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We study the response of dry granular materials to external stress using experiment, simulation, and theory.
We derive a Ginzburg-Landau functional that enforces mechanical stability and positivity of contact forces. In
this framework, the elastic moduli depend only on the applied stress. A combination of this feature and the
positivity constraint leads to stress correlations whose shape and magnitude are extremely sensitive to the
nature of the applied stress. The predictions from the theory describe the stress correlations for both simula-
tions and experiments semiquantitatively.
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A striking feature of dry granular materials and other
athermal systems is that they form force chain networks in
response to applied stress, with large forces distributed inho-
mogeneously into linear chainlike structures �1,2�. A number
of experimental studies have visualized and quantified these
networks in granular systems using carbon paper �3� and
photoelastic techniques �4,5�. These studies demonstrated
that geometrical and mechanical properties of force chain
networks are acutely sensitive to preparation procedures, es-
pecially near the jamming transition �6�. For example, in
isotropically compressed systems, force networks are rami-
fied with only short-ranged spatial correlations of the stress.
In contrast, in sheared systems, aligned force chains give rise
to longer-ranged stress correlations in the compressive direc-
tion.

Developing theoretical descriptions for the mechanical
properties of granular media is challenging for several im-
portant reasons �7–10�: �1� since tensile stresses are absent in
dry granular materials they only remain intact via applied
stress, making the limiting zero-stress isostatic state—where
the number of degrees of freedom matches the number of
constraints �11–13�—problematic; �2� forces at the micro-
scopic level are indeterminate due to friction and disorder;
�3� granular materials are athermal, so that conventional
energy-based statistical approaches are not appropriate; and
�4� near isostaticity we expect fluctuations to be important,
both within a single realization of a system and from realiza-
tion to realization. New methods are needed to bridge the
gap between force networks at small length scales and con-
tinuum elastoplastic theory at large scales, and to capture the
highly sensitive, fluctuating behavior of granular systems
near jamming.

In this Rapid Communication, we construct a model for
stress fluctuations based on grain-scale force and torque bal-
ance, positivity of contact forces, and entropy maximization.
We then calculate stress correlations and predict differences
for systems under isotropic compression versus pure shear.
We also perform complementary numerical simulations and
experimental studies of jammed granular systems in two-
dimensions �2D� subject to isotropic compression and pure
shear. The stress correlation functions from theory, simula-
tion, and experiment are in qualitative and in some cases
quantitative agreement. The theory predicts that the form of

the stress correlations depends on how jammed packings
were prepared. In particular, for sheared systems, real-space
stress correlations decay more quickly in the expanded com-
pared to the compressed direction. Further, the simulations
show that this result is only weakly dependent on friction.

Theoretical framework. Fluctuations are related to the
number of microscopic states available under a given set of
macroscopic conditions. In equilibrium thermodynamics, the
microcanonical entropy determines fluctuations and re-
sponse. However, classifying states according to energy is
not useful for granular media, and a different classification
scheme is needed. The approach that we pursue exploits a
different conservation principal—one based on force and
torque balance, which applies rigorously for granular mate-
rials �14–16�.

The force-moment tensor of mechanically stable �MS�
packings, �̂=�ddr�̂�r�, where �̂�r� is the local stress tensor,
is an extensive variable and topological invariant �14,17�. In

the force-moment ensemble, �̂ remains fixed barring system-
spanning changes. Hence, local fluctuations only involve

grain configurations with the same �̂. To construct a theory
for stress correlations, we adopt a coarse-grained approach,
in which jammed configurations are represented by a con-

tinuous field �18� and the entropy S��̂� is defined via an
appropriate Ginzburg-Landau functional. The theory is valid
close to jamming where grains have negligible deformations,
and stress fluctuations decouple from volume fluctuations
�19�.

