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Abstract: A goal of computational studies of protein-protein interfaces (PPIs) is to predict the

binding site between two monomers that form a heterodimer. The simplest version of this problem
is to rigidly re-dock the bound forms of the monomers, which involves generating computational
models of the heterodimer and then scoring them to determine the most native-like models. Scoring
functions have been assessed previously using rank- and classification-based metrics, however, these
methods are sensitive to the number and quality of models in the scoring function training set. We
assess the accuracy of seven PPI scoring functions by comparing their scores to a measure of
structural similarity to the x-ray crystal structure (i.e. the DockQ score) for a non-redundant set
of heterodimers from the Protein Data Bank. For each heterodimer, we generate re-docked models
uniformly sampled over DockQ and calculate the Spearman correlation between the PPI scores and
DockQ. For some targets, the scores and DockQ are highly correlated; however, for many targets,
there are weak correlations. Several physical features can explain the difference between difficult-
and easy-to-score targets. For example, strong correlations exist between the score and DockQ for
targets with highly intertwined monomers and many interface contacts. We also develop a new
score based on only three physical features that matches or exceeds the performance of current
PPI scoring functions. These results emphasize that PPI prediction can be improved by focusing
on correlations between the PPI score and DockQ and incorporating more discriminating physical
features into PPI scoring functions.

Significance: We address the challenge of predicting binding interfaces for heterodimers. We
evaluate PPI scoring functions by comparing their scores to a measure of similarity between the
computational model and the corresponding x-ray crystal structure. For most targets, there are
weak correlations between the score and ground truth, emphasizing the need for improved scoring
functions. We identify physical features that can be combined into a new scoring function to predict
the binding interface quality of computational models.

Availability: https://github.com/jakesumneryale/Protein_interface_assessment
Keywords: protein-protein interfaces | rigid-body and flexible docking | protein complex design

1



1 Introduction

Proteins interact and form interfaces in numerous important biological processes, such as enzymatic
catalysis of reactions, cytoskeletal organization, and immune recognition of pathogens. Identifying
the binding interface between two proteins is crucial for understanding the function of protein com-
plexes. The structure of protein-protein interfaces (PPIs) can be resolved via x-ray crystallography,
nuclear magnetic resonance spectroscopy, and cryo-electron microscopy. However, experimentally
resolving PPI structures is expensive and time-consuming. For example, there are more than 105

PPIs in the human body, yet only ∼ 5% of their structures have been experimentally resolved1–4.
An important goal in the field of computational protein design is to develop the ability to predict
whether two proteins form an interface and identify the location of the interface5–14.

The problem of determining PPIs involves two steps: one must first know whether the two
monomers interact and then determine the binding interface. In this work, we focus on the second
step. In particular, we ask, given two monomers that are known to interact, can a near native
structure be identified among a large pool of computational models of the bound structure? In
general, this task involves flexible docking, i.e. predicting both the conformational changes in each
monomer upon binding and the interface between the two proteins. In flexible docking, there is a
large conformational space to search that includes changes in the conformation of the protein back-
bone and side chains to find a near-native interface structure. Therefore, flexible docking depends
on two main factors: sufficient sampling of the conformation space of the docked proteins and ac-
curately scoring these conformations. Several groups have created flexible docking programs5,6,9,15

and participate in the Critical Assessment of PRedicted Interactions competition (CAPRI), which
asks groups to correctly predict the structures of novel experimentally determined PPIs from the
amino acid sequence12,14. While the performance of flexible docking software has improved over the
past 20 years, it remains difficult to accurately determine the structure of heterodimers, which is a
much simpler case than the large multimeric complexes that are frequently considered in CAPRI14.
Even deep-learning PPI structure prediction methods, such as AlphaFold-Multimer13,16, are unable
to place ∼ 30% of heterodimeric PPIs within 10 Å of their native structure17. In contrast, duplicate
PPIs that have been crystallized by multiple groups possess root-mean-square (RMS) deviations in
the Cα atoms that are less than 1 Å. Thus, the problem of flexible docking is not yet solved.

