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Void distributions reveal structural link between jammed packings and protein cores
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Dense packing of hydrophobic residues in the cores of globular proteins determines their stability. Recently,
we have shown that protein cores possess packing fraction φ ≈ 0.56, which is the same as dense, random packing
of amino-acid-shaped particles. In this article, we compare the structural properties of protein cores and jammed
packings of amino-acid-shaped particles in much greater depth by measuring their local and connected void
regions. We find that the distributions of surface Voronoi cell volumes and local porosities obey similar statistics
in both systems. We also measure the probability that accessible, connected void regions percolate as a function
of the size of a spherical probe particle and show that both systems possess the same critical probe size. We
measure the critical exponent τ that characterizes the size distribution of connected void clusters at the onset of
percolation. We find that the cluster size statistics are similar for void percolation in packings of amino-acid-
shaped particles and randomly placed spheres, but different from that for void percolation in jammed sphere
packings. We propose that the connected void regions are a defining structural feature of proteins and can be used
to differentiate experimentally observed proteins from decoy structures that are generated using computational
protein design software. This work emphasizes that jammed packings of amino-acid-shaped particles can serve
as structural and mechanical analogs of protein cores, and could therefore be useful in modeling the response of
protein cores to cavity-expanding and -reducing mutations.

DOI: 10.1103/PhysRevE.99.022416

I. INTRODUCTION

A significant driving force in protein folding is the seques-
tration of hydrophobic amino acids from solvent. Moreover,
these buried amino acids are densely packed in the protein
core [1]. In fact, the packing of core residues has been linked
directly to protein stability [2]. For example, large-to-small
amino acid mutations, which can increase interior protein
cavities, or voids, are known to destabilize proteins when
they are subjected to hydrostatic pressure [3–5] and chemical
denaturants [6,7]. Determining the connection between dense
core packing and voids is therefore crucial to understanding
the physical origins of protein stability and reliably designing
new protein structures that are stable [8]. However, no such
quantitative understanding yet exists, and it is currently diffi-
cult to distinguish computational protein designs that are not
stable in experiments from experimentally observed structures
[9].

In previous studies [10–12], we found, using collective side
chain repacking, that the side chain conformations of residues
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in protein cores (from a collection of high-resolution pro-
tein crystal structures) are uniquely specified by hard-sphere,
steric interactions. Moreover, we have shown that, when con-
sidering hard-sphere optimized atomic radii, the core regions
in proteins possess the same packing fraction φ ≈ 0.56 as that
found in simulations of dense, random packings of purely
repulsive, amino-acid-shaped particles. This result suggests
that the packing fraction of protein cores is determined by the
bumpy and nonsymmetric shape of amino acids, and not by
the backbone or local secondary structure.

However, materials that share the same packing fraction do
not necessarily possess the same internal structure. In this arti-
cle, we characterize the void space in experimentally obtained
and computationally generated protein cores to further test the
geometric similarities between these two systems. We show
below that dense random packings of amino-acid-shaped par-
ticles have the same local packing fraction, void distribution,
and percolation of connected void space as protein cores,
which indicates structural equivalence.

Our results suggest that the computationally generated
packings can be used as mechanical analogs of protein cores
to predict their collective mechanical response. Further, our
results emphasize the connection between structurally ar-
rested, yet thermally fluctuating, protein cores and the jam-
ming transition of highly nonspherical particles [13]. Al-
though the similarity between structural glasses and proteins
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at low temperatures has been known for several decades
[14–18], prior computational studies have mainly focused on
the transition from harmonic to anharmonic conformational
fluctuations on length scales spanning the full protein. In
contrast, our studies identify key structural similarities be-
tween jammed packings of amino-acid-shaped particles and
the cores of protein crystal structures.

This article is organized into four sections and three appen-
dices. In Sec. II, we describe the database of high-resolution
protein crystal structures that we use for our structural analy-
ses and the computational methods we use to generate jammed
packings of amino-acid-shaped particles. We also outline two
methods to measure the void distribution in the two systems:
a local measure of void space using surface Voronoi tessella-
tion, and a nonlocal or “connected” measure of void space
similar to that used by Kertèsz [19] and Cuff and Martin
[20]. In Sec. III, we compare the results of both the local and
connected void measurements for jammed packings of amino-
acid-shaped particles and protein cores and find that both void
measurements are the same for both systems. In Sec. III A,
we show that the Voronoi cell volume distributions in both
systems are described by a k-gamma distribution with similar
shape factors k. In addition, we find that the distribution
of the local porosity (η = 1 − φ) is the same for protein
cores and jammed packings of amino-acid-shaped particles. In
Sec. III B, we identify the void percolation transition as a func-
tion of the probe particle accessibility for the connected voids,
and find that protein cores and jammed packings of amino-
acid-shaped particles share the same critical probe size that
separates the percolating and nonpercolating regimes. In Sec
III C, we investigate the critical properties of this percolation
transition, and show that they are similar to void percolation
of systems of randomly placed spheres, but distinct from
void percolation in jammed sphere packings. In Sec. IV, we
summarize our results, discuss their importance, and identify
future research directions. We include three appendices with
additional details of our computational methods. In Appendix
A, we provide details for the computational method we use
to generate jammed packings of amino-acid-shaped particles.
In Appendix B, we discuss the differences between protein
cores in the Dunbrack 1.0 database, and the core replicas
we generate from jammed packings of amino-acid-shaped
particles. In Appendix C, we discuss the differences between
the connected void cluster size distributions in the systems
considered in Sec. III C.

II. METHODS

To benchmark our studies of local and connected void
regions, we use a subset of the Dunbrack PISCES Protein
Database (PDB) culling server [21,22] of high-resolution
protein crystal structures. This dataset, which we will refer
to as “Dunbrack 1.0,” contains 221 proteins with < 50%
sequence identity, resolution � 1.0 Å, side chain B factors per

residue � 30 Å
2

and R factor � 0.2. We add hydrogen atoms
to each protein crystal structure using the REDUCE software
[23]. To determine core amino acids, we calculate the solvent
accessible surface area (SASA) for each residue using the
NACCESS software [24] with a 1.4 Å water molecule-sized
probe [25]. To compare the SASA for residues with different

sizes, we calculate the relative SASA (rSASA), which is the
ratio of the SASA of the residue in the protein context to
that of the residue outside the protein context, along with
the Cα , C, and O atoms of the previous amino acid in the
sequence and the N, H, and Cα atoms of the next amino
acid in the sequence. We define core residues as those with
rSASA � 10−3, and we define a protein core as a set of core
residues that each share at least one Voronoi cell face (defined
below) with each other. We find similar results if the threshold
for defining a core residue is smaller, although there will be
fewer “core” residues. We showed in previous work that the
local packing fraction decreases significantly for residues with
rSASA >0.05 [25]. See Fig. 2(a) for an example core region
in a protein from the Dunbrack 1.0 database, and Fig. 9 for the
size distribution of protein cores in the Dunbrack 1.0 database.

We will compare the structural properties of the cores
of protein crystal structures and jammed packings [26] of
amino-acid-shaped particles. In previous studies, we found
that the packing fraction of core regions in proteins is φ ≈
0.56, which is the same as that of jammed packings of purely
repulsive amino-acid-shaped particles without backbone con-
straints [10,27]. Here, we will focus exclusively on packing
the hydrophobic residues: Ala, Leu, Ile, Met, Phe, and Val.
The amino-acid-shaped particles will include the backbone
atoms N, Cα , C, and O, as well as all of the side chain atoms,
with the atomic radii given in Ref. [10], which recapitulate the
side chain dihedral angles of residues in protein cores. The
packings of amino-acid-shaped particles contain mixtures of
Ala, Leu, Ile, Met, Phe, and Val residues, with each residue
treated as a purely repulsive, rigid body composed of a union
of spherical atoms with fixed bond lengths, bond angles, and
side-chain and backbone dihedral angles taken from instances
in the Dunbrack 1.0 database.

