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Proteins fold to a specific functional conformation with a densely packed core that controls their stability.
Despite their importance, we lack a quantitative explanation for why all protein cores, regardless of their overall
fold, possess the same average packing fraction 〈φ〉 ≈ 0.55. However, important developments in the physics of
jamming in particulate systems can shed light on the packing of protein cores. Here, we extend the framework
of jamming to describe core packing in collapsed polymers, as well as in all-atom models of folded proteins.
First, we show in a spherical bead-spring polymer model (with and without bond-angle constraints) that as the
hydrophobic interactions increase relative to thermal fluctuations, a jamming-like transition occurs when the
core packing fraction exceeds φc with the same power-law scaling behavior for the potential energy Vr , excess
contact number �N , and characteristic frequency of the vibrational density of states ω∗ versus �φ = φ − φc

as that for jammed particulate systems. Then, we develop an all-atom model for proteins and find that, above
φc ∼ 0.55, protein cores undergo a jamming-like transition, but with anomalous power-law scaling for Vr , �N ,
and ω∗ versus �φ. The all-atom protein model remains close to the native protein structure during jamming and
accurately refolds from partially unfolded states.

DOI: 10.1103/PRXLife.3.013018

I. INTRODUCTION

In native solution conditions, globular proteins fold from
an extended chain to a compact, functional state. Upon fold-
ing, proteins form solvent-inaccessible, or core, regions that
include ∼10% of the protein [1]. Focusing on hard-core
atomic interactions, initial analysis of protein structures found
that protein cores are densely packed [2–8]. Numerous prior
structural analyses, mutational studies, and theoretical mod-
eling have emphasized that protein energy landscapes are
dominated by dense packing in the hydrophobic core [9–17].
More recent atomic structural analyses have shown that the
average core packing fraction in proteins (without interatomic
overlaps) is 〈φ〉 = 0.55 ± 0.01, which raises two key ques-
tions [18–22]. First, why do the cores of folded proteins
possess a remarkably similar packing fraction? Second, why
is the particular value 〈φ〉 ≈ 0.55?

Here, we demonstrate that the dense packing 〈φ〉 ≈ 0.55 in
protein cores occurs because they exist near jamming onset.
First, we review the key features of the jamming transition in
particulate systems, i.e., the power-law scaling of the struc-
tural and mechanical properties of jammed sphere packings
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with �φ = φ − φc where φc is the onset of jamming. Second,
we demonstrate that the final stages of polymer collapse can
be described as a jamming transition. When a weakly attrac-
tive bead-spring polymer is quenched below the coil-globule
and glass transitions [23,24], its interior undergoes a jam-
ming transition at packing fraction φc ∼ 0.63 with the same
power-law scaling behavior for the structural and mechanical
properties versus �φ as found for the jamming transition in
particulate systems. We show that φc can be reduced signif-
icantly by adding bond-angle constraints to the bead-spring
polymer, yet the power-law scaling behavior with �φ is the
same as that for jammed sphere packings. Finally, we carry
out similar studies of hydrophobic collapse for an all-atom
protein model with weak attractive nonbonded interactions,
as well as constraints on the bond lengths, bond angles,
and peptide-bond dihedral angles to maintain proper amino
acid stereochemistry. We find that the all-atom protein model
collapses as the attractive strength relative to temperature in-
creases and undergoes a jamming-like transition from a floppy
to a rigid state near φc ∼ 0.55 with novel power-law scaling
exponents for the structural and mechanical properties versus
�φ. These results suggest that proteins collapse until the
core amino acids reach a mechanically stable state that resists
further compression induced by the hydrophobic interactions.
Moreover, the all-atom model can refold proteins from par-
tially unfolded states, suggesting that it captures the protein
conformational landscape near the folded state.
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FIG. 1. Hallmarks of the jamming transition during isotropic compression at finite temperatures, T/εr = 10−6 (yellow), 10−7 (green),
and 10−8 (blue), in collections of repulsive spheres under periodic boundary conditions. (a) The average potential energy per particle 〈Vr/N〉
plotted vs packing fraction φ. The black dot-dashed lines indicate fits to Eq. (3) with δ = 2. (b) The vibrational density of states D(ω) plotted
vs frequency ω at each φ colored by 〈Vr/N〉 increasing from blue to red for T/εr = 10−8. The black dashed lines indicate the cutoff in
D(ω) < 10−1 for determining the characteristic frequency ω∗. (c) ω∗ plotted vs 〈Vr/N〉. (d) The excess number of (nonbonded) contacts above
isostaticity �N plotted vs 〈Vr/N〉. The black dashed lines indicate a slope of 1/4. Visualizations of repulsive spheres undergoing compression
in periodic boundary conditions (black box) at packing fractions (e) below, (f) near, and (g) above φc. The color indicates the monomer diameter
size increasing from blue (σs) to green (σmax).

II. IDENTIFYING JAMMING TRANSITIONS
IN REPULSIVE SYSTEMS AT FINITE TEMPERATURES

UNDER CONFINEMENT

We first review the jamming transition of repulsive sys-
tems during compression in periodic boundary conditions at
finite temperatures for both collections of repulsive spheres
and a single repulsive spherical bead-spring polymer. For the
repulsive spheres, we assume that they interact via the purely
repulsive linear spring potential,

Vrnb(ri j )

εr
= 1

2

(
1 − ri j

σi j

)2

�

(
1 − ri j

σi j

)
, (1)

where ri j is the separation between particles i and j, σi j =
(σi + σ j )/2 is the average diameter, and �(·) is the Heaviside
step-function. The total potential energy for systems con-
taining repulsive spheres is Vr = ∑

i> j Vrnb(ri j ) summed over
all overlapping pairs. For illustrative purposes, we present
results for N = 256 particles, averaged over 20 packings
for each value of φ during compression. To prevent crys-
tallization, σi is randomly selected from a power-law size
distribution, P(σi ) = Aσ−3

i , with minimum and maximum di-
ameters σs and σmax = 2.2σs and polydispersity D = (〈σ 2

i 〉 −
〈σi〉2)/〈σi〉2 ∼ 0.23 [25].

We also study jamming of a single bead-spring poly-
mer undergoing isotropic compression. Neighboring spherical
beads i and j = i + 1 on the polymer are bonded via

double-sided linear spring interactions,

Vb(ri j )

εb
= 1

2

(
1 − ri j

σi j

)2

, (2)

where εb = εr . The nonbonded interactions for the bead-
spring polymer are purely repulsive, and thus the total
potential energy Vr = ∑

i> j Vrnb(ri j ) + ∑
i, j=i+1 Vb(ri j ).

To initialize the systems with purely repulsive spheres,
we randomly place the spheres within a periodic box with-
out overlaps at an initial packing fraction φ = 0.01, where
φ = ∑N

i=1 vp,i/vb, vp,i is the volume of particle i, and vb

is the volume of the box. To initialize the repulsive bead-
spring polymer, we generate an excluded volume random
walk within a periodic box. For both systems, we apply affine,
isotropic compression in small steps of δφ = 10−3, with each
compression followed by energy minimization, until the sys-
tem reaches a target packing fraction φ [26]. We then carry
out Langevin dynamics [27] at constant temperatures T/εr =
10−6, 10−7, and 10−8.

