced switching in
which the on and off states have the same interparticle contact
networks and (2) switching with contact breaking, where the
interparticle contact networks are different in the on and off
states. In general, we find that the performance of pressure-
induced switching is better, with larger gain ratios between
the on and off states, than those for switching with contact
breaking. However, there is a trade-off between large gain ra-
tios and fast switching times. Large gain ratios occur at small
damping parameters and fast switching times occur at larger
damping parameters. Even so, for pressure-induced switching,
2D granular crystals can achieve gain ratios greater than 104,
and switching times ω0ts that represent 103 oscillations at the
driving frequency. This switching time is comparable to that
obtained recently for sonic crystals [1] and less than that for
photonic transistor devices [31].

Granular crystals are difficult to make in an automated way
in experiments. We thus developed techniques to improve the
efficiency of making hexagonal crystals with an alternating
pattern of heavy and light grains. The first improvement
involved studying mixtures of grains with and without small
knobs arranged on their perimeter. The size and arrangement
of the knobs are chosen so that they fit in the intertices
between contacting grains without knobs. Since the grains
with knobs do not pack efficiently when they are next to
each other, there is an effective repulsion between the grains
with knobs. The similarity between a given configuration and
the optimal configuration with an alternating pattern can be
measured using the fraction of contacts between grains with
knobs, Nkk/N .

Using conventional discrete element method simulations of
these mixtures undergoing cooling at fixed pressure, Nkk does
not decrease significantly with temperature. However, when
we apply an umbrella samplinglike technique, we find that we
can achieve Nkk/N → 0. Further, we show that grains with
n = 6 knobs leads to smaller values of Nkk than that with
n = 3 when cooling with umbrella sampling. Based on the
probability for obtaining configurations with Nkk = 0 in the
accelerated simulations, we estimate that it will take from
1 to 10 days to achieve an Nkk = 0 packing of millimeter-
sized sized steel beads using vibration experiments. This time
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period can be further reduced by running a number of vibra-
tion experiments in parallel.

Thus, these results will encourage experimental studies of
mixtures of grains with and without knobs undergoing vibra-
tion or cyclic shear to study crystallization into hexagonal
crystals. After generating the alternating pattern of grains with
and without knobs, the core regions of the grains with knobs
and the knobs themselves can be dissolved away, yielding
mL/mS > 1. Experiments can then be performed to measure
the vibrational density of states in these crystalline granular
assemblies.

There are a number of important directions that we will
pursue in future studies. First, we will consider 3D granular
crystals, which have a broader range of mechanically stable
crystal structures with different symmetries, packing frac-
tions, and numbers of nearest neighbors. For example, we will
determine the performance of FCC, BCC, and HCP crystals
with different mass distributions. Second, in the current study,
both the input and output signals oscillated in the x direction.
In future studies in 3D, we can consider an input signal that
oscillates in a different direction than the measured output
signal. A key aspect of these studies will be to understand the
spatial structure of the eigenmodes of the mass-weighted Hes-
sian of the device, and their overlap with the input and output
signals. Third, in the current modeling studies, we neglected
static friction. However, granular crystals in experiments have
finite friction, and thus it is important to understand how static
friction and the coupling of particle rotation and translation
affect the switching performance of the device. Fourth, an
interesting application is to create logical circuits from cou-
pled acoustic switches that connect the output of one device
to the input of another. In future studies, we will develop
numerical implementations of coupled 2D granular crystals
that can perform logical operations.
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FIG. 20. The gain G(ω0) for the acoustic device as a function
of pressure p (for a system with no contact breaking) using a total
simulation time ω0T/2π = 104 (circles) and 105 (squares). The inset
shows the Fourier transforms of the output and input signals, F1(ω0)
(Xs) and F3(ω0) (circles), as a function of ω0T/2π for the device with
pressure p = 10−1. For all data, ω0 = 14.9, A0 = 10−6, b = 10−3,
and the sampling time ω0�/2π = 5.9 × 10−3.
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APPENDIX A: ROBUSTNESS OF THE MEASUREMENT OF
THE FOURIER TRANSFORMS OF THE INPUT AND

OUTPUT SIGNALS

Many of the results reported in this article depend on the
accurate calculation of the Fourier transform of the input and
output signals from particles 1 and 3, x1,3(t ) − x0

1,3, respec-
tively, where x0

1,3 is the x position of particles 1 and 3 in the
initial mechanically stable packing. We calculate the Fourier
F1,3(ω) = ∫ ∞