We choose which residues are included in each packing
using two methods. For method 1 (M1), we generate C = 20
jammed packings of the exact residues found in each distinct
protein core in the Dunbrack 1.0 database. For example, if
protein X has a core with R residues, we produce C jammed
packings of those exact R residues. If r of these R residues
are not one of the hydrophobic residues we consider, these
residues are removed and a jammed packing is generated with
the remaining R − r residues. This method seeks to mimic the
core size and amino acid frequency distribution found in the
Dunbrack 1.0 database. Note that we do not remove r residues
from the corresponding protein core in the Dunbrack 1.0
database; nonhydrophobic residues are only excluded from
the initial conditions used to generate packings of amino-
acid-shaped particles. In method 2 (M2), we randomly select
hydrophobic residues from the Dunbrack 1.0 database with
frequencies set by the fraction of each amino acid type found
in the Dunbrack 1.0 database. The frequencies are 0.29 (Ala),
0.19 (Leu), 0.17 (Ile), 0.05 (Met), 0.07 (Phe), and 0.23 (Val).
In method 2, the identities of the residues in the jammed
packings only match those in protein cores on average.

We now briefly describe the computational method for
generating jammed packings of amino-acid-shaped particles.
We use a pairwise, purely repulsive linear spring potential
to model inter-residue interactions. Because the residues are
rigid particles with each composed of a union of spheres, we
test for overlaps between residues μ and ν by checking for
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overlaps between all atoms i on residue μ and all atoms j
on residue ν, respectively. Note that this potential is isotropic
and depends only on the distances between atoms on different
residues. [See Eq. (A1) in Appendix A.]

We place N residues with random initial positions and ori-
entations at packing fraction φ0 = 0.40 in a cubic simulation
box with periodic boundary conditions and then increase the
packing fraction in small steps �φ to isotropically compress
the system. After each compression step, we relax the total
potential energy using FIRE energy minimization [28]. This
method is similar to a “fast” thermal quench that finds the
nearest local potential energy minimum. We use quaternions
to track the particle orientations for each residue, as described
in Ref. [29]. If the total potential energy per residue is zero af-
ter energy minimization, i.e., U/Nε < 10−8, where ε is the en-
ergy scale of the atomic interactions, we continue to increase
the packing fraction. If the total potential energy per residue
is nonzero, i.e., U/Nε � 10−8 and residues have small over-
laps, we decrease the packing fraction. The packing fraction
increment �φ is halved each time the algorithm switches from
compression to decompression and vice versa. We terminate
the packing-generation protocol when the residue packings
satisfy 10−8 < U/Nε < 2 × 10−8 and possess a vanishing
kinetic energy per residue (i.e., K/Nε < 10−20) [13]. [An
example jammed packing of amino-acid-shaped particles is
shown in Fig. 2(b) and further computational details are
included in Appendix A.]

To measure the distribution of local voids in packings
of amino-acid-shaped particles and protein cores, we use a
Voronoi tessellation, which ascribes to each particle the region
of space that is closer to that particle than all other particles
in the system. For residues, which are highly nonspherical
particles, we use a generalization of the standard Voronoi
tessellation known as the surface- or set-Voronoi (SV) tessel-
lation [30]. This tessellation partitions the empty space in the
system using a bounding surface for each residue. An efficient
algorithm to generate this tessellation is outlined in Ref. [30]
and implemented using POMELO [31]. To construct the SV
tessellation, consider a set of N particles with bounding sur-
faces {∂Kμ} for μ = 1, ..., N . The software approximates ∂Kμ

by triangulating points on the particle surfaces, and uses the
standard Voronoi tessellation of the surface points to construct
the SV cell for each residue μ. We find that using 400 surface
points per atom, or ≈6400 surface points per residue, gives an
accurate representation of the SV cell, which does not change
significantly as more surface points are added. An example SV
cell from a packing of amino-acid-shaped particles is shown in
Fig. 1(a). For an SV cell with volume V v

μ surrounding residue
μ with volume vμ, the local porosity is given by

ημ = V v
μ − vμ

V v
μ

= 1 − φμ, (1)

where φμ = vμ/V v
μ is the local packing fraction. This quantity

measures the local void space associated with each residue.
We also quantify the “connected” void space shared be-

tween residues in packings of amino-acid-shaped particles
and protein cores. To do this, we implement a grid-based
method similar to that described by Kertèsz [19] and Cuff
and Martin [20], where the “void space” is defined as the

(a)

(b)

Ala

Ala

Val

Ile

Ile

Leu

FIG. 1. Visualization of (a) local and (b) connected voids from
the same computationally generated packing of N = 64 amino-acid-
shaped particles. Only the central Alanine (Ala) with the neighboring
Alanine, 2 Isoleucines (Ile), Leucine (Leu), and Valine (Val) are
shown for clarity. The neighboring amino acids share at least one
common surface Voronoi cell face with the central Ala. In (a),
the central Ala is enclosed by its surface Voronoi cell. In (b), the
connected void space is visualized using points on a grid. For clarity
only 75% of the points are shown, and the grid spacing (g = 0.7Å)
is large compared to values used in the text. In both (a) and (b), the
atoms are colored as follows: C (green), O (red), N (blue), and H
(white). See Fig. 8 for visualizations of the connected void space
throughout the entire simulation domain.

region of a system accessible to a spherical probe particle
with radius a. The geometry and distribution of void space
in a system is thus a function of a, the residue positions
�rμ, and bounding surfaces ∂Kμ. We define a cubic lattice
with G points in each direction within the simulation domain,
which gives a lattice spacing g = L/G. For all lattice points
p, we define the set of void points V to be all points that
can accommodate a spherical probe particle with radius a
without causing overlaps with any atoms. We label all void
points with a 1, and all other points with a 0. After all grid
points are labeled, we use the Newman-Ziff algorithm [32] to
cluster adjacent, similarly-labeled grid points. We consider all
adjacent points on the nearest face, edge, and vertex of a cube
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FIG. 2. (a) Core residues in an example globular protein (PDB code: 3F1L). Noncore regions are drawn using the ribbon representation,
and the 11 core amino acids are drawn in all-atom representation. (b) Jammed packing of the same 11 core residues in (a). (c) The surface
Voronoi cell volume V v distribution plotted as a function of x = (V v − V v

min,α )/(〈V v〉α − V v
min,α ) and fit to a k-gamma distribution (black line)

with k = 6.06 ± 0.08 and 5.29 ± 0.27 for packings of amino-acid-shaped particles (circles) and protein cores (squares), respectively. 〈V v〉α is
the average and V v

min,α is the minimum SV cell volume of residue type α. The inset of (c) is the cumulative distribution function F (x) for the
data in the main panel.

of points surrounding each lattice point (i.e., next-to-next-
to-nearest neighbor counting with 26 possible adjacencies
for each point) when merging void clusters and implement
periodic boundary conditions. A sketch of connected void
lattice points in a subset of a packing of amino-acid-shaped
particles is shown in Fig. 1(b).

When measuring void space in protein structures, we im-
plement a similar procedure, but we only consider voids in
core residues. We construct a box of dimension Lx × Ly × Lz

that circumscribes each protein core, with the box just outside
the radii of core residues near the box edges. We pick a
spherical probe particle of radius a, and label the void space
as all points that are (a) not contained inside an atom, and
(b) contained only within the union of the SV cells of core
residues. With these constraints, we only consider connected
void space specific to the core of the protein. We then use the
Newman-Ziff algorithm to merge void clusters, and repeat the
procedure for 100 different random protein orientations.