In two and three dimensions, a continuous field can be
defined that upholds force and torque balance �17,20� of
granular packings. We focus on 2D systems, where a scalar
field �, the Airy stress function �21�, is related to the local
stress tensor by

�̂�r� = � �y
2� − �x�y�

− �x�y� �x
2�

� . �1�

We define �=Tr �̂ and �=s1−s2=��2−4�det �̂�2, where s1

�s2 are eigenvalues of �̂. Given �̂, � can be expanded as
�0+�, where � gives the fluctuations around �0, �0 satis-
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fies the biharmonic equation, �4�0=0 �21�, and �ij
=�ddr�	ij�

2�0−�i� j�0� �17�.
The probability for fluctuations is given by P���

=Z−1��̂�e−L��0,��	Z−1��̂�e−L�̂���, where the functional L�̂���
measures the entropy from grain packings that have coarse-

grained representation ��r�. The partition function Z��̂�
	eS��̂�=�D� e−L�̂��� generates correlators of the field � �18�.
Due to gauge freedom, terms in L�̂��� can only depend on
second and higher derivatives of �. The coefficients of these
terms and, therefore, the strength of fluctuations are con-

trolled by �0 �or �̂�. To lowest order in � and its derivatives,
L�̂��� resembles the free energy for a 2D elastic material
�21�,

L�̂��� =
 d2r�
1��̂���x
2��2 + 
2��̂���y

2��2

+ 
3��̂���x
2����y

2�� + ¯� . �2�

Differences between Eq. �2� and traditional elasticity theory
are �a� the stiffness constants are not intrinsic material prop-

erties but are determined by �̂ and �b� the origin of the
functional is entropic, not energetic with the stiffness con-

stants related to the entropy S��̂� �17�.
There are many MS packings at fixed �̂, each character-

ized by a given ��r�. Pressure correlations are determined by
averaging over these configurations. If configurations are
sampled according to P����e−L�̂���, correlations in simula-
tions and experiments should be well described by the field-
theoretic predictions. Below, we use Eq. �2� to calculate pres-
sure correlations for packings under isotropic compression
and pure shear.

Isotropic compression. For this case, the stiffness con-
stants only depend on � and L�̂��� is isotropic,

L���� =
 d2r�K���
2

���x
2��2 + ��y

2��2 + 2�x
2��y

2��

+ K���2��3��2� , �3�

with stiffness coefficient K���, a higher-order gradient term

with a �̂-independent coefficient K���2, and length scale ��
associated with grain-scale variations of �.

Positivity of contact forces implies that �x
2� and �y

2� are
non-negative �14,17�. Positivity of the long-wavelength fluc-
tuations can be enforced in a mean-field way by requiring
that K���1 /�2 �17,22�. For frictionless packings, which
are isostatic at jamming �23�, an exact calculation yields
K���=e−S���=ziso / �2�2� �17�, where the isostatic contact
number ziso=4 in two dimensions. In contrast, ziso=3 for fric-
tional disks, and frictional packings are typically hyperstatic
with z�ziso �24�. We do not have an exact result for K���
away from isostaticity; however, simulations can be used to
obtain K���. We have measured S��� in packings of friction-
less disks under isotropic compression �17� and found a good
fit to the form K���= �ziso /2+c�z−ziso�2� /�2, with c2. We
use this form for K��� to compare predictions for the pres-
sure correlations with those from simulations and experi-

ments for frictionless and frictional packings with appropri-
ate values of ziso. In Eq. �2�, we included the higher-order
derivative term proportional to ��3��2 to facilitate compari-
sons between theory, experiments, and simulations, where
the grain scale is small but not negligible compared to the
system size. We verify a posteriori that �=���K� /K��� is on
the order of a grain diameter and independent of �.

The results for local pressure correlations are easily visu-
alized in Fourier space. From Eq. �3�, these correlations are
isotropic,

S�q� = ��	��q��2� = q4����q��2� =
K−1���
1 + �2q2 , �4�

where q is the wave vector. Thus, we predict under isotropic
compression that S�q�K���→1 for q�1 /� independent
of �.