The flexible docking problem can be considered as a sequence of rigid-body docking calculations
as the unbound conformations of the monomers are changed into the bound monomer conforma-
tions. In rigid-body docking, model generation is straightforward since one can simply generate
all possible rigid-body translations and rotations of one monomer relative to the other. Thus, ac-
curate scoring of PPI models is the key component of rigid-body docking. Rigid-body re-docking,
or recapitulating the bound interface from the separated bound monomers of a heterodimer whose
structure has been experimentally determined, removes the question of whether each monomer is
in the correct conformation for binding. Rigid-body re-docking is typically considered a “solved”
problem, with hit rates for acceptable computational models exceeding 50% in the top five scored
models18 using a common docking benchmark dataset with ∼ 200 PPIs19,20. Given that there
are ≳ 105 PPIs, this sample set is likely inadequate to capture the full heterogeneity of PPIs. In
fact, a recent study21 has found that scoring functions for rigid-body docking software can identify
high-quality models in the top 10 scored models only 3% of the time. This result suggests that
rigid-body re-docking is not a solved problem and one must identify the shortcomings of current
scoring functions and then correct them.

Simplifying the problem of PPI prediction to rigid-body re-docking allows us to assess the
accuracy of scoring functions. Most computational studies of PPIs5,18,22–35 consider a scoring
function as “successful” if any computational model in the top N ranked models (where N typically
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ranges from 5 to 100) is above an arbitrary quality cutoff10,12,14,36–38. However, such measurements
of “hit rate” are sensitive to how the computational models are sampled. Another disadvantage of
using hit rate is that it evaluates scoring performance over an entire dataset, instead of evaluating
the scoring performance for each target within the dataset. In contrast, the receiver operator
characteristic (ROC) curve can determine the classification performance for a single target by
measuring the area under the ROC curve (AUC). For the ROC curve, all scored models are assigned
a label of “true positive” or “true negative” according to an arbitrary quality cutoff. However, AUC
is also sensitive to how the computational models are sampled. For random sampling of PPI models
generated from a high-resolution x-ray crystal structure (or target), there are far fewer near-native
models than low-quality models. (See Supplementary Material.) For example, we obtain an AUC
of 0.959 when using a standard quality cutoff when randomly sampling computational models for a
particular target36. A more direct metric for assessing scoring accuracy is to correlate the predicted
score to a ground truth measure of quality for each computational model (e.g. the DockQ score39).
For the same data, the Spearman correlation coefficient |ρ| ≈ 0.256, which is low compared to the
classification accuracy reported by the AUC. The contradictory prediction accuracies reported for
ρ and AUC are caused by an imbalance of model quality in the data set, which is typical of docking
software. Disparities in ρ and AUC can cause unreliable results when comparing the performance
of existing PPI scoring functions. However, we have developed techniques to sample computational
models uniformly over DockQ, which removes the disparities found in AUC and ρ and enables
reliable comparisons of PPI scoring performance among different targets.

Here, we assess the current state-of-the-art PPI scoring functions and determine when they are
able to discern near-native from low-quality models. We focus on a dataset of 84 high-resolution
PPI heterodimer targets with no bound ligands obtained from the RCSB PDB40. For each target,
we generate 540,000 computational models using a template-free rigid-body re-docking protocol,
ZDOCK3.0.241,42, and sample a uniform distribution of model quality based on their structural
similarity to the target. We then use several scoring functions, such as ZRank224,25, ITScorePP27,
Rosetta9,28,29, PyDOCK26, VoroMQA30, Deeprank-GNN-ESM18, and GNN-DOVE34, to score the
models for each target. We assess the performance of these scoring functions by correlating each
score with DockQ and measuring the AUC as a function of the DockQ cutoff. For each target, we
find that the AUC and the Spearman correlation coefficient ρ obey AUC ≈ −0.5ρ + 0.5 when the
model quality is uniformly sampled. (ρ ≈ −1 for accurate scoring functions because near-native
models are typically associated with lower scores.) For half of the targets, the average magnitude
of the Spearman correlation coefficient is less than 0.70, which shows that for a majority of the
targets it is difficult to distinguish poor-quality, rigid-body docked models from native structures.
Thus, the scoring of rigid-body re-docked PPI models is still an open problem. We also identify
several important physical features for predicting model quality: the number of interfacial contacts,
interface size, and degree to which the two monomers are intertwined at the interface. After
combining these physical features into a scoring function using support vector regression, we show
that its performance is comparable to the current best-performing scoring functions. In the future,
we will develop a deep-learning PPI scoring function trained on our large dataset of models with
balanced quality to improve the scoring accuracy of all PPI targets.