To identify jamming onset, we quantify two distinct types
of power-law scaling relations for the structural and mechani-
cal properties versus �φ [28–31]. First, in Fig. 1(a) we show
that below a critical packing fraction φc, 〈Vr/N〉 increases
slowly with φ. However, above φc, the total potential energy
increases as a power-law,

〈Vr/N〉 ∼ (φ − φc)δ, (3)

where for the purely repulsive linear spring potential,
δ = 2, and φc ≈ 0.64 for the system sizes, particle size
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FIG. 2. Hallmarks of the jamming transition during isotropic compression at finite temperatures, T/εr = 10−6 (yellow), 10−7 (green), and
10−8 (blue), for a single repulsive bead-spring polymer under periodic boundary conditions. (a) The average potential energy per particle
〈Vr/N〉 plotted vs packing fraction φ. The black dot-dashed lines indicate fits to Eq. (3) with δ = 2. (b) The vibrational density of states D(ω)
plotted vs frequency ω at each φ colored by 〈Vr/N〉 increasing from blue to red for T/εr = 10−8. The black dashed lines indicate the cutoff in
D(ω) < 10−1 for determining the characteristic frequency ω∗. (c) ω∗ plotted vs 〈Vr/N〉. (d) The excess number of (nonbonded) contacts above
isostaticity �N plotted vs 〈Vr/N〉. The black dashed lines indicate a slope of 1/4. Visualizations of a single bead-spring polymer repulsive
spheres undergoing compression in periodic boundary conditions (black box) at packing fractions (e) below, (f) near, and (g) above φc. The
color indicates the monomer diameter size increasing from blue (σs) to green (σmax).

polydispersity, and compression protocol used here. As
T → 0, the plateau in 〈Vr/N〉 → 0 for φ < φc, and the jam-
ming transition becomes more distinct. We show in Fig. 2(a)
that a similar jamming transition occurs during compres-
sion of a single repulsive bead-spring polymer. We note
two small differences. First, 〈Vr/N〉 plateaus for φ < φc

instead of increasing slowly and is larger than that for
repulsive spheres due to the additional bond constraints. Sec-
ond, φc ∼ 0.63 is slightly decreased compared to that for
jammed repulsive spheres. While previous studies have ob-
tained jammed packings of bonded spheres that are just as
dense as jammed disconnected spheres [32,33], single bead-
spring polymers jam at slightly lower φc in periodic boundary
conditions [24,34,35].

A hallmark of the jamming transition can also be found in
the system’s mechanical properties. Unjammed systems pos-
sess many low-frequency, liquid-like modes in the vibrational
density of states (VDOS). Near jamming onset in repulsive
spheres, excess intermediate frequency modes, known as the
boson peak, occur in the VDOS, and as φ increases above jam-
ming onset, the boson peak decreases [36–38]. We calculate
the VDOS from the eigenvalues en of the displacement cor-
relation matrix S = V C−1, where Vi j = 〈viv j〉 is the velocity
correlation matrix, Ci j = 〈(ri − r0

i )(r j − r0
j )〉 is the positional

covariance matrix, vi are the sphere velocities, and ri and
r0

i are the instantaneous and average sphere positions. The
angle brackets indicate time averages. The VDOS D(ωn) is
then obtained by binning the frequencies ωn = √

en, where
the frequencies are given in units of

√
εr/(mσ 2

s ) and m is the
mass of each sphere [39,40].

In Figs. 1(b) and 2(b), we plot the VDOS for repul-
sive spheres and the bead-spring polymer as a function of

〈Vr/N〉 (increasing from blue to red) for T/εr = 10−8. We
find that when the total potential energy is small, the VDOS
possesses many liquid-like modes. As 〈Vr/N〉 increases, a
low-frequency, non-Debye plateau forms near jamming onset,
and the plateau decreases as the system is further compressed.
The main difference in the VDOS for repulsive spheres and
the bead-spring polymer is that the VDOS for the bead-spring
polymer has a peak at ω = 1 for all φ, which corresponds to
the bond-length fluctuations. The formation of the plateau in
the VDOS can be quantified by the characteristic frequency
ω∗ at which D(ω∗) falls below a small threshold. Previous
studies of jamming in repulsive spheres have found that ω∗
obeys the power-law scaling relation ω∗ ∼ 〈V 〉ζ , where ζ =
1/4, and 〈V 〉 is the average potential energy [24,41]. We show
in Figs. 1(c) and 2(c) that ω∗ ∼ (〈Vr/N〉)ζ above jamming
onset for repulsive spheres and the collapsed bead-spring
polymer, respectively, where ζ = 1/4.

The number of interparticle contacts controls the transition
from floppy to rigid states, i.e., at jamming onset, collections
of repulsive spheres become isostatic with the same number
of contacts as degrees of freedom Nc = Niso = dN − N0 + 1,
where d is the spatial dimension and N0 is the number of zero
modes from d rigid translations and underconstrained spheres.
We can determine N0 from the number of zero eigenvalues
of S. In Fig. 1(d), we show that above φc, the average ex-
cess number of contacts above isostaticity �N = 〈Nc〉 − Niso

scales with the same exponent ζ = 1/4 versus potential en-
ergy as that found for the scaling exponent for ω∗ versus
〈Vr/N〉. In addition, we find the same power-law scaling
exponent for �N versus 〈Vr/N〉 for the bead-spring poly-
mer, where �N = 〈Nc〉 + Nb − Niso, where Nb = N − 1 is the
number of polymer bonds, and N0 is the number of zero modes
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[see Fig. 2(d)]. We show collections of repulsive spheres and
a single repulsive bead-spring polymer undergoing isotropic
compression in a periodic box for packing fractions be-
low, at, and above jamming onset in Figs. 1(e)–1(g) and
Figs. 2(e)–2(g).

Taken together, the power-law scaling relations for 〈Vr/N〉,
ω∗, and �N above φc indicate jamming transitions that occur
in collections of repulsive particles and a single repulsive
bead-spring polymer during isotropic compression in peri-
odic boundary conditions. Computational studies of jamming
have largely been restricted to repulsive systems under con-
finement. Below, we extend studies of jamming to attractive
bead-spring polymers under open boundary conditions to un-
derstand whether the same power-law scaling relations for
the structural and mechanical properties hold during polymer
collapse.