0 [x1,3(t ) − x0
1,3]eiωt dt numerically via the dis-

crete Fourier transform:

F1,3[ω(l )] =
M−1∑
n=0

[x1,3(n�) − x1,3(0)]e−i·2π ln/M , (A1)

where ω(l ) = 2π l/T , M = T/�, l , and n are integers, T is
the total time of the input-output signals, and � is the time
interval between samples. In this Appendix, we calculate the
gain G(ω0) as a function of the total time T and sampling time
� of the input and output signals to show that our calculations
do not depend strongly on these parameters.
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FIG. 21. The gain G(ω0) for the acoustic device as a function of
pressure p (for a system with no contact breaking) measured with
sampling interval ω0�/2π = 4.7 × 10−2 (circles), 2.4 × 10−2 (Xs),
5.8 × 10−3 (triangles), and 2.9 × 10−3 (squares). The inset shows
the Fourier transforms of the output and input signals, F1(ω0) (Xs)
and F3(ω0) (circles), as a function of ω0�/2π for the device with
pressure p = 10−1. For all data, ω0 = 14.9, A0 = 10−6, b = 10−3,
and the total simulation time ω0T/2π = 5.9 × 104.
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FIG. 22. Spectrum of eigenfrequencies for the mass-weighted
dynamical matrix for the hexagonal lattice in the inset to Fig. 4 with
NL = 21 and NS = 9 for mass ratios (a) mL/mS = 10, (b) 3, and (c) 1.
The horizontal dashed lines indicate the frequencies at which we seek
to drive the acoustic switching device. The insets of each panel show
the frequency-dependent gain G(ω0) (ratio of the Fourier transforms
of the output and input signals) for the respective mass ratios. For all
systems, the pressure p = 10−1.
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FIG. 23. The ratio of the gain Gon(ω0)/Goff (ω0) in the on state
to that in the off state as a function of the normalized difference
in pressure (pon − poff )/pon between the on and off states for mass
ratios mL/mS = 10 (circles), 3 (Xs), and 1 (triangles). The devices
are driven at the frequencies ω0 indicated by the dashed lines in
Figs. 22(a)–22(c).

In the inset to Fig. 20, we show the Fourier transforms for
the output and input signals, F1(ω0) and F3(ω0), as a function
of the total time ω0T/2π when the system in the inset to Fig. 4
with N = 30 is driven at frequency ω0 = 14.9 and amplitude
A0 = 10−6. We find only weak dependence of the Fourier
transform on the total time in the range ω0T/2π � 104.5.
In the main panel of Fig. 20, we show that the gain G(ω0)
versus pressure p is nearly identical for ω0T/2π = 104 and
105. Thus, we selected ω0T/2π = 5.9 × 104 to calculate all
of the discrete Fourier transforms. In the inset to Fig. 21, we
show the dependence of the Fourier transforms F1(ω0) and
F3(ω0) on the sampling time ω0�/2π . For ω0�/2π � 10−2,
F1(ω0) and F3(ω0) do not depend strongly on the sampling
time. In the main panel of Fig. 21, we show that for most
pressures the gain G(ω0) does not depend on �. However,
at pressures for which there is large gain, we find that we need
to use ω0�/2π � 5.8 × 10−3 to reach convergence. Thus, we
used this value of � to calculate all of the discrete Fourier
transforms.

APPENDIX B: PERFORMANCE OF ACOUSTIC
SWITCHING DEVICES WITH SMALL BAND GAPS

In the main text, we described acoustic switching devices
that possess large frequency band gaps in their vibrational
density of states. However, we have not yet discussed how
the performance of the devices change with the size of the
band gap. In Fig. 22, we show the eigenfrequency spectrum
of the mass-weighted dynamical matrix for three mass ratios,
mL/mS = 10, 3, and 1. As shown previously in Fig. 4, the
maximum difference between adjacent eigenfrequencies w