2 Results

Our goal is to assess the accuracy of current scoring functions for computational models of rigidly
re-docked PPIs generated using the individual bound monomers of high-resolution x-ray crystal
structure heterodimers. The most commonly used method to assess PPI scoring function accuracy

3



is the hit rate plot30,32–35, which measures the fraction of targets with at least one “positive”
(i.e. models with DockQ ≥ 0.23) in the top i ranked models (out of a total of Nt models) scored
by a given scoring function averaged over all targets. (Models with DockQ < 0.23 are referred
to as “negatives.”) However, the hit rate plot is extremely sensitive to Nt when there are weak
correlations between the ground truth score (i.e. DockQ) and scores from PPI scoring functions.
In Fig. 1 (a) and (c), we plot the probability distribution log10 P for computational models to
have given DockQ and Rosetta scores for a large dataset of models generated by ZDOCK for two
example targets, 3RCZ43 and 3YGS44, respectively. The magnitude of the Spearman correlation
coefficient |ρ| for 3YGS (|ρ| = 0.35) is much smaller than that for 3RCZ (|ρ| = 0.62).

To illustrate the sensitivity of the hit rate metric on the number of models that are scored,
we calculate the effective hit rate fraction for each target. We first generate Nt = 108,000 com-
putational models using ZDOCK for each target. We then randomly draw Nm models from this
collection Ns times. The Nm models are ranked using the Rosetta scoring function from lowest to
highest, i = 1,. . .,Nm. The effective hit rate fraction at i is the fraction of the Ns draws that have
at least one positive model for ranks less than or equal to i. For target 3RCZ, we show in Fig. 1
(b) that the effective hit rate fraction for 3RCZ improves as Nm increases, which suggests that a
larger sample size can improve the hit rate fraction. However, in Fig. 1 (d), the effective hit rate
fraction decreases as Nm increases for 3YGS. In particular, as Nm approaches Nt, the effective hit
rate fraction for 3RCZ approaches 1, while for 3YGS, it approaches 0. These results emphasize
that the effective hit rate fraction is sensitive to the number of models Nm. Similar results for the
hit rate fraction are found for all other scoring functions that we tested.

Why does the effective hit rate fraction tend to limiting values of 0 or 1 as Nm → ∞? An
important difference between the targets 3RCZ and 3YGS is that Rosetta assigns lower scores to
negative models than those for positive models. Thus, it is important to quantify the fraction of
computational models µ that are negative and a have PPI score (e.g. Rosetta score) that is lower
than the minimum value for all positive models. To understand the dependence of the effective hit
rate fraction on µ, we generated a large synthetic dataset of “docked models” for a PPI target with
Pearson correlation |ρ| ≈ 0.1 between “DockQ” and “PPI score”. We balance the synthetic dataset
so that it has an equal number of positive and negative models, assuming again that the positive
models have “DockQ” ≥ 0.23. In Fig. S2, we show that the effective hit rate fraction tends toward
zero for all µ > 0, which emphasizes the unreliability of the hit rate fraction when considering the
large number of samples limit.