III. ONSET OF JAMMING DURING COLLAPSE
OF ATTRACTIVE BEAD-SPRING POLYMERS

Here, we show that a uniformly attractive spherical
bead-spring polymer undergoes a jamming transition dur-
ing collapse. In this case, the compaction is not applied
through the boundary conditions as for studies of jamming
transitions in collections of repulsive particles, rather it is
induced through the attractive, hydrophobic interactions be-
tween monomers in the polymer under open boundaries. As
shown in Sec. II, repulsive (nonbonded and bonded) spheres
undergo a jamming transition with power-law scaling of the
structural and mechanical properties versus �φ when they
are compressed above jamming onset at sufficiently low tem-
peratures. To model nonbonded attractive interactions within
bead-spring polymers, we modify the repulsive spring po-
tential in Eq. (1) by extending the interaction distance to
rβ/σi j = 1 + σi jβi j/σs, and we cut off the interactions at
rα/σi j = 1 + α > rβ using a piecewise harmonic function of
ri j :

Va(ri j )

εr
=

⎧⎨
⎩

1
2

(
1 − ri j

σi j

)2 − Vc/εr for ri j � rβ,

− k
2εr

( ri j

rα
− 1

)2
�

(
1 − ri j

rα

)
for ri j > rβ,

(4)

where Vc/εr = (k/εr )(rβ/rα − 1)2/2 + (1 − rβ/σi j )2/2 to
ensure continuity. α defines the attractive range, and βi j =
βλi j defines the magnitude of the attractive force between
beads i and j. For uniformly attractive bead-spring poly-
mers, λi j = 1 for all pairs. Additionally, we use the same
size distribution P(σi ) as in Sec. II. Neighboring beads i
and j = i + 1 on the polymer are bonded via double-sided
linear spring interactions as in repulsive bead-spring polymers
[Eq. (2)]. Because there is no confining box for the attrac-
tive bead-spring polymer, we must define a new approach
for calculating the local φ. To calculate the average core
packing fraction 〈φ〉, we identify core beads as those with
zero exposed surface area measured using the Richards-Lee
spherical probe algorithm with probe size σp/σs = 0.73, as
is commonly used to calculate the solvent accessible surface
area for proteins [42,43]. The packing fraction of core bead
i is φi = vb

i /v
v
i , where vb

i and vv
i are the volumes of bead i

and its enclosing Voronoi cell [44]. The average core packing
fraction is 〈φ〉 = n−1

c

∑nc
i=1 φi, where nc is the number of core

beads in the polymer. Our choice of σp/σs is similar to the
size ratio of alanine to a water molecule, but our results are
insensitive to this choice.

To study the collapse of bead-spring polymers, we carry
out Langevin dynamics [27] under open boundary conditions
for attractive range 0.5 � α � 2, attractive depth 10−12 �
β � 10−3, and temperature 10−8 � T/εr � 10−6. The sim-
ulations are initialized from a collapsed structure generated
by an excluded-volume random walk where the system is
energy-minimized after each bead is placed [26]. In Fig. 3(a),
we plot 〈φ〉 versus the attractive strength α2β, which demon-
strates that the attractive strength controls the available free
volume in the core analogous to the pressure (or total potential
energy) in purely repulsive systems. [See Figs. 3(d)–3(f) for
visualizations of typical conformations.] When the attractive
strength is low, thermal expansion dominates and the core
unpacks. As α2β increases, a plateau in 〈φ〉 forms, followed
by an overcompressed regime. 〈φ〉 versus α2β is well fit by

〈φ〉 = A(α2β )a − B(α2β )−b + φc, (5)

where A and B are constants, φc → 0.63, and the expo-
nents a → 1 and b → 1 as T/εr → 0. Note the similarity
between φc in the collapsed attractive bead-spring polymer
and jammed repulsive packings shown in Sec. II.

To identify jamming onset, we calculate Vr/εr =∑
i> j Vrnb(ri j )/εr + ∑

〈i, j=i+1〉 Vb(ri j )/εr , where the first sum
is over distinct nonbonded pairs and the second sum is over
bonded pairs. In Fig. 3(b), we plot the time-averaged 〈Vr/N〉
versus α2β. We find that 〈Vr/N〉 ∼ V0, where V0 ∼ T/εr for
α2β < T/εr . However, when α2β > T/εr , 〈Vr/N〉 increases
from the plateau value V0 as a power-law:

〈Vr/N〉 − V0 = C(α2β )c, (6)

where C is a constant and c → 2 as T/εr → 0. Thus, when
〈φ〉 > φc, 〈Vr/N〉 increases strongly, which indicates a jam-
ming transition. In Fig. 3(c), we combine data from Figs. 3(a)
and 3(b). For 〈φ〉 < φc, 〈Vr/N〉 ∼ V0. When 〈φ〉 > φc, 〈Vr/N〉
increases as a power-law, which can be obtained by combining
Eqs. (5) and (6):

〈φ〉 = A (�Vr )a/c + B(�Vr )−b/c + φc, (7)

where �Vr = 〈Vr/N〉 − V0, A = A/Ca/c, and B = B/C−b/c.
When 〈�φ〉 	 0, Eq. (7) simplifies to 〈�Vr/N〉 ∼ 〈�φ〉δ
[Eq. (3)], where δ = c/a → 2 in the T/εr → 0 limit, which
is the same scaling exponent found for jamming of repulsive
spheres and the repulsive bead-spring polymer in Sec. II [28].
The potential energy for collapsed bead-spring polymers in-
creases as a power-law above a characteristic φ in the same
way that the potential energy scales with φ above jamming
onset for disconnected and connected repulsive spheres. For
two-dimensional (2D) attractive bead-spring polymers, we
find similar behavior for 〈Vr/N〉 versus αd−1β in d spatial
dimensions.

We quantify the rigidity of attractive bead-spring polymers
by calculating the eigenvalues of the displacement correla-
tion matrix as in Sec. II. In Fig. 4(a), we plot the VDOS
for attractive bead-spring polymers as a function of 〈Vr/N〉.
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FIG. 3. (a) Average core packing fraction 〈φ〉 plotted vs strength of the attractive interactions α2β for bead-spring polymers at temperatures
T/εr = 10−6 (yellow), 10−7 (green), and 10−8 (blue) and α = 0.5 (circles), 1.0 (squares), 1.5 (upward triangles), and 2.0 (downward triangles).
The black dashed lines indicate fits to Eq. (5) with a = b = 1. (b) Average pair potential energy 〈Vr/N〉 plotted vs α2β. The black dashed lines
indicate fits to Eq. (6) with c = 2. (c) 〈Vr/N〉 plotted vs average core packing fraction 〈φ〉. The black dashed lines indicate fits to Eq. (7). At
large 〈φ〉, 〈Vr/N〉 − V0 ∼ 〈φ − φc〉δ , where δ = c/a = 2 and φc = 0.63. (d)–(f) Visualizations of attractive bead-spring polymers at packing
fractions below, near, and above φc. The color indicates the monomer diameter increasing from blue (σs) to green (σmax).

We find that when the potential energy is low, the system
displays many liquid-like modes. As 〈Vr/N〉 increases, a low-
frequency, non-Debye plateau forms near jamming onset, and
the plateau decreases as the system further collapses. The
plateau in the VDOS can be quantified by the characteristic
frequency ω∗ at which D(ω∗) falls below a small threshold.
We show in Fig. 4(b) that ω∗ ∼ (〈Vr/N〉/α)ζ above jamming
onset for collapsed bead-spring polymers, where ζ = 1/4 is
the same as that found for jamming of collections of repulsive
spheres and the repulsive bead-spring polymer. Note that di-

viding 〈Vr/N〉 by α collapses the data for different attractive
ranges as previously reported [24].