decreases as mL/mS → 1. When there is a large band gap, we
expect that we can generate a well-defined on state by driving
the system at an eigenfrequency that populates the vibrational
density of states. In addition, we expect that we can create
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a well-defined off state, e.g., by decreasing the pressure of
the system (which increases all of the eigenfrequencies) so
that the driving frequency now occurs within the band gap.
(See the difference between the Xs and circles in Fig. 7.) The
frequency-dependent gain (ratio of the Fourier transforms of
the output to the input signal) for a system with a large band
gap is shown in the inset to Fig. 22(a). Indeed, the gain at
ω = 14.9 is ≈ 10, while the gain at nearby lower frequencies
is several orders of magnitude lower. Thus, it is clear that an
acoustic switch can be created by choosing the on state as
the system with reference pressure (p = 10−1) in Fig. 22(a)
driven at frequency ω0 = 14.9 and choosing the pressure for
the off state so that G(ω0) � 10−2. Similar behavior is shown
in Fig. 22(b) for a system with a smaller band gap at mass
ratio mL/mS = 3. For example, the on state can be generated
by driving the system at ω0 = 15.5, where the gain possesses
a peak. The gain at nearby lower frequencies is smaller, but the
gain has another peak at ω0 = 13.2. Thus, the operating range
of the pressure difference of the acoustic switch decreases as
the band gap decreases.

We now focus on the continuous eigenfrequency regime
near ω0 = 14.0 for systems with mL/mS = 1 in Fig. 22(c).
The frequency-dependent gain possesses a peak at ω0 = 14.0,

but the next peak in G(ω0) at lower frequency does not occur
until ω0 = 12.6, even though the eigenfrequency spectrum
includes three eigenfrequencies between 12.6 and 14.0. For
these eigenfrequencies, the overlap between the eigenmodes
and either the input or output signal is small, and thus the
output signal is weak when the system is driven at these
eigenfrequencies. As a result, the gain ratio can be large even
for systems with a continuous eigenfrequency spectrum. In
Fig. 23, we show that the device with mL/mS = 1 can achieve
a gain ratio Gon(ω0)/Goff (ω0) > 102.

Thus, we have shown that the vibrational response of the
device at a given eigenfrequency depends on the overlap
between the eigenmodes near the driving frequency and the
input and output signals. A robust acoustic switch can al-
ways be produced using a system with a finite frequency
band gap. However, an acoustic switch can also be created
using a system with a continuous eigenfrequency spectrum
if the driving frequency is chosen such that the eigenmodes
of the corresponding nearby eigenfrequencies do not couple
to the input and output signals. Such acoustic switching
devices are more difficult to design since one needs to control
the spatial structure of the eigenmodes, as well as the eigen-
frequency spectrum.

[1] S. Alagoz, J. Acoust. Soc. Am. 133, EL485 (2013).
[2] N. Boechler, G. Theocharis, and C. Daraio, Nat. Mater. 10, 665

(2011).
[3] F. Li, P. Anzel, J. Yang, P. G. Kevrekidis, and C. Araio, Nat.

Commun. 5, 5311 (2014).
[4] G. Gantzounis, M. Serra-Garcia, K. Homma, J. M. Mendoza,

and C. Daraio, J. Appl. Phys. 114, 093514 (2013).
[5] L. Zigoneanu, B.-I. Popa, and S. A. Cummer, Nat. Mater. 13,

352 (2014).
[6] S. A. Cummer, Science 343, 495 (2014).
[7] E. B. Herbold, J. Kim, V. F. Nesterenko, S. Y. Wang, and C.

Daraio, Acta Mech. 205, 85 (2009).
[8] N. Boechler, J. Yang, G. Theocharis, P. G. Kevrekidis, and C.

Daraio, J. Appl. Phys. 109, 074906 (2011).
[9] A. Sokolow, E. G. Bittle, and S. Sen, Europhys. Lett. 77, 24002

(2007).
[10] V. F. Nesterenko, J. Appl. Mech. Tech. Phys. (USSR) 24, 733

(1983).
[11] C. F. Schreck, C. S. O’Hern, and M. D. Shattuck, Granul. Matter

16, 209 (2014).
[12] J. Bardeen and W. H. Brattain, Phys. Rev. 74, 230 (1948).
[13] F. Göncü, S. Luding, and K. Bertoldi, J. Acoust. Soc. Am. 131,

EL475 (2012).
[14] F. Göncü, S. Willshaw, J. Shim, J. Cusack, S. Luding, T. Mullin,

and K. Bertoldi, Soft Matter 7, 2321 (2011).
[15] V. Tournat, V. Zaitsev, V. Gusev, V. Nazarov, P. Béquin, and B.

Castagnéde, Phys. Rev. Lett. 92, 085502 (2004).
[16] C. F. Schreck, T. Bertrand, C. S. O’Hern, and M. D. Shattuck,

Phys. Rev. Lett. 107, 078301 (2011).