We employ a similar method to assess the effective hit rate fraction for each target in our PPI
dataset. Specifically, we take Ns = 103 samples for varying sample sizes Nm for each target with
Nt = 104 ZDOCK-generated models. In Fig. 2 (a), we plot the effective hit rate fraction at i = 100
over Ns samples versus Nm/Nt ranking the models using ZRank2. The effective hit rate fractions
for 81/84 targets approach one as Nm/Nt increases. For three targets, the effective hit rate fractions
tend toward zero. (We find similar results for our PPI dataset for all other scoring functions that
we tested.) These results highlight the problems associated with using hit rate fraction as a PPI
scoring evaluation metric. First, the hit rate fraction depends on the value of Nm/Nt that is used.
Second, even though the effective hit rate fraction tends toward 1 in the large-Nm limit for the
majority of targets, we are unable to compare the relative performance of PPI scoring functions for
different targets using the hit rate fraction.

Two others metrics that can be used to assess PPI scoring function performance are the area
under the ROC curve (AUC) and Spearman correlation ρ. 0.5 < AUC < 1 indicates how well a
scoring function classifies models as positive versus negative. AUC values of 0.5 and 1 indicate
random and perfect classification, respectively. ρ is a non-linear measure of the correlation between
DockQ and the PPI score; ρ = −1 indicates a perfect negative correlation between DockQ and the

4



Figure 1: The probability distribution P (DockQ, Rosetta) for the computational models to have
given DockQ and Rosetta scores when exhaustively sampling the computational models for het-
erodimer targets (a) 3RCZ and (c) 3YGS. The color scale from light yellow to dark red indicates
increasing probability. The effective hit rate fraction is plotted versus the index i of the top-ranking
models for increasing numbers of computational models Nm (from blue to yellow) for (b) 3RCZ
and (d) 3YGS.

5



PPI score. In Fig. 2 (b), we show a scatterplot of DockQ versus ZRank2 scores for all models of
PDB 3U82 with ρ = −0.191. The ROC curve calculated for the same target (with AUC = 0.707)
is shown in Fig. 2 (c). We compare ρ and AUC for all 84 targets in Fig. 2 (d). These results show
inconsistency between the classification and correlation metrics. For many targets, the AUC ∼
1, while |ρ| ≤ 0.5. For example, GNN-DOVE inconsistently scores high DockQ models, either
assigning them the highest or lowest scores. Thus, we omit GNN-DOVE from further analyses. For
the rest of the scoring functions, why is the magnitude of the Spearman correlation coefficient so
low, yet the AUC indicates accurate classification?

The disparity between ρ and AUC likely stems from the overabundance of poor-quality models
and lack of high-quality models typically generated by PPI docking methods. To address both
issues, we generated a dataset of ∼ 50 models (sampled from a larger pool of 540,000 models per
target) for each DockQ bin with width 0.05 (Fig. 3 (a)). After energy minimizing the models, the
distribution of model quality is nearly uniform except for the highest few bins of DockQ. We then
re-balanced the dataset so that half of the models are positive and half are negative by adding
negative models to the energy minimized dataset. This uniform sampling procedure gives ∼ 1400
models per target. We then calculate ρ and the AUC for the uniformly sampled dataset and find
that the AUC obeys AUC ≈ −0.5ρ + 0.5 as shown in Fig. 3 (b). Since ρ and AUC are linearly
related for the uniformly sampled data, we focus on ρ for the remaining analyses.

To quantify the change in the evaluation metrics of the scoring functions after uniform sampling,
we compared ρ and AUC obtained from exhaustive versus uniform sampling. We define ∆ρ = ρu−ρe
and ∆AUC = ∆AUCu −AUCe, where “u” and “e” represent the uniform and exhaustively sampled
datasets. In Fig. 3 (c), we show a scatterplot of ∆ρ versus ∆AUC. We find that most of the data
points are found in the second quadrant, which indicates improvements in both correlation and
classification metrics following uniform sampling. (Increased correlations correspond to ∆ρ < 0
and improved classification corresponds to ∆AUC > 0.) Some targets have a negative ∆AUC
or a positive ∆ρ, which likely stems from under-sampling of positive models for targets in the
exhaustively sampled dataset. These results emphasize that after uniformly sampling models in
DockQ, ρ is a consistent metric for evaluating the performance of PPI scoring functions.