An essential feature of the jamming transition is isostaci-
tity, i.e., systems rigidify when the number of (nonredundant)
constraints equals the number of degrees of freedom. While
the number of nonredundant constraints is difficult to de-
termine in 3D packings with finite-ranged interactions that
can be either attractive or repulsive, we have shown previ-
ously that packings interacting via Eq. (4) are isostatic when
contacts are defined for separations between nonbonded pairs

FIG. 4. (a) Vibrational density of states D(ω) for attractive bead-spring polymers for average potential energy 〈Vr/N〉 (in units of εr)
increasing from 10−9 (blue) to 10−1 (red). The black dashed line indicates D(ω∗) = 10−1. (b) The characteristic plateau frequency ω∗ and
(c) average excess number of contacts above the isostatic value 〈�N〉 plotted vs 〈Vr/N〉/α. The black dashed lines in (b) and (c) have slope
1/4.
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FIG. 5. (a) Average core packing fraction 〈φ〉 plotted vs strength of the attractive interactions α2β for bead-spring polymers with random
bond-angle constraints at temperatures T/εr = 10−6 (yellow), 10−7 (green), and 10−8 (blue) and α = 0.5 (circles), 1.0 (squares), 1.5 (upward
triangles), and 2.0 (downward triangles). The black dashed lines indicate fits to Eq. (5) with a = b = 1. (b) Average pair potential energy
〈Vr/N〉 plotted vs α2β. The black dashed lines indicate fits to Eq. (6) with c = 2. (c) 〈Vr/N〉 plotted vs average core packing fraction 〈φ〉. The
black dashed lines indicate fits to Eq. (7). At large 〈φ〉, 〈Vr/N〉 − V0 ∼ 〈φ − φc〉δ , where δ = c/a = 2 and φc = 0.55.

with ri j < rβ [24,45,46]. In Fig. 4(c), we plot �N = Nc(ri j <

rβ ) + Nb − Niso versus 〈Vr/N〉/α, where Nb is the number of
polymer bonds, Niso = dN − N0, and N0 is the number of zero
modes. The excess contact number follows the same power-
law scaling relation �N ∼ 〈Vr〉ζ with ζ = 1/4 as that found
for jamming of repulsive spheres and polymers. Thus, the col-
lapse of weakly attractive bead-spring polymers belongs to the
same universality class as that for jamming of disconnected
and connected, repulsive spheres.

IV. COLLAPSE OF ATTRACTIVE BEAD-SPRING
POLYMERS WITH BOND-ANGLE CONSTRAINTS

In the previous section, we showed that the φc values for
jammed repulsive polymer packings and the cores of col-
lapsed attractive bead-spring polymers with only bond-length
constraints are similar to that for jammed sphere packings.
However, the inclusion of bond-angle constraints changes
the persistence length of bead-spring polymers, which can
lower the core packing fraction [34,47]. Here, we incorporate
bond-angle constraints into the potential energy function that
describes attractive bead-spring polymers in Sec. III. For ev-
ery bond angle θi jk between consecutive beads i, j = i + 1,
and k = i + 2, we add the bond-angle harmonic restraint,

Va(θi jk )

εa
= 1

2

(
θi jk − θ0

i jk

)
, (8)

where εa = εb is the energy scale of bond-angle fluctuations,
and θ0

i jk is the equilibrium bond angle selected from a uni-
form random distribution. To identify jamming onset, we
measure Vr/εr = ∑

i> j Vrnb(ri j )/εr + ∑
〈i, j=i+1〉 Vb(ri j )/εr +∑

〈i, j=i+1,k= j+1〉 Va(ri j )/εr , where the first sum is over distinct
nonbonded pairs, the second sum is over bonded pairs, and the
third sum is over bond-angle triplets. In Fig. 5, we show that
the bond-angle restraint has a significant effect on the core
packing fraction, resulting in φc = 0.55. However, note that
the power-law scaling of 〈�Vr/N〉 with �φ is the same with
and without bond-angle constraints even though the φc values
are different.

V. A STEREOCHEMICALLY ACCURATE REPULSIVE
ALL-ATOM PROTEIN MODEL

In this section, we develop a stereochemically accurate all-
atom model for proteins to investigate jamming in the context
of core formation in proteins. The guiding principle in the
development of the all-atom protein model is to restrain the
minimum components of protein stereochemistry necessary
to sample experimentally accurate protein conformations. For
the bonded interactions, we add restraints on the bond lengths
ri j , bond angles θi jk , and dihedral angles involving double
bonds ωi jkl to the respective equilibrium values r0

i j , θ0
i jk , and

ω0
i jkl that occur in each target protein’s x-ray crystal structure:

Vb(ri j )

εb
= 1

2σ 2
H

(
ri j − r0

i j

)2
, (9)

Va(θi jk )

εa
= 1

2

(
θi jk − θ0

i jk

)2
, (10)

Vd (ωi jkl )

εd
= 1

2

(
ωi jkl − ω0

i jkl

)2
, (11)

where εb = εa = εd = εr are the respective energy scales, and
σH is the diameter of hydrogen. We set the energy parameters
to be equal to weight nonbonded overlaps and deformations
in protein stereochemistry equally. We add restraints to the
main chain peptide bond dihedral angles, known as ω, which,
due to the peptide bond’s partial double-bonded character, are
relatively planar in high-quality protein structures. For amino
acids with side chains containing double bonds, we also add
dihedral angle restraints to maintain their planar geometry for
phenylalanine, tyrosine, histidine, and tryptophan.

Nonbonded interactions are modeled as repulsive steric
interactions with weak hydrophobic attractions [Eq. (4)]. As
proteins are molecular systems, the selection of a set of repul-
sive atom sizes {σi} is not straightforward, and many sets have
been used [2–8,18,48]. We must also consider the backbone
dihedral angles of rotatable single bonds within amino acids.
The backbone dihedral angles ϕ and ψ are known to take on
certain values in high-resolution structures, and amino acids
with ϕ and ψ outside of these known bounds are termed
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FIG. 6. (a) The average repulsive overlap energy 〈Vrnb/N〉 is plotted vs the temperature T/εr . The difference in the fraction of outliers in
the (b) backbone dihedral angles and (c) side chain dihedral angles between the all-atom protein models (without attractions) and x-ray crystal
structures of proteins plotted vs T/εr . (d) Root-mean-square deviation in the Cα atom positions � f (in Å) between the all-atom protein model
and the experimental structures plotted vs T/εr . The atom sizes {σi} are scaled by s = 0.7–1.2 colored from purple to yellow with circular
markers. The data for s = 1 from the main text are highlighted using dashed lines and square markers.

Ramachandran outliers [49–52]. Similarly, each amino acid
side chain takes on particular dihedral angles, called rotamers,
that most frequently occur. Whether experimentally obtained
protein structures or computational models sample the cor-
rect backbone and side chain dihedral angle distributions is
typically determined by the community software MOLPRO-
BITY [50–52].

To ensure that computational models possess the correct
backbone and side chain dihedral angle distributions, most all-
atom force fields include explicit restraints [53–57]. However,
Ramachandran et al. first demonstrated that by assuming only
repulsive, hard-core atomic interactions, one can recapitulate
the backbone dihedral angles ϕ and ψ that occur in proteins
as those that do not cause large interatomic overlaps [58,59].
Recent studies have also shown that a similar approach can
recapitulate the side chain dihedral angle distributions in x-ray
crystal structures of proteins given an appropriate set of atom
sizes [60–64]. We therefore employ a set of atom sizes {σi}
that give rise to large interatomic overlaps when the backbone
and side chain dihedral angles populate unallowed dihedral
angle combinations. (See Table III in Appendix A.)