III. RESULTS

A. Local void analysis

We begin with an analysis of local voids associated with
each amino acid in jammed packings of amino-acid-shaped
particles and protein cores. We measure the distribution of
the SV cell volumes and show that the distributions in both
systems can be fit to a k-gamma distribution, which also
describes Voronoi cell distributions in jammed packings of
spheres [33,34], ellipsoids [35], attractive emulsion droplets
[36], wet granular materials [37], and model cell monolayers
[38]. The k-gamma distribution for the SV cell volume V v

μ for
each residue has the form

P(x) = kk


(k)
xk−1 exp(−kx), (2)

where x = (V v
μ − V v

min,α )/(〈V v
μ 〉α − V v

min,α ), which sets the
scale factor of the distribution to 1. Here,

〈
V v

μ

〉
α

= 1

Nα

Nα∑
μ=1

V v
μ (3)

is the average SV cell volume of residue type α. The sum in-
volving μ is over all Nα residues of type α in all packings, and
V v

min,α is the minimum SV cell volume of residue type α. We
consider minima and averages for each residue type separately
to account for the large differences in residue volumes; that is,
each residue type α, when considered individually, has a SV
cell volume distribution described by Eq. (2).

We measure the shape factor kα for each residue type α ei-
ther by fitting the SV cell volume distribution to Eq. (2) using
Maximum Likelihood Estimation (MLE), or by calculating

kα =
(〈

V v
μ

〉
α

− V v
min,α

)2

〈(
V v

μ

)2〉
α

− 〈
V v

μ

〉2
α

. (4)

We obtain similar k values using both methods. Although
the values of kα depend on the type of amino acid α, when
we average the values of kα we recover the value of k ob-
tained from fitting the combined distribution. We focus on the
distributions of SV cell volumes averaged over all hydropho-
bic residues.

In Fig. 2(c), we show the SV cell volume distributions P(x)
for packings of core amino-acid-shaped particles modeled
after specific protein cores (method M1) and for all core
residues in the Dunbrack 1.0 database. We find that the
distributions for these two systems are similar; both obey a
k-gamma distribution [Eq. (2)] with similar shape parameters,
k = 6.06 ± 0.08 and k = 5.29 ± 0.27, for core residues in the
Dunbrack 1.0 database and packings of amino-acid-shaped
particles, respectively. As expected, the cumulative distribu-
tions F (x) of the SV cell volumes for residues in protein cores
and packings of amino-acid-shaped particles are also nearly
indistinguishable.

The strong similarity between the SV cell volume dis-
tributions indicates that jammed packings of amino-acid-
shaped particles (at φJ ≈ 0.56) and protein cores possess the
same underlying structure. To better understand this result,
in Fig. 3 we plot the shape parameter k that describes the
form of the Voronoi cell volume distributions for packings
of N = 103 monodisperse spheres (with φJ ≈ 0.64) and of
N = 64 amino-acid-shaped particles versus φ. When φ �
φJ , and the systems are sufficiently dilute, the Voronoi cell
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FIG. 3. The shape parameter k for fits of the k-gamma distribu-
tion [Eq. (2)] to the SV cell volume distributions P(x) for packings
of amino-acid-shaped particles (open circles), monodisperse spheres
(filled circles), and both core and surface residues in the Dunbrack
1.0 database (open squares) as a function of packing fraction φ.
The dashed horizontal line at k = 5.59 is the analytical value of the
shape factor for the Voronoi cell volume distribution of a random
Poisson point process [39], and the dashed vertical line at φJ = 0.56
is the packing fraction for protein cores and jammed packings of
amino-acid-shaped particles.

volume distributions of the packings of monodisperse spheres
and amino-acid-shaped particles resemble that for a random
Poisson point process [39] with k ≈ 5.6. In this regime, free
volume is assigned randomly to each particle since the particle
positions are uncorrelated. However, as φ increases, the k
values for packings of monodisperse spheres and amino-acid-
shaped particles begin to grow, but at different rates, since
the particle geometry becomes important in determining the
local free volume. Near φ � φJ , the shape parameter plateaus
at k ≈ 13 for packings of monodisperse spheres, but the
shape parameter decreases strongly to k ≈ 6 for packings of
amino-acid-shaped particles. This decrease in k indicates a
transition from having the shape of the Voronoi cell volume
distribution determined by spherical particles (for φ � φJ )
to that determined by bumpy, asymmetric amino-acid-shaped
particles (for φ � φJ ). Note, however, that the SV cell volume
distribution of jammed packings of amino-acid-shaped parti-
cles is similar (in terms of k value) to that of randomly placed
Poisson points. This suggests that the void distribution of
jammed packings of amino-acid-shaped particles and protein
cores share structural properties with randomly placed points.
We will expand on this similarity in Sec. III C.

In addition, we calculate k for the SV cell volume dis-
tributions for residues in the Dunbrack 1.0 database as a
function of packing fraction. In previous studies, we have
found a one-to-one correlation between solvent accessibility
and packing fraction [25]; residues with lower values of φ in
Fig. 3 are therefore more solvent-exposed, i.e., closer to the
protein surface. For most of the range in φ, k ≈ 2, whereas
k � 5.6 for packings of monodisperse spheres and amino-
acid-shaped particles. In particular, k does not equal the value
for a random Poisson point process (k = 5.6) in the limit
φ � φJ for residues in protein cores. In protein cores, the
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FIG. 4. Distribution of the scaled local porosity y = (η −
ηmin,α )/(〈η〉α − ηmin,α ), where 〈η〉α is the average and ηmin,α is the
minimum porosity of residue type α, for packings of amino-acid-
shaped particles (circles) and residues in protein cores in the Dun-
brack 1.0 database (squares). The solid line is a Weibull distribution
with shape parameter b ≈ 3.2 [Eq. (7)]. The inset is the cumulative
distribution function F (y) of the data in the main panel.

backbone constraint gives rise to correlations in the residue
positions. However, as φ → φJ , k increases, reaching k ≈ 6
when φ = φJ . This result shows that there is a fundamental
change in the SV cell distribution near the onset of jamming
in protein cores. For φ � φJ , the backbone determines the
shape of the SV cell volume distribution, whereas for φ → φJ ,
the shapes of the amino acids determine the SV cell volume
distribution.

We also compare the local porosity distributions for protein
cores and packings of amino-acid-shaped particles in Fig. 4.
We scale the porosity [as in Eq. (2)] by defining

y = ημ − ηmin,α

〈ημ〉α − ηmin,α

, (5)

where

〈ημ〉α = 1

Nα

Nα∑
μ=1

ημ, (6)

and ηmin,α is the minimum porosity over all Nα core residues
of type α. Again, the porosity distributions P(y) [and cumu-
lative distributions F (y)] for residues in protein cores and
packings of amino-acid-shaped particles are similar, but here
P(y) has the shape of a Weibull distribution with scale factor
λ = 1,

P(y) = byb−1 exp(−yb), (7)

where b is the shape parameter of the Weibull distribution.
The small differences in P(x) and P(y) between core

residues in protein crystal structures and packings of amino-
acid-shaped particles can be explained by the small differ-
ences between the volumes of core residues in crystal struc-
tures and in packings. The atoms on neighboring amino acids
interact differently for free amino acids in packings versus
backbone atoms in protein cores, which form covalent and
hydrogen bonds. Thus, we find that the volumes of residues
in protein cores have larger variances and smaller means than
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those in packings of amino-acid-shaped particles. Also, the
overlaps between covalently bonded backbone atoms that link
adjacent residues slightly decreases the mean SV cell volume,
which gives rise to a larger population of small SV cells and
a small deviation between P(x) for residues in protein cores
and in packings for small x in Fig. 2(c).