[17] M. Saadatfar, H. Takeuchi, V. Robins, N. Francois, and Y.
Hiraoka, Nat. Commun. 8, 15082 (2017).

[18] F. Rietz, C. Radin, H. L. Swinney, and M. Schröter, Phys. Rev.
Lett. 120, 055701 (2018).

[19] A. Tanguy, J. P. Wittmer, F. Leonforte, and J.-L. Barrat, Phys.
Rev. B 66, 174205 (2002).

[20] T. Bertrand, C. F. Schreck, C. S. O’Hern, and M. D. Shattuck,
Phys. Rev. E 89, 062203 (2014).

[21] Q. Wu, T. Bertrand, M. D. Shattuck, and C. S. O’Hern, Phys.
Rev. E 96, 062902 (2017).

[22] P. M. Reis, R. A. Ingale, and M. D. Shattuck, Phys. Rev. Lett.
96, 258001 (2006).

[23] A. Panaitescu, K. A. Reddy, and A. Kudrolli, Phys. Rev. Lett.
108, 108001 (2012).

[24] K. E. Daniels and R. P. Behringer, Phys. Rev. Lett. 94, 168001
(2005).

[25] E. Ben-Naim, J. B. Knight, E. R. Nowak, H. M. Jaeger, and
S. R. Nagel, Physica D 123, 380 (1998).

[26] J. M. N. T. Gray, Ann. Rev. Fluid Mech. 50, 407 (2018).
[27] K. M. Hill, D. V. Khakar, J. F. Gilchrist, J. J. MacCarthy,

and J. M. Ottino, Proc. Natl. Acad. Sci. USA 96, 11701
(1999).

[28] M. Souaille and B. Roux, Comput. Phys. Commun. 135, 40
(2001).

[29] M. A. Gonzalez, E. Sanz, C. McBride, J. L. F. Abascal, C.
Vega, and C. Valeriani, Phys. Chem. Chem. Phys. 16, 24913
(2014).

[30] M. Mezei, Mol. Simul. 3, 301 (1989).
[31] Y. Huang and S.-T. Ho, Opt. Express 16, 16806 (2008).