To validate the atom sizes in the all-atom protein model,
we carry out Langevin dynamics simulations with no at-
tractions [i.e., α = β = 0 in Eq. (4)] starting from the
energy-minimized protein x-ray crystal structures over a wide
range of temperatures. We study 50 single-chain proteins
with no disulfide bonds randomly selected from a dataset
of high-resolution x-ray crystal structures [65,66]. The pro-
tein sizes range from Naa = 60 to 524 amino acids with an
average of 〈Naa〉 = 180. (PDBIDs are given in Table IV in
Appendix A.) We use the MOLPROBITY software to assess the
degree to which the backbone and side chain dihedral angles
sample allowed conformations during the simulations. Even
high-quality x-ray crystal structures possess some fraction of
Ramachandran fro and side chain fsco dihedral angle outliers.
Therefore, we report the difference between the experimen-
tal and simulation fraction of outliers � fro and � fsco. We
conduct simulations with the atom sizes {σi} in Table III, as
well as scaling them by s to quantify the sensitivity of the
MOLPROBITY metrics on the atom sizes.

As shown in Fig. 6(a), for s � 1, as the temperature is low-
ered, the all-atom protein models sample more hard-sphere-
like conformations with fewer nonbonded overlaps quantified

as the repulsive overlap energy Vrnb = ∑
i> j Vrnb(ri j ) summed

over all overlapping nonbonded pairs [Eq. (1)]. However, for
s > 1, the atom sizes are so large that atomic overlaps occur
even at low temperatures, and 〈Vr/N〉 is nearly constant with
decreasing T . In Figs. 6(b) and 6(c), we show that when s = 1
and T/εr � 10−5, both the Ramachandran backbone outliers
and side chain dihedral angle outliers relative to the outliers in
the high-resolution x-ray crystal structure database approach
zero. When the atom sizes are decreased with s < 1, even in
the low-temperature limit, the all-atom protein model samples
a large number of backbone and side chain dihedral angle
outliers. The side chain dihedral angles are particularly sensi-
tive, increasing from � fsco ∼ 0 for s = 1 to � fsco > 0.35 for
s = 0.9. In addition, increases in the atom sizes (with s > 1)
lead to a larger plateau in � fro, yet few side chain dihedral
angle outliers, likely because the large overlaps shown in
Fig. 6(a) lock the initial x-ray crystal structure dihedral angles
into place.

We also calculate the root-mean-square deviations
(RMSDs) in the Cα positions between the simulated and
experimental structures,

� =
√√√√ 1

Naa

Naa∑
m=1

(
rms − 
rme)2, (12)

where 
rms and 
rme are the Cα positions of the mth amino acid
from the simulations and x-ray crystal structures, respectively.
In Fig. 6(d), we show that the root-mean-squared deviations of
the final simulation backbone Cα atoms from the experimental
structure � f increase significantly due to large nonbonded
atomic overlaps.

For s > 1, the atoms cannot be considered as nearly hard
spheres because there are large overlaps between nonbonded
atoms resulting in the repulsive all-atom protein model rapidly
unfolding under constant temperature dynamics. Most all-
atom force fields for proteins use van der Waals radii that
are larger than the atom sizes we employ. (See Table III in
Appendix A for a comparison of the atom sizes used in the
present study to those used in the Amber force field [48].) For
all atoms except hydrogen, s > 1 when comparing the atom
sizes from our all-atom protein model to those used in the
Amber force field. Since other all-atom models for proteins
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FIG. 7. The probability distribution P(〈φ〉) of the average core
packing fraction 〈φ〉 from high-resolution protein x-ray crystal struc-
tures (black circles) fit to a Gaussian with average and standard
deviation 〈φ〉 = 0.55 ± 0.01. Inset: PDBID: 5juh from the x-ray
crystal structure database. The main chain is shown as a ribbon
diagram, and the interior, core residues are rendered as spheres.

use s > 1, large attractive forces and explicit restraints on
the backbone and side chain dihedral angles are needed to
recapitulate the distributions found in x-ray crystal structures
of proteins [53–57]. In this way, our all-atom protein model
has the minimal elements necessary to capture high-resolution
x-ray crystal structures.

VI. A SELF-CONSISTENT CALCULATION
OF PROTEIN CORE PACKING

While the packing fraction of protein cores has been quan-
tified numerous times since the first x-ray crystal structures
were solved, the literature provides a wide range of atomic
sizes {σi} [2–8,18,48]. With the atom sizes defined and val-
idated in Sec. V, we calculate the core packing fraction
using a dataset of ∼5000 high-quality x-ray crystal struc-
tures with a resolution <1.8 Å culled from the Protein Data
Bank (PDB) using the PISCES software with all hydrogens
placed using the REDUCE software [65–67]. The relative
solvent-accessible surface area (rSASA) is measured using the
Lee-Richards algorithm with a spherical probe the size of a
water molecule, and core residues are defined as those with
rSASA � 10−3 [42,43]. The packing fraction of core residue
i is φi = vb

i /v
v
i , where vb

i is the nonoverlapping volume of
the core amino acid, and vv

i is the volume of its enclosing
Voronoi cell [44]. The average core packing fraction is 〈φ〉 =
n−1

c

∑nc
i=1 φi, where nc is the number of core residues. We have

previously found that protein cores in experiments possess an
average packing fraction of 〈φ〉 = 0.55 ± 0.01, as shown in
Fig. 7 [18,19,21,22].

VII. PROTEIN CORE FORMATION DESCRIBED
AS A JAMMING TRANSITION

Does the jamming transition that describes bead-spring
polymer collapse apply to protein core formation? As

described in Sec. V, to construct an all-atom protein model
analogous to the bead-spring polymer model, we enforce the
correct stereochemistry of the amino acids using harmonic
potentials on the bond lengths, bond angles, and peptide bond
dihedral angles. Nonbonded interactions are modeled using
Eq. (4), where λi j = (λi + λ j )/2 is the average hydrophobic-
ity associated with atom pairs i and j, and 0 � λi � 1 is the
hydrophobicity per amino acid that is assigned to each atom
on a given amino acid [68]. (See Table V in Appendix A.) To
explore the dynamics of protein core formation in the all-atom
model, we carry out Langevin dynamics starting from the
energy-minimized x-ray crystal structure (using α = β = 0
to remove initial atomic overlaps) for all 50 studied proteins.
(See Table IV in Appendix A.) In Fig. 8(a), we plot the
packing fraction of core residues 〈φ〉 averaged over the 50 pro-
teins versus increasing attractive strength. At small α2β, the
proteins unfold and 〈φ〉 < 0.55. As the attractive interactions
increase, a plateau at 〈φ〉 ∼ 0.55 (i.e., at the average packing
fraction of experimentally determined protein cores) occurs
for α2β ∼ T/εr . Increasing the attraction further causes a
steep increase in 〈φ〉. As T/εr is lowered, the all-atom model
behaves similarly to the bead-spring polymer, and the plateau
extends to smaller α2β. 〈φ〉 versus α2β is well fit by the
power-law scaling in Eq. (5), where φc → 0.55 and the ex-
ponents a → 1/3 and b → 2 as T/εr → 0, notably different
from the exponents for the attractive bead-spring polymer.