B. Connected void analysis of protein cores

We next quantify the distribution of “connected” void
space that is shared between residues. Using a grid-based
method, we calculate the volume of regions of connected void
space as a function of the radius a of a spherical probe particle.
As we increase a, the connected void space transitions from
highly connected throughout the system to compact and lo-
calized with distinct void regions. We measure the probability
ρ(a) of finding a percolating void region, where we define
percolation as the appearance of a cluster that spans one of
the system dimensions when the boundary is closed, and a
cluster that both spans, wraps around the boundary, and self-
intersects when the boundaries are periodic. We identify the
critical probe radius ac by setting ρ(ac) = 0.5. Because the
definition of connected void regions depends on the boundary
condition, the value of ac, especially in systems as small as
protein cores, is affected by the boundary conditions. Thus,
to calculate ρ(a), we create packings of amino-acid-shaped
particles with similar boundary conditions as those in pro-
tein cores. From a packing of amino-acid-shaped particles
with periodic boundary conditions (N = 64, method M2), we
extract a representative protein core of R − r residues that
all share at least one SV cell face. We sample R − r from
the distribution of core sizes P(R) found in the Dunbrack
1.0 database. (See Fig. 9 in Appendix A.) The resulting
packings have boundary conditions similar to protein cores in
the Dunbrack 1.0 database. We then determine the connected
void regions as a function of a and identify the critical probe
size ac as shown in Fig. 5(a). We find the same critical probe
size ac = 0.48 ± 0.01 Å for both protein cores and packings
of amino-acid-shaped particles with similar boundary condi-
tions. Note that this value of the critical probe radius is smaller
than that of a water molecule, which is ≈1.4 Å, and thus the
voids we consider here are not accessible by aqueous solvents.
However, as we discuss below, this value of the probe radius
corresponds to a critical point; we will exploit the behavior of
the voids near this critical point to understand the geometric
properties of the connected voids, and to differentiate between
the voids in various systems.

Thus, determining the connected void regions in protein
cores is a type of percolation problem. In lattice site perco-
lation, sites on a lattice in d spatial dimensions are either
occupied randomly with probability p or not occupied with
probability 1 − p. At the percolation threshold pc, adjacent
occupied sites form a percolating cluster that spans the system
and becomes infinite in the large-system limit. Continuum
percolation occurs in systems that are not confined to a
lattice. Both particle contact and void percolation have been
studied in randomly placed overlapping spheres [19,40,41]
and percolation of particle contacts [42,43] has been studied
in packings of repulsive [44] and adhesive particles [45].
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FIG. 5. (a) Percolation probability ρ(a) plotted versus the probe
radius a for protein cores from the Dunbrack 1.0 database (crosses)
and clusters of core residues extracted from static packings of
N = 64 amino-acid-shaped particles (circles). The horizontal and
vertical dashed lines indicate the critical probe radius ac = 0.48 Å
that satisfies ρ(ac ) = 0.5. (b) Cluster size distribution ns with size s
at the critical porosity ηc, which scales as ns(ηc ) ∼ s−τ . The Fisher
power-law exponents τ = 1.95 ± 0.06 and 1.85 ± 0.05 for protein
cores from the Dunbrack 1.0 database (crosses) and representative
clusters of core residues in packings of amino-acid-shaped particles
(circles), respectively. The solid line has slope equal to −1.85.

In this article, we consider percolation of the void space
accessible to a spherical probe particle with radius a in
packings of spheres and amino-acid-shaped particles, as well
as systems composed of randomly placed spheres [40,41]. As
the probe particle radius is increased, the amount of space
available to the probe is restricted and the number of void
lattice sites decreases. We define an effective porosity η as the
ratio of the number of void lattice sites to the total number
of lattice sites Gd . We determine the percolation threshold
using a bisection method, where we begin with two initial
guesses for the percolation transition, aH and aL with aH >

aL, and iteratively check for percolation of void sites at the
probe radius a = (aH + aL )/2. We set aH = a if we find a
percolated cluster of void sites, and aL = a if we do not find
a percolated cluster. We terminate the algorithm when the
difference between successive values for ac is within a small
tolerance δa = 10−8 Å. Note that our use of a lattice of points
to measure the connected void region does not imply that
our model is a lattice model. The lattice is simply a tool to
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FIG. 6. Critical porosity 〈ηc(G)〉 using a lattice with G points
along each dimension plotted versus G−1 for jammed packings of
N = 64 amino-acid-shaped particles with Na = 1024 atoms (open
circles), N = 103 randomly placed spheres (open squares), and N =
103 monodisperse spheres (filled circles). The dashed lines have
vertical intercepts that indicate ηc(G → ∞) ≈ 0.0345, 0.0318, and
0.0305 for packings of amino-acid-shaped particles, randomly placed
spheres, and monodisperse sphere packings, respectively.

calculate the connected void space volume [19]. Furthermore,
in the continuum limit (i.e., G → ∞), we recover the critical
porosity ηc ≈ 0.03 measured using Kerstein’s method [40,41]
on systems of randomly placed spheres [46]. (See Fig. 6.)
Since there is a one-to-one mapping between a and η, we will
use η as the order parameter for continuum void percolation.

C. Connected void analysis of packings

We now focus on the statistical properties of the connected
void regions in packings of spheres and amino-acid-shaped
particles prepared in systems with cubic, periodic boundaries.
In Fig. 7 and Table I, we summarize the results of this analysis,
and we show visualizations of the percolating connected voids
in jammed packings of spheres and amino-acid-shaped parti-
cles in Fig. 8. We first measure the correlation length exponent
ν, where the correlation length ξ is defined as the average
distance between two points in the largest connected void
cluster. Near ηc, ξ diverges as |η − ηc|−ν . Using finite-size
scaling [47], we can write

ηc(N ) − ηc(∞) ∼ N−1/dν, (8)

where ηc(∞) is the percolation threshold in the large-system
limit and N ∼ Ld . ηc(N ) is a random variable with standard
deviation �ηc(N ), which will approach ηc(∞) as N → ∞.
Thus, we make the ansatz that

�ηc(N ) ∼ N−1/dν, (9)

which can be used to measure ν. [See Fig. 7(a).] We also
measure the Fisher exponent τ , defined by

ns(ηc) ∼ s−τ , (10)

where ns is the number of void clusters containing s sites.
While we measure this exponent for protein cores and random
packings with representative boundary conditions in Fig. 5(b),
in Fig. 7(b) we measure this exponent in systems with cubic,
periodic boundary conditions.

We also measure the fractal dimension and percolation
strength of the percolating void clusters. The fractal dimen-
sion is defined by

smax(ηc, N ) ∼ ND/d , (11)

where smax(ηc, N ) is the number of sites contained in the
largest void cluster in the system at percolation onset. If
D = d , the largest void cluster is a compact, nonfractal object.
However, if D < d , the void cluster is fractal [48]. [See
Fig. 7(c).] The percolation strength is the probability P (η)
that a given lattice site is part of the percolating void cluster
at a given porosity. Near ηc, the probability scales as P (η) ∼
|η − ηc|β . The probability obeys finite size scaling,

P (ηc, N ) ∼ N−β/dν . (12)

Once we determine ν using Eq. (9), we can determine β from
Eq. (12). [See Fig. 7(d).] We also expect β, ν, and D to satisfy
the hyperscaling relation,

D = d − β

ν
. (13)

In Table I, we report our measurements for the critical
exponents ν, τ , D, and β for void percolation (using a
spherical probe particle), as well as for d = 3 lattice site
percolation on a cubic lattice and void percolation in systems
of randomly placed spheres using two methods: the connected
void method described previously and the Voronoi vertex
method introduced by Kerstein [40] and implemented by Rin-
toul [41]. Note that protein cores and representative subsets
of jammed packings of amino-acid-shaped particles (denoted
“rep.”) are small systems with N < 30, and thus we cannot
use finite-size scaling to measure the critical exponents. We
can, however, measure the critical exponents for full packings
of amino-acid-shaped particles (denoted “full”), which mimic
the geometric properties of void clusters in protein cores.