To test predictions for q-space pressure fluctuations, we
performed simulations and experiments on 2D packings. We
numerically generated MS packings of bidisperse disks �N /2
large and N /2 small particles with a diameter ratio r=1.4�
with and without friction near jamming using well-known
algorithms �25,26�. The simulations allowed us to investigate
the role of friction in determining stress correlations. We
studied system sizes ranging from N=256 to 4096, square
cells and periodic boundary conditions, pressures in the
range � /A=10−5–10−3 �in units of the grain stiffness�, and
static friction coefficients �= �0,1�. We have also carried out
experiments using a biaxial apparatus described previously
�6,27,28�. The biax is a device that allows us to apply highly
controlled deformations to systems of photoelastic disks,
where it is possible to measure all contacts and contact
forces. In this study, contact forces are calculated for N
=1228 disks, with N /5 large and 4N /5 small disks, r=1.2,
and �=0.7.

In isotropically compressed systems, pressure fluctuations
S�q� decay isotropically. Thus, in Fig. 1 we plot the angle-
averaged S�q�, multiplied by K���, from simulations �Fig.
1�a�� and experiments �Fig. 1�b�� versus qD, where D is the
average particle diameter. For frictional and frictionless
grains over a wide range of �, the simulation and experimen-
tal results match Eq. �4� at q�1 /D with no fitting param-
eters. The simulations and experiments confirm the predicted
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FIG. 1. �Color online� Angle-averaged stress correlations
S�q�K��� for isotropic compression from �a� simulations at different
applied pressures � �reduced units� and static friction coefficients �
and �b� experiments at �=0.7 and different � �units of N m�.
Theory predicts S�q�K����1 independent of � and q for q�1 /�
�1 /D.
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scaling of S�q��1 /K��� and increasing stiffness as the sys-
tem is decompressed.

Pure shear. For pure shear, the stress positivity constraint
leads to different conditions on the stiffness constant K in the
x and y directions. A dramatic consequence is that S�q� is
anisotropic even for infinitesimal shear. We postulate a gen-
eralization of the entropic form for K under isotropic com-
pression and write

L�,���� =
 d2r�K�� + ��
2

��x
2��2 +

K�� − ��
2

��y
2��2

+ 2K���,���x
2��y

2� + K���2��3��2� . �5�

Here, x �y� is the principal axis of �̂ with the smaller �larger�
eigenvalue, and two distinct stiffness coefficients ensure that
�̂xx and �̂yy �0. In addition, K� controls fluctuations that

contribute to �̂xx�̂yy. We have also included the higher-order
derivative term as in the isotropic case. The pressure corre-
lations predicted from Eq. �5� are

S�q�K��� = q4K���/�K�� + ��qx
4 + K�� − ��qy

4 + 2K�qx
2qy

2

+ K���2q6� . �6�

Note that the positivity constraint does not impose any con-
ditions on K� and K�, which are therefore taken to be inde-
pendent of � and � near jamming where the � dependence of
the stiffness constant K dominates. A crucial feature of Eq.
�6� is that the pressure correlations are anisotropic, i.e.,
limqy→0 S�0,qy�� limqx→0 S�qx ,0�.

To compare theory with experiment, we create a sheared
packing by first isotropically compressing the system to a
MS packing slightly above jamming. We then apply pure
shear by expanding the system in one direction while com-
pressing in the other at a fixed density. The resultant pressure
correlations are presented in Fig. 2�b�, and they match the
expected anisotropic dipolar features predicted by Eq. �6�
and shown in Fig. 2�a�. To compare theory and simulation,
we generated MS packings with and without friction over a
range of stress ratios � /�. To do this, we compressed �di-
lated� the simulation cell in the y �x� direction by �=	L /L
over the range �= �10−5 ,10−3�. Pressure correlations from
simulations of frictionless �Fig. 2�c�� and frictional �Fig.
2�d�� particles also show a strong dipolar signature.