Furthermore, when we plot the sum of the average total
nonbonded repulsive potential energy and bonded potential
energy per atom 〈Vr/N〉 versus α2β in Fig. 8(b), we find
that 〈Vr/N〉 ∼ V0, where V0 ∼ T/εr for α2β < T/εr . How-
ever, when α2β > T/εr , 〈Vr/N〉 increases from the plateau
value V0 as a power-law in α2β [Eq. (6)], where c → 3/2 as
T/εr → 0. Thus, we find that when 〈φ〉 > φc, the total pair
potential energy per atom increases strongly, which indicates
a jamming-like transition. In Fig. 8(c), we combine data from
Figs. 8(a) and 8(b). For 〈φ〉 < φc, 〈Vr/N〉 ∼ V0. When 〈φ〉 >

φc, 〈Vr/N〉 increases as a power law in 〈φ〉 − φc as in Eq. (7).
In Fig. 8(c), we show that δ′ = 9/2, which is larger than the
exponent δ = 2 obtained for collapsed bead-spring polymers.

We also determine the VDOS for the all-atom protein
model by calculating the eigenvalues of S for the backbone
Cα atoms as a function of 〈φ〉. In Fig. 9(a), we show the
VDOS for the all-atom protein model; it displays similar
features as a function of 〈Vr/N〉 to those found near jamming
onset for the weakly attractive bead-spring polymer. However,
the power-law scaling of the characteristic frequency ω∗ ∼
〈Vr/N〉ζ ′

[Fig. 9(b)] has a larger exponent ζ ′ = 1/3 than that
found for collapsed bead-spring polymers.

To calculate the number of excess contacts above iso-
staticity �N for the all-atom protein model, we must first
determine the number of redundant restraints Nr for 〈φ〉 < φc.
Redundant restraints give rise to states of self-stress and do not
rigidify the system [69]. In the case of bead-spring polymers,
each bond is independent and therefore nonredundant. To
calculate the number of zero modes N0 for the unjammed sys-
tem with 〈φ〉 < φc, we minimize the all-atom model (α = 0)
for each protein, numerically calculate the dynamical ma-
trix M = ∂2Vr/(∂ri∂r j ) with respect to the backbone Cα

atom positions, and count the number of zero eigenmodes
of M. According to Maxwell-Calladine constraint counting,
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FIG. 8. (a) The average core packing fraction 〈φ〉 plotted vs the attraction strength α2β for the all-atom protein model for temperatures
T/εr = 10−6 (yellow), 10−7 (green), and 10−8 (blue) and α = 0.5 (circles), 1.0 (squares), 1.5 (upward triangles), and 2.0 (downward triangles).
The red dot-dashed line and cyan shading indicate the average and standard deviation of the core packing fraction in the x-ray crystal structure
dataset. The black dashed lines indicate fits to Eq. (5) with a = 1/3 and b = 2. (b) The average potential energy per atom 〈Vr/N〉 plotted
vs α2β. The black dashed lines indicate fits to Eq. (6) with c = 3/2. (c) 〈Vr/N〉 plotted vs 〈φ〉. The red dot-dashed line and cyan shading
indicate the average and standard deviation of the core packing fraction in the x-ray crystal structure dataset. The black dashed lines indicate
fits to Eq. 7. At large 〈φ〉, 〈Vr/N〉 − V0 ∼ 〈φ − φc〉δ′

, where δ′ = c/a = 9/2 and φc = 0.55. (d)–(f) Visualizations of PDBID: 5juh at packing
fractions below, near, and above φc. The backbone is rendered as a ribbon diagram, while the core residues at φc are shown as spheres.

dN − Nr = N0. Therefore, we can determine Nr and calculate
�N = dN − [Nr + Nc(ri j < rβ )]. In Fig. 9(c), we show that
�N ∼ (〈Vr/N〉/α)ζ

′
with ζ ′ = 1/3, again larger than ζ = 1/4

found for collapsed bead-spring polymers.
Thus, taken together, Figs. 8 and 9 show that the all-

atom protein model undergoes a jamminglike transition when

the average core packing fraction increases above the value
observed in x-ray crystal structures. However, the transition
to the jammed state in the all-atom protein model displays
scaling exponents δ′ and ζ ′ that are larger than those found
previously for the jamming transition in repulsive spheres and
collapsed bead-spring polymers [24]. These results suggest

FIG. 9. (a) VDOS for the all-atom protein model as a function of 〈Vr/N〉 (in units of εr) increasing from 10−9 (blue) to 10−1 (red). The
black dashed line indicates D(ω∗) = 2 × 10−1. (b) The characteristic plateau frequency ω∗ and (c) average excess number of contacts above
the isostatic value 〈�N〉 plotted vs 〈Vr/N〉/α. The black dashed lines in (b) and (c) have slope 1/3.
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FIG. 10. Cα RMSD 〈� f 〉 in Å between the all-atom protein mod-
els and the x-ray crystal structures averaged over 50 proteins plotted
vs α2β when starting from the experimental structure for temperature
T/εr = 10−6 (yellow), 10−7 (green), and 10−8 (blue) and α = 0.5
(circles), 1.0 (squares), 1.5 (upward triangles), and 2.0 (downward
triangles).

that the anomalous scaling exponents are caused by the unique
geometry of amino acids and not from nonbonded attractive
interactions [70,71].

We have demonstrated that during folding, the all-atom
protein model undergoes a jamminglike transition for 〈φ〉 >

φc. We now quantify whether the backbone atoms deviate
from the x-ray crystal structures during the collapse process.
We calculate the root-mean-square deviations (RMSDs) in the
Cα positions between the simulated and experimental struc-
tures � [Eq. (12)]. We find that � converges rapidly versus
time, and thus we focus on � f at the last time point. We
plot 〈� f 〉 averaged over the 50 proteins in Fig. 10. We find
that 〈� f 〉 ∼ 1 Å near jamming onset, confirming that not
only the core packing fraction, but also the global backbone
conformation is nearly identical to the x-ray crystal structure
at jamming onset.

VIII. PROTEIN REFOLDING

Does the Cα RMSD of the all-atom model relative to the
x-ray crystal structures remain small when the simulations
are initialized further from the x-ray crystal structure? To
study the ability of the all-atom model to refold proteins,
we initialize the simulations with conformations at different
Cα RMSD �i using conformations generated by the model
with no attractions (α = β = 0), which unfold over time. We
then carry out Langevin dynamics simulations of the all-atom
model with attractions at T/εr = 10−7 over the range 0.5 �
α � 5.5, and we set β such that α2β ∼ T/εr . In Fig. 11, we
plot the long-time Cα RMSD 〈� f 〉 versus �i for a range of α

averaged over all 50 proteins. We find that for short attractive
ranges (i.e., α � 0.5), while starting in the crystal structure
can lead to a jamming transition, the model cannot refold (i.e.,
〈� f 〉 ∼ �i) above �i ∼ 2 Å. As α is increased, the model can
refold initial states with �i � 5 Å to 〈� f 〉 ∼ 2 Å, a threshold
that is considered properly folded in all-atom MD simulations

FIG. 11. The final average Cα RMSD 〈� f 〉 (in Å) plotted vs the
initial Cα RMSD �i in Å for T/εr = 10−7. The filled circles are
colored by α = 0.5–5.5 increasing from purple to yellow, and β is
set so that α2β ∼ T/εr . All-atom MD simulations of a single protein
(PDBID: 2igp) using the Amber99SB-ILDN force field are shown as
gray squares. The red dashed line indicates 〈� f 〉 = �i.

of protein folding [72]. In addition, all proteins that refold
form a well-defined core with 〈φ〉 ∼ 0.55.