062901-15

https://doi.org/10.1121/1.4807306
https://doi.org/10.1121/1.4807306
https://doi.org/10.1121/1.4807306
https://doi.org/10.1121/1.4807306
https://doi.org/10.1038/nmat3072
https://doi.org/10.1038/nmat3072
https://doi.org/10.1038/nmat3072
https://doi.org/10.1038/nmat3072
https://doi.org/10.1038/ncomms6311
https://doi.org/10.1038/ncomms6311
https://doi.org/10.1038/ncomms6311
https://doi.org/10.1038/ncomms6311
https://doi.org/10.1063/1.4820521
https://doi.org/10.1063/1.4820521
https://doi.org/10.1063/1.4820521
https://doi.org/10.1063/1.4820521
https://doi.org/10.1038/nmat3901
https://doi.org/10.1038/nmat3901
https://doi.org/10.1038/nmat3901
https://doi.org/10.1038/nmat3901
https://doi.org/10.1126/science.1249616
https://doi.org/10.1126/science.1249616
https://doi.org/10.1126/science.1249616
https://doi.org/10.1126/science.1249616
https://doi.org/10.1007/s00707-009-0163-6
https://doi.org/10.1007/s00707-009-0163-6
https://doi.org/10.1007/s00707-009-0163-6
https://doi.org/10.1007/s00707-009-0163-6
https://doi.org/10.1063/1.3556455
https://doi.org/10.1063/1.3556455
https://doi.org/10.1063/1.3556455
https://doi.org/10.1063/1.3556455
https://doi.org/10.1209/0295-5075/77/24002
https://doi.org/10.1209/0295-5075/77/24002
https://doi.org/10.1209/0295-5075/77/24002
https://doi.org/10.1209/0295-5075/77/24002
https://doi.org/10.1007/BF00905892
https://doi.org/10.1007/BF00905892
https://doi.org/10.1007/BF00905892
https://doi.org/10.1007/BF00905892
https://doi.org/10.1007/s10035-013-0458-0
https://doi.org/10.1007/s10035-013-0458-0
https://doi.org/10.1007/s10035-013-0458-0
https://doi.org/10.1007/s10035-013-0458-0
https://doi.org/10.1103/PhysRev.74.230
https://doi.org/10.1103/PhysRev.74.230
https://doi.org/10.1103/PhysRev.74.230
https://doi.org/10.1103/PhysRev.74.230
https://doi.org/10.1121/1.4718384
https://doi.org/10.1121/1.4718384
https://doi.org/10.1121/1.4718384
https://doi.org/10.1121/1.4718384
https://doi.org/10.1039/c0sm01408g
https://doi.org/10.1039/c0sm01408g
https://doi.org/10.1039/c0sm01408g
https://doi.org/10.1039/c0sm01408g
https://doi.org/10.1103/PhysRevLett.92.085502
https://doi.org/10.1103/PhysRevLett.92.085502
https://doi.org/10.1103/PhysRevLett.92.085502
https://doi.org/10.1103/PhysRevLett.92.085502
https://doi.org/10.1103/PhysRevLett.107.078301
https://doi.org/10.1103/PhysRevLett.107.078301
https://doi.org/10.1103/PhysRevLett.107.078301
https://doi.org/10.1103/PhysRevLett.107.078301
https://doi.org/10.1038/ncomms15082
https://doi.org/10.1038/ncomms15082
https://doi.org/10.1038/ncomms15082
https://doi.org/10.1038/ncomms15082
https://doi.org/10.1103/PhysRevLett.120.055701
https://doi.org/10.1103/PhysRevLett.120.055701
https://doi.org/10.1103/PhysRevLett.120.055701
https://doi.org/10.1103/PhysRevLett.120.055701
https://doi.org/10.1103/PhysRevB.66.174205
https://doi.org/10.1103/PhysRevB.66.174205
https://doi.org/10.1103/PhysRevB.66.174205
https://doi.org/10.1103/PhysRevB.66.174205
https://doi.org/10.1103/PhysRevE.89.062203
https://doi.org/10.1103/PhysRevE.89.062203
https://doi.org/10.1103/PhysRevE.89.062203
https://doi.org/10.1103/PhysRevE.89.062203
https://doi.org/10.1103/PhysRevE.96.062902
https://doi.org/10.1103/PhysRevE.96.062902
https://doi.org/10.1103/PhysRevE.96.062902
https://doi.org/10.1103/PhysRevE.96.062902
https://doi.org/10.1103/PhysRevLett.96.258001
https://doi.org/10.1103/PhysRevLett.96.258001
https://doi.org/10.1103/PhysRevLett.96.258001
https://doi.org/10.1103/PhysRevLett.96.258001
https://doi.org/10.1103/PhysRevLett.108.108001
https://doi.org/10.1103/PhysRevLett.108.108001
https://doi.org/10.1103/PhysRevLett.108.108001
https://doi.org/10.1103/PhysRevLett.108.108001
https://doi.org/10.1103/PhysRevLett.94.168001
https://doi.org/10.1103/PhysRevLett.94.168001
https://doi.org/10.1103/PhysRevLett.94.168001
https://doi.org/10.1103/PhysRevLett.94.168001
https://doi.org/10.1016/S0167-2789(98)00136-5
https://doi.org/10.1016/S0167-2789(98)00136-5
https://doi.org/10.1016/S0167-2789(98)00136-5
https://doi.org/10.1016/S0167-2789(98)00136-5
https://doi.org/10.1146/annurev-fluid-122316-045201
https://doi.org/10.1146/annurev-fluid-122316-045201
https://doi.org/10.1146/annurev-fluid-122316-045201
https://doi.org/10.1146/annurev-fluid-122316-045201
https://doi.org/10.1073/pnas.96.21.11701
https://doi.org/10.1073/pnas.96.21.11701
https://doi.org/10.1073/pnas.96.21.11701
https://doi.org/10.1073/pnas.96.21.11701
https://doi.org/10.1016/S0010-4655(00)00215-0
https://doi.org/10.1016/S0010-4655(00)00215-0
https://doi.org/10.1016/S0010-4655(00)00215-0
https://doi.org/10.1016/S0010-4655(00)00215-0
https://doi.org/10.1039/C4CP02817A
https://doi.org/10.1039/C4CP02817A
https://doi.org/10.1039/C4CP02817A
https://doi.org/10.1039/C4CP02817A
https://doi.org/10.1080/08927028908031382
https://doi.org/10.1080/08927028908031382
https://doi.org/10.1080/08927028908031382
https://doi.org/10.1080/08927028908031382
https://doi.org/10.1364/OE.16.016806
https://doi.org/10.1364/OE.16.016806
https://doi.org/10.1364/OE.16.016806
https://doi.org/10.1364/OE.16.016806