In Fig. 4, we show the results for the Spearman correlation ρ between DockQ and six scoring
functions (ZRank2, ITScorePP, Rosetta, PyDock, VoroMQA, and Deeprank-GNN-ESM) for all 84
PPI targets. The targets are ordered according to increasing ⟨ρ⟩, averaged over the six scoring
functions. (Note that since ρ < 0 increasing ρ implies decreasing magnitude of the correlations.)
Some targets have ρ ≈ −1, e.g. 3WHQ, 1UGQ, and 1N1J. Approximately 20 targets are “easy”
with |⟨ρ⟩| > 0.8. Twenty-three targets are “hard” with |⟨ρ⟩| < 0.6. The hard targets have greater
variability in ρ across the six scoring functions. The remaining 41 targets with 0.8 ≤ |⟨ρ⟩| ≤ 0.6
are medium difficulty. The average ⟨ρ⟩t over targets for each scoring function is shown in Fig.
S3. ZRank2 has the largest |⟨ρ⟩t| ≈ 0.78. In contrast, VoroMQA has the smallest |⟨ρ⟩t| ≈ 0.56
(excluding GNN-DOVE) and performed well only on the easy targets. Current scoring functions
give accurate predictions (|ρ| > 0.8) of model quality for only ∼ 25% of PPI targets. A highly
accurate scoring function would generate correlations |ρ| ≥ 0.9 between the score and DockQ for all
re-docked targets. Thus, a large portion of targets are still difficult to score, with scoring functions
unable to distinguish between low- and high-quality models.

What makes a PPI target easy or hard to score? Rigid-body re-docking involves generating
models in a six-dimensional configuration space. If the receptor’s center of mass is fixed at the
origin, the ligand’s center of mass can be placed at any position (x, y, z) (three degrees of freedom)
and three angles are required to specify its orientation. We can calculate the PPI score and DockQ
score at any point in this six-dimensional space, and a large |ρ| indicates strong correlations between
the PPI score and DockQ in this six-dimensional configuration space. However, it is difficult to
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Figure 2: Metrics to evaluate the performance of PPI scoring of re-docked models generated without
uniform sampling of DockQ. (a) The effective hit rate fraction at rank i = 100 generated for all
targets obtained by randomly sampling models for each target plotted as a function of the ratio of
the number of models in each sample to the total number of models, Nm/Nt. (b) A scatterplot of
ZRank2 versus DockQ for PDB 3U82 with Spearman correlation ρ = −0.191. (c) ROC curve for the
data in (b) with true positive cutoff DockQ ≥ 0.23 and AUC = 0.707. (d) The Spearman correlation
ρ between DockQ and each of the seven scoring functions plotted versus the AUC for all targets.
Each color represents a different target and the blue dotted line represents AUC = −0.5ρ + 0.5.
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Figure 3: Improvements in the evaluation of PPI scoring functions due to uniform sampling of
DockQ. (a) Probability distribution P (DockQ) of the DockQ for computational models for all
targets obtained by exhaustive sampling of models (gray circles), uniformly sampling DockQ before
energy minimization (blue triangles), and uniformly sampling DockQ after energy minimization
(black crosses). (b) AUC plotted versus ρ for models that uniformly sample DockQ (after energy
minimization) for each scoring function. The blue dotted line gives AUC = −0.5ρ + 0.5. (c)
∆ρ = ρu − ρe plotted versus ∆AUC = AUCu − AUCe, where ρu (ρe) is the Spearman correlation
for the models that were uniformly (exhaustively) sampled in DockQ and AUCu (AUCe) is the area
under the ROC curve for the models that were uniformly (exhaustively) sampled.