To compare refolding of our all-atom attractive protein
model to results from current all-atom force fields for pro-
teins, we carried out MD simulations of the N = 114 residue
globular protein PDBID: 2igp using the Amber99SB-ILDN
force field [54,73] starting from several partially unfolded
states with Cα RMSD �i from the x-ray crystal structure. The
MD simulations were carried out in a periodic dodecahedron-
shaped box that is sufficiently large such that the protein
surface is at least 20 Å from the box edges. The simulation
box was solvated with water molecules modeled using TIP3P
at neutral pH and 0.15M NaCl [74,75]. Short-range van der
Waals and screened Coulomb interactions were truncated at
1.2 nm, while long-ranged electrostatic interactions were tab-
ulated using the particle mesh Ewald summation method. The
LINCS algorithm was used to constrain the bond lengths.
We performed two energy minimization runs to first relax
the protein and then to relax the water molecules and the
protein together using the steepest decent algorithm until the
maximum net force magnitude on an atom is smaller than
50 kJ mol−1 nm−1. We perform NV T simulations of the sys-
tem at temperature T = 300 K using a velocity rescaling
thermostat for sampling the canonical ensemble [76]. The
equations of motion for the atomic coordinates and velocities
are integrated using a leapfrog algorithm with a 2 fs time
step. We ran 10 simulations for 1000 ns starting from the
same protein conformation, but with different initial velocities
for each atom randomly selected from a Maxwell-Boltzmann
distribution at T = 300 K. We then calculated the average Cα

RMSD between the simulation structures and the x-ray crystal
structure as a function of time.

In Fig. 12(a), we show that when the initial atomic posi-
tions are close to the x-ray crystal structure, the Cα RMSD
〈�〉 ∼ 2 Å. This result indicates that the closest free-energy
minimum of the Amber99SB-ILDN force field is ∼2 Å from
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FIG. 12. The average Cα RMSD 〈�〉 in Å plotted vs time (in
ns) from MD simulations of the globular protein PDBID: 2igp using
the (a) Amber Amber99SB-ILDN force field. (b) Similar data as in
(a) except for the Cα RMSD � in Å for a single initial condition from
MD simulations of the all-atom protein model in reduced time units
t̃ ∼ t/

√
mHσ 2

H/εr . The line color indicates the initial Cα RMSD �i

for �i = 0, 2, 4, 6, and 8 Å from blue to red.

the experimental structure and that the free-energy barriers are
sufficiently large at T = 300 K that the system is not able to
move away from the minimum. However, for an initial Cα

RMSD �i > 2 Å, little refolding is observed and 〈�〉 ∼ �i.
The average experimental refolding time at room temperature
for a protein of this size is typically larger than 1 µs [77].
However, the experimental structures likely refold from com-
pletely unfolded states, whereas the simulations shown here
start from much smaller initial Cα RMSD of �i < 8 Å. In
Fig. 12(b), we show that in contrast to the results for the
Amber99SB-ILDN force field, our model (with α = 2.5 and
α2β ∼ T/εr) is able to refold or partially refold over a wide
range of �i. For �i � 4 Å, � � 2 Å. For �i � 4 Å, the
protein partially refolds with � < �i at long times. The
Amber99SB-ILDN data are compared to the average refold-
ing result in Fig. 11 as gray squares.

IX. DISCUSSION

We have shown that the collapse of weakly attractive bead-
spring polymers displays a jamming-like transition in the
same universality class as that for jamming of disconnected,
repulsive spheres and that adding polymeric (connectivity and
bond-angle) constraints decreases jamming onset at φc. We
further showed that hydrophobic collapse of a stereochemi-
cally accurate all-atom protein model displays a jamming-like
transition with similar power-law scaling for the structural and
mechanical properties of protein cores above φc ≈ 0.55, but
the power-law scaling exponents differ from those for jam-
ming of repulsive spheres. Thus, our results suggest that 〈φ〉 ≈
0.55 observed in x-ray crystal structures of proteins reflects
the onset of a jamming-like transition during hydrophobic
collapse.

In this work, we addressed the question of why the cores
of most proteins possess similar packing fraction. However,
why is it 〈φ〉 ≈ 0.55? To provide insight into this question,
we present a brief review of results for the packing fraction at
jamming onset φc for packings of monomers in Table I and for
polymer packings in Table II. In general, elongated particles
can pack more densely than spheres; however, packings of
frictional particles have reduced φc. In addition, polymeric
constraints decrease the jammed packing fraction, relative to

TABLE I. Values of φc for jammed packings of repulsive
monomers with different shapes under periodic boundary conditions
(PBC) in three dimensions in the large-system limit. The top eight
rows provide data in the rapid cooling and compression rate limit.
In the ninth row, φc increases with decreasing cooling rate. The
tenth row shows results using the SWAP Monte Carlo technique for
repulsive monodisperse spherical particles.

Monomers φc Boundary

spheres 0.64 [28] PBC
polydisperse spheres 0.64–0.85 [78] PBC
ellipses 0.64–0.7 [71,79] PBC
superellipsoids 0.64–0.75 [80] PBC
tetra-, octa-, dodeca-, icosahedra 0.76, 0.7, 0.72, 0.7 [81] PBC
frictional repulsive spheres 0.54–0.64 [82,83] PBC
bumpy effective frictional spheres 0.54–0.64 [84] PBC
deformable spheres 0.5–0.76 [85] PBC
amino acid-shapes 0.55–0.62 [18,21] PBC
spheres SWAP Monte Carlo 0.64–0.7 [25] PBC

that for packings of disconnected monomers. Thus, φc for the
all-atom protein model is determined by the competing effects
of increased φc from the elongated shapes of amino acids,
decreased φc from the effective friction of bumpy amino acids,
and decreased φc from bond-length and bond-angle con-
straints. Future computational studies of intermediate models
ranging in detail from simple polymer models to the all-atom
protein model will fully demonstrate the competing effects of
monomer shape and polymer constraints on the jammed core
packing fraction.

We also note in Table I that the φc values can
be tuned by applying different packing-generation pro-
tocols [16,24,25,87–90]. The packing-generation protocols
presented here were carried out in the rapid cooling and com-
pression rate limits. An important open question is whether
slower cooling and compression rates can give rise to larger
values of φc in the all-atom protein model. To further moti-
vate this question, we characterize the core packing fraction
for x-ray crystal structures of hen egg white lysozyme that
have been obtained at high pressures [91]. In Fig. 13, we
plot the average core packing fraction 〈φ〉 of these structures
versus pressure. We find that 〈φ〉 increases dramatically from

TABLE II. Values of φc for jammed packings of repulsive and
attractive polymeric systems under periodic boundary conditions
(PBC), spherical boundary conditions (SBC), and open boundary
conditions (OBC) in three dimensions in the large-system limit and
for rapid cooling and compression protocols.