We observe that across all models and methods studied, the
correlation length exponent ν ≈ 0.9–1.0 for void percolation.
In particular, ν ≈ 0.90 for packings of amino-acid-shaped
particles is similar to that (0.90) for randomly placed spheres
[41], as well as for standard site percolation [47]. In addition,
the fractal dimension D ≈ 2.4–2.6 is similar for all models
and methods for calculating void percolation. We find that the
percolation strength exponent β < 0.5 for randomly placed
spheres and packings of amino-acid-shaped particles when
using the connected void method, but β > 0.5 for packings of
monodisperse and bidisperse spheres. (The bidisperse systems
include N/2 large and N/2 small spheres with diameter ratio
d = 1.4.)

However, because of the limited range of system sizes
studied here, it is difficult to determine the critical exponents
with high precision. Thus, given the results for the ν, D, and
β exponents alone, it is difficult to distinguish the statistical
properties of the void content of packings of jammed spheres,
randomly placed spheres, and jammed amino-acid-shaped
particles from each other, or from void percolation on a cubic
lattice, for that matter.

We do see a strong distinction in the Fisher exponent τ

[Eq. (10)] between void percolation on a cubic lattice and in
packings of amino-acid-shaped particles. For these two sys-
tems, τ = 2.07 ± 0.01 and τ = 1.29 ± 0.06, respectively. For
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FIG. 7. (a–d) Scaling behavior for jammed packings of amino-acid-shaped particles (open circles), bidisperse spheres (filled circles), and
randomly placed spheres (open squares). In (a), we show that the standard deviation in the critical porosity scales as �ηc(N ) ∼ N−1/dν , where
ν is the correlation length exponent. The lines have slopes −0.33 (dotted line) and −0.31 (dot-dashed line). In (b), we show that for randomly
placed spheres and jammed packings of amino acids, the distribution of connected void clusters of size s at the percolation threshold scales
as ns(ηc ) ∼ s−τ , with a Fisher exponent τ ≈ 1.25. In addition, we plot ns at criticality for standard site percolation on a cubic lattice (red
stars), which has an apparent τ ≈ 2.07. We also plot the same distribution for the connected voids in jammed packings of bidisperse and
monodisperse spheres (filled diamonds), which do not display power-law scaling. In (c), we show that the maximum cluster size near the
percolation onset scales as smax(ηc, N ) ∼ ND/d , were D is the fractal dimension. The lines have slopes 0.83 (dotted line) and 0.82 (dot-dashed
line). In (d), we show that the probability for a given site to be in the percolating void cluster at ηc scales as P (ηc, N ) ∼ N−β/dν , where β is the
percolation strength scaling exponent. The lines have slopes −0.14 (dotted line) and −0.19 (dot-dashed line).

packings of randomly placed spheres, we find that the Fisher
exponent is τ = 1.22 ± 0.05, which is similar to our result
for packings of amino-acid-shaped particles. (See Table I.)
These values for τ were obtained from a cubic lattice with
G = 100 sites per box length, packings of amino-acid-shaped
packings with N = 128 particles and, on average, Na = 2048
atoms, and systems of N = 2000 randomly placed spheres.
These results suggest that the properties of connected voids
are similar in packings of amino-acid-shaped particles and
randomly placed spheres, and in general that connected voids
in these systems are distinct from those for void regions in
cubic lattices near percolation onset.

We do not report values of τ for jammed packings of
monodisperse and bidisperse spheres, since we observe non-
power-law behavior in the cluster size distributions for these
systems. As discussed in Appendix C, this behavior is most
likely due to a residual finite length scale at the percolation
threshold. We also observe non-power-law behavior in the
cluster size distribution for void percolation in randomly
placed spheres using Kerstein’s method, and do not report
a value for τ in Table I. As shown in Appendix C, this
non-power-law behavior is most likely due to the sparsity of

the Voronoi vertex network, which truncates the cluster size
distribution.

Our results suggest that the critical exponent τ is able
to distinguish the geometries of connected void regions in
different systems. In particular, the connected void regions
in packings of amino-acid-shaped particles and systems of
randomly placed spheres are similar, but distinct from that for
jammed sphere packings. In Fig. 8, we show examples of the
connected void surface in packings of (a) amino-acid-shaped
particles, (b) randomly placed spheres, and (c) bidisperse
spheres. Qualitatively, the connected void surfaces in systems
of randomly placed spheres and amino-acid-shaped particles
look similar, while the connected void surface in jammed
packings of bidisperse spheres looks different, with a char-
acteristic void size.

IV. CONCLUSIONS AND FUTURE DIRECTIONS

In this article, we analyzed local and connected void
regions in protein cores and in jammed packings of purely
repulsive amino-acid-shaped particles and showed that these
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TABLE I. Table of critical exponents ν, τ , D, and β for several models of void percolation. In the last column, we provide the value for the
hyperscaling relation, d − β

ν
, which matches the fractal dimension D if hyperscaling is satisfied. In the first four rows, we report the critical

exponents for packings of amino-acid-shaped particles with periodic boundary conditions (full) and boundary conditions representative of
protein cores (rep.). We also report the critical exponents for void percolation in jammed packings of monondisperse (Mono.) and bidisperse
(Bidis.) spheres. In the last four rows, we compare these results to those for void percolation in several systems that were studied previously.
We report our measurements of the critical exponents for site percolation on a cubic lattice, where only nearest neighbors are counted as
adjacent sites. We also report the critical exponents for void percolation and Voronoi vertex percolation in systems composed of randomly
placed spheres. Previously reported values of the exponents are given in parentheses, and references are given in the footnotes. Throughout the
table, error bars are obtained from the bootstrap method, where we randomly, independently sample 20% of the data over 200 trials, and fit the
exponents over each individual trial. Values for the exponents are the average over trials, and the error bars are standard deviations.

System ν τ D β d − β

ν

residue packings (full) 0.90 ± 0.24 1.29 ± 0.06 2.58 ± 0.18 0.37 ± 0.19 2.58 ± 0.33
residue packings (rep.) − 1.85 ± 0.05 − − −
Protein cores, Dunbrack 1.0 − 1.95 ± 0.06 − − −
Mono. Spheres (jammed) 1.05 ± 0.12 − 2.46 ± 0.09 0.60 ± 0.07 2.43 ± 0.15
Bidis. Spheres (jammed) 0.93 ± 0.10 − 2.40 ± 0.08 0.56 ± 0.07 2.40 ± 0.14

Cubic Latticea 0.91 ± 0.04 (0.88) 2.07 ± 0.01 (2.18) 2.49 ± 0.03 (2.53) 0.48 ± 0.02 (0.42) 2.47 ± 0.04
Randomly Placed Spheres 1.10 ± 0.06 1.22 ± 0.05 2.51 ± 0.03 0.44 ± 0.03 2.60 ± 0.05
(connected void method)
Randomly Placed Spheres 0.99 ± 0.05 (0.902 ± 0.005b) − 2.44 ± 0.03 0.48 ± 0.02 (0.45 ± 0.2c) 2.52 ± 0.05
(Voronoi vertex method)

aRef. [47].
bRef. [41].
cRef. [40].

two systems share the same void structure. We first inves-
tigated the surface-Voronoi (SV) cell volume distributions
and found that in both systems these distributions are well-
described by a k-gamma distribution with k ≈ 6. This k value
is much smaller than that (k ≈ 13) obtained for jammed
sphere packings, which indicates that packings of amino-
acid-shaped particles have a broader distribution of Voronoi
volumes. We also studied the SV cell volume distribution as
a function of the packing fraction, and found that only near
the onset of jamming do the SV cell distributions in protein
cores and packings of amino-acid-shaped particles match. In
the dilute case φ � φJ , the local packing environment in
protein cores is determined by the backbone, whereas the local
packing environment of packings of free residues resembles
a Poisson point process. At jamming onset, the local packing

environment is determined by the “bumpy,” asymmetric shape
of amino acids, not the backbone constraints.