A key prediction of Eq. �6� is that limq→0 S�q� depends on
direction. This feature is clearly demonstrated in Fig. 3,
which shows the simulation and experimental results for
S�q�K��� along different cuts and predictions from theory.
There is semiquantitative agreement between theory and
simulations without friction for qx=0 and qy =0 cuts �Fig.
3�a��. We find similar results for simulations of frictional
grains. Even though our theory makes several simplifying
assumptions �z−ziso�1 and � /��1�, we also observe quali-
tative agreement between theory and experiments. In simu-
lations and experiments, q-space pressure correlations de-
pend on the approach to q=0, and they are larger along the
expanded direction, as predicted by theory. Note that the
peak in S�q� in the expanded direction at qx�0 is a finite-
size effect as demonstrated in the insets, and thus we expect
even better agreement for larger systems.

FIG. 2. �Color online� Contours of S�q�K��� under pure shear
from �a� theory �� /�=0.3�, �b� experiment �� /�=0.51�, and simu-
lations of �c� frictionless and �d� frictional ��=1� particles �� /�
=0.3�. In all panels, compression �dilation� is along the vertical
�horizontal� axis.
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FIG. 3. Cuts in S�q�K��� along
expanded �squares and solid lines�
and compressed �circles and
dashed lines� directions for �a�
simulations at � /�=0.3 and �=0
and �b� experiments at � /�=0.51
and �=0.7 compared to theoreti-
cal predictions �lines�. To obtain
predictions in the main panels, fi-
nite low-q cutoffs were used in
Eq. �6�, ��D was obtained by fit-
ting Eq. �4� to the isotropic data in
Fig. 1, and K� /K����O�1� was
adjusted to best match the sheared
data. The insets show the theoreti-
cal results for an infinite system.
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The q-space correlations for pure shear imply anisotropic
decays in real space with a slower decay along the compres-
sive direction. In Fig. 4, we present real-space pressure cor-
relations �	��r�	��0�� / ��	��0��2� and find qualitative agree-
ment between theory, simulations, and experiments. Thus,
we argue that the entropic formulation with the positivity
constraint provides an explanation for shear-induced aniso-
tropy in pressure correlations observed in experiments �6�.

We presented a field-theoretic approach for describing
pressure fluctuations in granular systems. The theory en-
forces mechanical stability and uses load-dependent stiffness
constants derived from the entropy of packings. The theory
ensures positivity of contact forces and applies close to the
jamming transition. Friction plays no special role. From the
theory, we calculate pressure correlations and show that they
depend sensitively on the packing preparation. Under isotro-
pic compression, correlations are isotropic and obey a simple
scaling relation with compression. For pure shear, correla-
tions are anisotropic with dipolar features in q space. The
anisotropy is a consequence of the positivity constraint,

which causes q-space pressure fluctuations to be reduced
along the compressive direction. This feature in q space
gives rise to longer-ranged real-space pressure correlations in
the compressive direction. Our approach provides a means to
relate stress fluctuations to the history of granular systems,
which determines the force-moment tensor, and an explana-
tion for the anisotropic behavior of pressure fluctuations. The
theoretical predictions for the pressure correlation functions
are confirmed, semiquantitatively, by simulations of MS
packings with and without friction and by experiments on
photoelastic disks. This agreement provides evidence that the
entropy of MS packings can be used to determine the re-
sponse of granular and other nonequilibrium systems.
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FIG. 4. Decay of pressure cor-
relations �	��r�	��0�� / ��	��0��2�
along compressed �circles and
dashed lines� and expanded
�squares and solid lines� directions
under pure shear for the same sys-
tems in Fig. 3. Theoretical predic-
tions �lines�, which have been
scaled by an overall constant to
match correlations in the expanded
direction at 0.5, are compared to
�a� simulations and �b� experi-
ments �symbols�. The insets show
the infinite system results.

LOIS et al. PHYSICAL REVIEW E 80, 060303�R� �2009�

RAPID COMMUNICATIONS

060303-4