Polymers φc Boundary

repulsive short bead-spring chains 0.62 [32,34] PBC
repulsive short angle bead-spring chains 0.1–0.49 [34,47] PBC
repulsive bead-spring polymer 0.58 [35] SBC
repulsive bent sphere trimers 0.57–0.62 [86] PBC
attractive bead-spring polymer 0.63 [This work] OBC
attractive angle bead-spring polymer 0.55 [This work] OBC
All-atom protein model 0.55 [This work] OBC
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FIG. 13. The average core packing fraction 〈φ〉 of hen egg white
lysozyme (HEWL) plotted vs pressure (P in MPa). The x-ray crystal
structures solved at P = 0.1 (PDBID: 4wld) and 890 MPa (PDBID:
4wm5) are visualized in green (top left) and cyan (bottom right),
respectively. The backbone is shown as a ribbon diagram, and the
solvent-inaccessible core residues are shown as spheres.

〈φ〉 = 0.55 to 0.585 at the highest pressures studied. Re-
markably, the MOLPROBITY metrics of quality of these
high pressure structures are comparable to those for high-
resolution x-ray crystal structures at ambient pressure. These
results suggest that the cores of these high-pressure structures
can potentially occur in our all-atom protein model provided
that we employ slow cooling rates. Without a mechanical
model, it is difficult to determine whether the high-pressure
structures are under large strains with �φ > 0 or whether the
pressure has perturbed the structures to a new, denser jammed
packing, i.e., that φc(P = 890 MPa) > φc(P = 0.1 MPa). By
applying the all-atom protein model developed here, we can
determine whether the high-pressure structures are under
strain or not, which has important implications for protein
binding [92]. Similarly, previous computational studies have
suggested that proteins exist in a glassy potential energy
landscape, and experimental studies on small proteins have
provided evidence that the final stage of protein folding,
known as the dry molten-globule, represents slow evolution
toward the final fold [93–101].

While identifying φc is an interesting question, a key in-
sight of the physics of jamming is that the controlling variable
is not the jammed packing fraction, but the deviation in pack-
ing fraction, �φ = φ − φc. For example, we showed here that
the potential energy, deviation in contact number, and charac-
teristic frequency of the VDOS are controlled by �φ [28].
Further, other studies of jammed sphere packings have shown
that the pressure, specific heat, bulk, and shear moduli also
scale with �φ [30,31]. Note that the power-law scaling ex-
ponents can depend on the particular φc if the configurations
at jamming onset possess differing amounts of positional
order [102].

Connecting protein core formation and the jamming tran-
sition offers several additional directions for future research.
For example, the response to point mutations in proteins can

be reformulated as an unjamming or jamming process, which
can lead to improved predictions of conformational changes
upon mutation [103–105]. Packing at protein-protein inter-
faces can also be interpreted in the context of jamming, which
can provide insight into the scoring of computational models
of protein-protein interfaces [106]. In addition, the all-atom
model developed here can be used to investigate crowding and
sticking interactions that affect in vivo protein structure [107].
The results described here can also improve our understand-
ing of the mechanical properties of proteins. Experimental
studies have shown that proteins possess a low-frequency
boson peak [108,109], which is associated with functional and
allosteric large-scale motion of proteins [110,111]. In future
studies, we will compare the low-frequency vibrational modes
from all-atom models of x-ray crystal structures to known
collective motions of proteins.
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DATA AVAILABILITY

The stereochemically accurate all-atom protein model de-
veloped here is available in Ref. [112]. The REDUCE software
is needed to add hydrogens to the x-ray crystal structures. All
simulations were conducted on a single CPU, and computa-
tion time was limited to less than 24 h per simulation.

APPENDIX: STEREOCHEMICALLY ACCURATE
ALL-ATOM PROTEIN MODEL PARAMETERS

Here we present the key parameters of the all-atom protein
model described in Sec. V. First, in Table III we show the
atomic radii σi that define the repulsive hard-core interac-
tions. These atom sizes were initially developed by finding
the optimal set of atomic radii that, under a purely repulsive
interaction, predict the side chain dihedral angle rotamers,

TABLE III. The atomic radii σi in Å for each atom type in the
all-atom protein model and van der Waals radii σvdw,i (i.e., location
of the minimum in the Lennard-Jones interatomic potential) from the
Amber force field [48]. s indicates the ratio of the van der Waals radii
to those used in the present study. The atom types with subscripts
indicate an additional atom type when the main atom is bonded to
the subscripted atom.

Atom type Our all-atom protein model σi Amber σvdw,i s

C 1.5 1.7 1.1
CO 1.3 1.7 1.3
O 1.4 1.5 1.1
N 1.3 1.6 1.2
H 1.1 1.0 0.9
HN 1.0 1.0 1.0
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TABLE IV. The 50 proteins that we simulated using the all-atom
model identified by their PDBIDs. We also provide the number of
amino acids Naa for each protein.

PDBID Naa PDBID Naa PDBID Naa PDBID Naa PDBID Naa

2f60 60 5b8d 99 1e29 135 5ljp 168 4lgj 256
1utg 70 4kdw 102 4wee 135 3bwz 171 4r78 287
1cc8 72 1ifr 113 5juh 137 4n6q 178 1lzl 317
5hub 79 2igp 114 4ga2 144 5ckl 181 5dp2 335
5wd9 86 2opc 115 2iih 146 4o6u 182 1m15 356
4he6 89 3zsu 118 5cvw 150 3rlk 183 6o08 360
4ltt 91 2ckk 120 3zuc 153 6dnm 187 5mpr 364
4xxl 92 4o0a 123 1hzt 153 3boe 209 2aeu 366
1v05 96 6bl5 129 3k7i 157 1sdi 213 4xd1 397
4qnd 97 1vsr 134 2z6o 166 3dha 254 1q6z 524

as well as the particular side chain dihedral angle combina-
tions observed in the cores of individual protein x-ray crystal
structures [60–64]. Table IV shows the 50 randomly selected
proteins that were studied with the all-atom protein model.

TABLE V. The relative hydrophobicity λi for each of the 20
amino acids indicated by their three-letter codes.

Residue λi Residue λi Residue λi Residue λi

ARG 0.0 GLN 0.29 GLY 0.52 TRP 0.85
ASP 0.09 PRO 0.39 TYR 0.64 VAL 0.89
GLU 0.16 HIS 0.4 ALA 0.67 PHE 0.96
LYS 0.16 SER 0.42 CYS 0.74 LEU 0.97
ASN 0.25 THR 0.48 MET 0.84 ILE 1.0

The proteins are all single chain, high resolution, and have
low sequence similarity as our large database of structures
was culled from the Protein Data Bank using PISCES [65,66].
Lastly, in Table V, we provide the relative amino acid hy-
drophobicities λi. These values were obtained in a previous
study that collected numerous amino acid hydrophobicity
scales, normalized them between 0 and 1, and found the
average value for each amino acid type [68].
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