Using a grid-based method, we also measured the dis-
tribution of nonlocal, connected voids in protein cores and
jammed packings of amino-acid-shaped particles. We found
that when we consider similar boundary conditions in protein
cores and jammed packings of amino-acid-shaped particles,
the two systems also have the same critical probe size ac (at
which the accessible, connected void region spans the system)
and Fisher exponent τ (which characterizes the scaling of
the size of the void clusters near percolation onset). We also
compared the finite-size scaling results for void percolation
in packings of amino-acid-shaped particles, in packings of
monodisperse and bidisperse spheres, and systems of ran-
domly placed spheres. We found that the void percolation

(a) (b) (c)

FIG. 8. Visualization of the surface of a connected void region (light domain) at the percolation threshold ηc ≈ 0.03. The dark domains
are the “inside” of the void region, which connects across the periodic boundaries. These three systems are (a) a jammed packing of N = 16
amino-acid-shaped particles, with 298 atoms in total, (b) N = 300 randomly placed spheres, and (c) a jammed packing of 300 bidisperse
spheres.
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critical exponents in packings of amino-acid-shaped particles
are similar to those in randomly placed spheres. Specifically,
the Fisher exponent τ takes a similar value for these two
systems (≈1.2 and ≈1.3, respectively), while this exponent
is significantly different for void percolation in cubic lattices
(≈2.1). This result may explain why the distribution of SV
cell volumes is similar for jammed packings of amino-acid-
shaped particles and randomly placed Poisson points with
φ = 0, as seen in the horizontal line Fig. 3. Interestingly, these
results echo similar observations by Liang and Dill, where the
authors recognize the similarity between the void distribution
of randomly-placed spheres and of protein crystal structures,
although they did not connect packing in protein cores with
random close packing of nonspherical particles [2].

In future work, we will use jammed packings of amino-
acid-shaped particles to understand the structural and mechan-
ical response of protein cores to amino acid mutations. We
can assess the response in two ways. First, we can prepare
jammed packings of amino-acid-shaped particles that repre-
sent wildtype protein cores, substitute one or more of the
wildtype residues with other hydrophobic residues, relax the
“mutant” packing using potential energy minimization, and
measure the changes in void structure. We can also measure
the vibrational density of states (VDOS) in jammed packings
that represent the wildtype and mutant cores. The VDOS and
the associated eigenmodes can provide detailed information
on how the low-energy collective motions change in response
to mutations. There are several advantages for calculating
the VDOS in jammed packings of amino-acid-shaped par-
ticles. For example, in jammed packings, only hard-sphere-
like steric interactions are included. In contrast, molecular
dynamics force fields for proteins typically include many
terms in addition to those that enforce protein stereochemistry,
which makes it difficult to determine the interactions that
control the collective motions. Studying jammed packings of
amino-acid-shaped particles also decouples the motions of
core versus surface residues.

Studies of the VDOS in jammed packings of amino-
acid-shaped particles will also shed light on the protein
“glass” transition, where the root-mean-square deviations in
the atomic positions switch from harmonic to anharmonic
behavior [17] in globular proteins near Tg ≈ 200 K [18]. We
will investigate the vibrational response of jammed pack-
ings of amino-acid-shaped particles to thermal fluctuations.
In particular, we will measure the Fourier transform of the
position fluctuations and determine the onset of anharmonic
response. Additionally, in this work we did not include back-
bone connectivity between amino acids in our packings, nor
did we treat the side chain dihedral angles as “soft” degrees of
freedom with harmonic constraints. In future work, to more
accurately model the geometrical and topological properties
of dynamically fluctuating protein cores, we will incorpo-
rate harmonic bond length, bond angle, and dihedral angle
interactions (for both backbone and side chain atoms), with
stiffnesses taken from bond length, bond angle, and dihedral
angle distributions observed in high-resolution protein crystal
structures.

In addition, our analysis of void distributions in protein
cores will provide new methods for identifying protein de-
coys, which are computationally generated protein structures

that are not observed experimentally. However, it is currently
difficult to distinguish between real structures and decoys. For
example, in the most recent Critical Assessment of Protein
Structure Prediction (CASP12), researchers were given a set
of target sequences, and were tasked with predicting the
structures of those sequences using a variety of methods [49].
Each group was allowed to submit five structures per target
sequence; when assessing which of their submissions were
the most accurate, only 3 groups out of 31 had >50% success
at identifying the most accurate structure [50]. The average
success rate was 30%, just slightly better than guessing at
random. Thus, assessing the viability of computationally-
designed structures is an incredibly difficult task.

Since the structure of void regions in the cores of protein
crystal structures is the same as that found in packings of
amino-acid-shaped particles, the properties of void regions
can serve as a benchmark for ranking computationally de-
signed protein structures. Recent studies have suggested that
protein decoys [8] possess local packing fraction inhomo-
geneities that are not present in protein crystal structures.
In addition, the void-based analyses presented here can be
used to evaluate the conformational dynamics of proteins
sampled in all-atom molecular dynamics simulations. An
understanding of the expected void properties from high-
resolution protein crystal structures can improve our ability
to identify unphysical conformational fluctuations that occur
during molecular dynamics trajectories. We propose that de-
tailed characterizations of the void space, using the methods
described here, will be a sensitive metric than can be used to
assess a variety of protein designs.
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APPENDIX A: PACKING-GENERATION PROTOCOL

As described in Sec. II, we generate jammed packings
of amino-acid-shaped particles using successive small steps
of isotropic compression or decompression with each step
followed by potential energy minimization. Each residue was
modeled as a rigid union of spheres with fixed bond lengths,
bond angles, and dihedral angles. Forces between atoms i
and j on distinct residues μ and ν were calculated using
�Fμν

i j = −�∇U (rμν
i j ), with the pairwise, purely repulsive linear

spring potential energy,

U
(
rμν

i j

) = ε

2

(
1 − rμν

i j

σ
μν
i j

)2

�

(
1 − rμν

i j

σ
μν
i j

)
. (A1)

In Eq. (A1), ε is the characteristic energy scale of the re-
pulsive interactions and σ

μν
i j = (σμ

i + σ ν
j )/2, where σ

μ
i is the
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diameter of atom i on residue μ. The quantity rμν
i j = |�rμ

j −�rν
i |

is the separation distance between atoms i and j on distinct
residues μ and ν, and � is the Heaviside step function that
sets the potential energy to zero when atoms i and j are
not in contact. We consider each residue as a rigid body.
Forces between pairs of atoms on contacting residues generate
torques. The torque on residue μ arising from a force on
atom i on residue μ from atom j on residue ν is �hμ

i × �Fμν
i j ,

where �hμ
i is the position of atom i relative to the center of

mass of residue μ. Note that this pair potential reduces to
a hard-sphere-like interaction in the limit of small atomic
overlaps [27]. The total potential energy U is given by

U =
∑
ν<μ

∑
i, j

U
(
rμν

i j

)
. (A2)

We use the velocity-Verlet algorithm to integrate the transla-
tional equations of motion for each particle’s center of mass,
and a quaternion-based variant of the velocity-Verlet method
described in Ref. [29] to integrate the rotational equations of
motions for each residue.

To simulate isotropic compression, we scale all lengths in
the system (except the box edges) at each iteration m by the
scale factor

α =
(

φm + �φm

φm

)1/3

, (A3)

where φm is the packing fraction and �φm is the packing frac-
tion increment at iteration m. This process uniformly grows
or shrinks all atoms, and thus the packing fraction satisfies
φm+1 = φm + �φm. After each compression or decompres-
sion step, we use the FIRE algorithm [28] to minimize the po-
tential energy in the packing. The packing fraction increment
is halved each time the total poential energy switches from
zero (i.e., U/Nε < 10−8) to nonzero or vice versa. We termi-
nate the packing-generation algorithm when the total potential
energy per residue satisfies 10−8 < U/Nε < 2 × 10−8 and the
kinetic energy per residue is below a small threshold, K/Nε <

10−20. We set the initial values of the packing fraction and
packing fraction increment to be φ0 = 0.4 and �φ0 = 10−3,
but our results do not depend sensitively on these values.

APPENDIX B: PROTEIN CORE SIZE DISTRIBUTION

In this Appendix, we show the distributions of the number
of core residues in protein crystal structures from the Dun-
brack 1.0 database. (See Fig. 9.) As described in Sec. II, we
define protein cores as clusters of residues that all share at
least one SV cell face with other residues in the cores, and
every atom in each residue has an rSASA � 10−3. In Method
M1 for generating jammed packings of amino-acid-shaped
particles, we create C replicas of each protein core with the
specific R − r residues found in that core, where R is the
number of core residues and R − r is the number of Ala,
Ile, Leu, Met, Phe, and Val core residues. Before pruning
nonhydrophobic residues, the average core size is 〈R〉 ≈ 16
residues, and 〈R − r〉 ≈ 12 after pruning.
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FIG. 9. Distribution of the number of core residues P(R) in the
Dunbrack 1.0 database, before (circles) and after (squares) pruning
nonhydrophobic residues from the core replicas as described in
Sec. III A. The mean number of residues before pruning is 〈R〉 ≈ 16,
and after pruning is 〈R − r〉 ≈ 12.

APPENDIX C: MEASUREMENT OF THE
FISHER EXPONENT τ

In this Appendix, we explain the differences we observe
in the Fisher exponent τ for different systems. In void perco-
lation in cubic lattices, systems of randomly placed spheres
and jammed packings of amino-acid-shaped particles, the
distribution of void cluster sizes at percolation onset ns(ηc)
has a well defined power-law decay, as shown in Fig. 7(b).
We demonstrate this difference further in Fig. 10, where we
plot the average Fisher exponent 〈τ 〉 with error bars as a
function of the number of void grid points G measured along
the box length. Error bars are estimated by the bootstrap
method (described above). We find that the value of τ for
randomly placed spheres and jammed packings of amino-
acid-shaped particles are similar, while markedly different
from τ measured for void percolation on cubic lattices.
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FIG. 10. Plot of the average Fisher exponent 〈τ 〉 as a function of
the number of lattice points along a given direction G for void perco-
lation on a cubic lattice (stars), in packings of jammed amino-acid-
shaped particles (open circles), and packings of randomly placed
spheres (open squares). Error bars are calculated by the bootstrap
method, where τ is fit to 200 separate trials of independent, random
subsets of the cluster size data. The average Fisher exponent 〈τ 〉 is
the mean of these fits, and the error bars are the standard deviations.
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FIG. 11. Cluster size distribution at percolation ns(ηc ) versus
s/〈s〉, normalized such that each curve has unit area, for void percola-
tion through randomly placed spheres using Kerstein’s method with
N = 300 (dots), 103 (squares), and 104 (open circles). We also show
the normalized ns(ηc ) calculated using the connected void method
for N = 7 × 103 randomly placed spheres (filled diamonds).

Non-power-law decay in the void cluster size distribution,
as displayed in Fig. 7(b) for jammed sphere packings, may be
due to the existence of competing length scales in the system.
The typical form of Eq. (10) at any porosity η is [47]

ns = s−τ exp(−s/sξ ), (C1)

where sξ is the number of sites in a cluster with correlation
length ξ . In systems where ξ is the only length scale, sξ →
∞ as η → ηc and Eq. (C1) reduces to Eq. (10). However,
if there is another intrinsic length scale in the system that
is still relevant at the void percolation transition, it is not
necessarily true that sξ → ∞. sξ can remain finite and add
an exponential tail to ns(ηc). Indeed, this behavior is what
we find for the connected void size distribution in jammed
sphere packings. The “kink” in ns(ηc) in Fig. 7(b) indicates
that sξ ≈ 20. However, the end of the ns distribution for void

percolation in jammed packings of spheres seems to gain
a power-law tail which matches that of void percolation on
cubic lattices. Studies of larger systems would be required to
confirm this similarity, but the data in Fig. 7(b) suggests that
void percolation in jammed packings of spheres resembles
that in systems on a cubic lattice.

This second length scale is most likely set by the nearest-
neighbor distances between particles. Qualitatively, if the
nearest-neighbor distance between particles is a δ function
(or a set of δ functions, in the case of polydisperse spheres),
there are a limited number of local cavities in the system.
In particular, there can be small, particle-scale voids that
persist even even at the percolation threshold. However, in
packings of amino-acid-shaped particles and in systems of
randomly placed spheres, there are a wide range of inter-
particle distances, and a continuous range of local cavity sizes
that can form. In Fig. 8, we show that the void regions are
well-connected for jammed packings of amino-acid-shaped
particles and randomly placed spheres, while the void re-
gions have a characteristic cavity size for jammed sphere
packings at percolation onset. Thus, there is a well-defined
Fisher exponent τ in jammed packings of amino-acid-shaped
particles and randomly placed spheres, but not in jammed
monodisperse and bidisperse sphere packings. Additionally,
we do not find power law scaling for ns(ηc) in systems
of randomly placed spheres when the void connectivity is
analyzed using Kerstein’s method [40]. We see in Fig. 11 that
this is likely due to the sparsity of the Voronoi-based network,
as smaller systems display an exponential decay in ns(ηc)
rather than a power law decay. However, as the system size
increases, the distribution of void cluster sizes approaches that
for void clusters measured using the lattice-based connected-
void method (described in Sec. II in the main text), which
has many more sites per void cluster. Thus, if we were to
study larger system sizes (e.g. N ∼ 105), the void-cluster size
distribution obtained using Kerstein’s method would likely
collapse onto the cluster size distribution we obtain using the
connected-void method.

[1] K. A. Dill, Biochemistry 29, 7133 (1990).
[2] J. Liang and K. A. Dill, Biophys. J. 81, 751 (2001).
[3] J. Roche, J. A. Caro, D. R. Norberto, P. Barthe, C. Roumestand,

J. L. Schlessman, A. E. Garcia, B. García-Moreno E., and C. A.
Royer, Proc. Natl. Acad. Sci. USA 109, 6945 (2012).

[4] N. V. Nucci, B. Fuglestad, E. A. Athanasoula, and A. J. Wand,
Proc. Natl. Acad. Sci. USA 111, 13846 (2014).

[5] M. T. Lerch, C. J. López, Z. Yang, M. J. Kreitman, J. Horwitz,
and W. L. Hubbell, Proc. Natl. Acad. Sci. USA 112, E2437
(2015).

[6] B. Borgo and J. J. Havranek, Proc. Natl. Acad. Sci. USA 109,
1494 (2012).

[7] A. E. Eriksson, W. A. Baase, X.-J. Zhang, D. W. Heinz, M.
Blaber, E. P. Baldwin, and B. W. Matthews, Science 255, 178
(1992).

[8] W. Sheffler and D. Baker, Protein Sci. 18, 229 (2009).
[9] S. J. Fleishman et al., J. Mol. Biol. 414, 289 (2011).

[10] J. C. Gaines, W. W. Smith, L. Regan, and C. S. O’Hern, Phys.
Rev. E 93, 032415 (2016).

[11] J. Gaines, A. Virrueta, D. Buch, S. Fleishman, C. S.
O’Hern, and L. Regan, Protein Eng., Design Select. 30, 387
(2017).

[12] D. Caballero, A. Virrueta, C. S. O’Hern, and L. Regan, Protein
Eng., Design Select. 29, 367 (2016).

[13] K. VanderWerf, W. Jin, M. D. Shattuck, and C. S. O’Hern, Phys.
Rev. E 97, 012909 (2018).

[14] I. E. T. Iben, D. Braunstein, W. Doster, H. Frauenfelder, M.
K. Hong, J. B. Johnson, S. Luck, P. Ormos, A. Schulte, P. J.
Steinbach, A. H. Xie, and R. D. Young, Phys. Rev. Lett. 62,
1916 (1989).

[15] D. L. Stein, Proc. Natl. Acad. Sci. USA 82, 3670 (1985).
[16] J. D. Bryngelson and P. G. Wolynes, Proc. Natl. Acad. Sci. USA

84, 7524 (1987).
[17] R. J. Loncharich and B. R. Brooks, J. Mol. Biol. 215, 439

(1990).
[18] D. Ringe and G. A. Petsko, Biophys. Chem. 105, 667 (2003).
[19] J. Kertész, J. Phys. Lett. 42, 393 (1981).
[20] A. L. Cuff and A. C. R. Martin, J. Mol. Biol. 344, 1199 (2004).

022416-12

https://doi.org/10.1021/bi00483a001
https://doi.org/10.1021/bi00483a001
https://doi.org/10.1021/bi00483a001
https://doi.org/10.1021/bi00483a001
https://doi.org/10.1016/S0006-3495(01)75739-6
https://doi.org/10.1016/S0006-3495(01)75739-6
https://doi.org/10.1016/S0006-3495(01)75739-6
https://doi.org/10.1016/S0006-3495(01)75739-6
https://doi.org/10.1073/pnas.1200915109
https://doi.org/10.1073/pnas.1200915109
https://doi.org/10.1073/pnas.1200915109
https://doi.org/10.1073/pnas.1200915109
https://doi.org/10.1073/pnas.1410655111
https://doi.org/10.1073/pnas.1410655111
https://doi.org/10.1073/pnas.1410655111
https://doi.org/10.1073/pnas.1410655111
https://doi.org/10.1073/pnas.1506505112
https://doi.org/10.1073/pnas.1506505112
https://doi.org/10.1073/pnas.1506505112
https://doi.org/10.1073/pnas.1506505112
https://doi.org/10.1073/pnas.1115172109
https://doi.org/10.1073/pnas.1115172109
https://doi.org/10.1073/pnas.1115172109
https://doi.org/10.1073/pnas.1115172109
https://doi.org/10.1126/science.1553543
https://doi.org/10.1126/science.1553543
https://doi.org/10.1126/science.1553543
https://doi.org/10.1126/science.1553543
https://doi.org/10.1002/pro.8
https://doi.org/10.1002/pro.8
https://doi.org/10.1002/pro.8
https://doi.org/10.1002/pro.8
https://doi.org/10.1016/j.jmb.2011.09.031
https://doi.org/10.1016/j.jmb.2011.09.031
https://doi.org/10.1016/j.jmb.2011.09.031
https://doi.org/10.1016/j.jmb.2011.09.031
https://doi.org/10.1103/PhysRevE.93.032415
https://doi.org/10.1103/PhysRevE.93.032415
https://doi.org/10.1103/PhysRevE.93.032415
https://doi.org/10.1103/PhysRevE.93.032415
https://doi.org/10.1093/protein/gzx011
https://doi.org/10.1093/protein/gzx011
https://doi.org/10.1093/protein/gzx011
https://doi.org/10.1093/protein/gzx011
https://doi.org/10.1093/protein/gzw027
https://doi.org/10.1093/protein/gzw027
https://doi.org/10.1093/protein/gzw027
https://doi.org/10.1093/protein/gzw027
https://doi.org/10.1103/PhysRevE.97.012909
https://doi.org/10.1103/PhysRevE.97.012909
https://doi.org/10.1103/PhysRevE.97.012909
https://doi.org/10.1103/PhysRevE.97.012909
https://doi.org/10.1103/PhysRevLett.62.1916
https://doi.org/10.1103/PhysRevLett.62.1916
https://doi.org/10.1103/PhysRevLett.62.1916
https://doi.org/10.1103/PhysRevLett.62.1916
https://doi.org/10.1073/pnas.82.11.3670
https://doi.org/10.1073/pnas.82.11.3670
https://doi.org/10.1073/pnas.82.11.3670
https://doi.org/10.1073/pnas.82.11.3670
https://doi.org/10.1073/pnas.84.21.7524
https://doi.org/10.1073/pnas.84.21.7524
https://doi.org/10.1073/pnas.84.21.7524
https://doi.org/10.1073/pnas.84.21.7524
https://doi.org/10.1016/S0022-2836(05)80363-8
https://doi.org/10.1016/S0022-2836(05)80363-8
https://doi.org/10.1016/S0022-2836(05)80363-8
https://doi.org/10.1016/S0022-2836(05)80363-8
https://doi.org/10.1016/S0301-4622(03)00096-6
https://doi.org/10.1016/S0301-4622(03)00096-6
https://doi.org/10.1016/S0301-4622(03)00096-6
https://doi.org/10.1016/S0301-4622(03)00096-6
https://doi.org/10.1051/jphyslet:019810042017039300
https://doi.org/10.1051/jphyslet:019810042017039300
https://doi.org/10.1051/jphyslet:019810042017039300
https://doi.org/10.1051/jphyslet:019810042017039300
https://doi.org/10.1016/j.jmb.2004.10.015
https://doi.org/10.1016/j.jmb.2004.10.015
https://doi.org/10.1016/j.jmb.2004.10.015
https://doi.org/10.1016/j.jmb.2004.10.015


VOID DISTRIBUTIONS REVEAL STRUCTURAL LINK … PHYSICAL REVIEW E 99, 022416 (2019)

[21] G. Wang and R. L. Dunbrack, Jr., Bioinformatics 19, 1589
(2003).

[22] G. Wang and R. L. Dunbrack, Jr., Nucleic Acids Res 33, W94
(2005).

[23] J. M. Word, S. C. Lovell, J. S. Richardson, and D. C.
Richardson, J. Mol. Biol. 285, 1735 (1999).

[24] S. J. Hubbard and J. M. Thornton, “Naccess” (1993), http:
//wolf.bms.umist.ac.uk/naccess/.

[25] J. C. Gaines, S. Acebes, A. Virrueta, M. Butler, L. Regan, and
C. S. O’Hern, Proteins: Struct., Funct., Bioinf. 86, 581 (2018).

[26] C. S. O’Hern, L. E. Silbert, A. J. Liu, and S. R. Nagel, Phys.
Rev. E 68, 011306 (2003).

[27] J. C. Gaines, A. H. Clark, L. Regan, and C. S. O’Hern, J. Phys.:
Condens. Matter 29, 293001 (2017).

[28] E. Bitzek, P. Koskinen, F. Gähler, M. Moseler, and P. Gumbsch,
Phys. Rev. Lett. 97, 170201 (2006).

[29] D. Rozmanov and P. G. Kusalik, Phys. Rev. E 81, 056706
(2010).

[30] F. M. Schaller, S. C. Kapfer, M. E. Evans, M. J. F. Hoffmann, T.
Aste, M. Saadatfar, K. Mecke, G. W. Delaney, and G. Schröder-
Turk, Philos. Mag. 93, 3993 (2013).

[31] S. Weis, P. W. A. Schönhöfer, F. M. Schaller, M. Schröter, and
G. E. Schröder-Turk, EPJ Web Conf. 140, 06007 (2017).

[32] M. E. J. Newman and R. M. Ziff, Phys. Rev. E 64, 016706
(2001).

[33] T. Aste and T. Di Matteo, Phys. Rev. E 77, 021309 (2008).
[34] T. Aste, T. D. Matteo, M. Saadatfar, T. J. Senden, M. Schröter,

and H. L. Swinney, Europhys. Lett. 79, 24003 (2007).
[35] F. M. Schaller, R. F. B. Weigel, and S. C. Kapfer, Phys. Rev. X

6, 041032 (2016).

[36] I. Jorjadze, L.-L. Pontani, K. A. Newhall, and J. Brujić, Proc.
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