Figure 4: The Spearman correlation ρ between DockQ and PPI score for each target and scoring
function. We order the targets by increasing ⟨ρ⟩ (black line), averaged over the scoring functions,
from left to right. (Note that since ρ < 0 increasing ρ implies decreasing the magnitude of the
correlations.) The standard deviations of the scores for each target are indicated by the black
vertical lines. The numbers on the horizontal axis correspond to PPI targets listed in Table S1.
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Figure 5: The shape of the DockQ landscape provides insight into the effectiveness of scoring
computational models. (a) A schematic of re-docked models of heterodimer PDB 2GRN, which
illustrates the variables that define the DockQ landscape. The receptor (gray shading) is located
at the origin O with the same orientation as that in the x-ray crystal structure. The location
of the ligand with the same orientation as that in the x-ray crystal structure is denoted using
spherical coordinates, the distance from the origin r, the polar angle θ, and the azimuthal angle
ϕ, for two models (blue triangle and purple square) and the x-ray crystal structure (red star).
DockQ increasing from dark blue to dark red is plotted for all computational models for (b) 2GRN
and (c) 3WHQ with Spearman correlations between DockQ and ZRank2 ⟨ρ⟩ = −0.41 and −0.93,
respectively. The models were scored at arbitrary x-, y-, and z-coordinates, but plotted at r = R,
where R is the separation between centers of mass of the receptor and ligand in the x-ray crystal
structure. (d) The Spearman correlation ⟨ρ⟩ (between DockQ and PPI score) averaged over scoring
functions plotted versus the relative anisotropy κ2 of the DockQ landscape for all 84 targets. The
values of ρ and κ2 are highlighted for 2GRN (cross) and 3WHQ (star).
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visualize and characterize the DockQ and PPI score landscapes in six dimensions, and thus we seek
lower-dimensional representations. One approach is to fix the orientation of the ligand (e.g. to that
in the x-ray crystal structure) and only consider the x-, y-, and z-coordinates of the ligand’s center
of mass (given a fixed position and orientation of the receptor). We can remove another degree
of freedom by plotting the scores at fixed radial distance r = R, where R is the distance between
receptor and ligand centers of mass in the x-ray crystal structure. We can then visualize the DockQ
score (and the PPI score) for each model as function of the spherical coordinate representation of
the ligand’s position (R, θ, ϕ), where θ and ϕ are the polar and azimuthal angles (Fig. 5 (a)).

We show the DockQ landscape for all computational models for the targets PDB 2GRN and
3WHQ in Fig. 5 (b) and (c). The models with the largest DockQ values in red are close to
the native binding sites. The DockQ score decays rapidly (changing color from red to yellow
to dark blue) as the models move further from the native binding site in θ and ϕ. As shown
in Fig. 4, 2GRN is classified as a “hard” target with ⟨ρ⟩ = −0.41 and 3WHQ is classified as
an “easy” target with ⟨ρ⟩ = −0.93. The DockQ landscape is more isotropic for the easy target
3WHQ compared to the landscape for the hard target 2GRN. To characterize the shape of the
DockQ landscape, we calculate the moment of inertia tensor Iαβ for the x-, y- and z-coordinates
of the ligands for all models weighted by DockQ for each target. We define the relative anisotropy,
κ2 = 1 − 3(λ1λ2 + λ2λ3 + λ1λ3)/(λ1 + λ2 + λ3)2, of the landscape, where λ1 ≥ λ2 ≥ λ3 are the
eigenvalues of Iαβ. We show in Fig. 5 (d) that there is a positive correlation between κ2 and ⟨ρ⟩
averaged over all scoring functions, i.e. ⟨ρ⟩ decreases (becomes more negative) as the large DockQ
landscape becomes more isotropic. (See the methods section for more details.)

The magnitude of the Spearman correlation between DockQ and the PPI score is controlled
by the differences in the DockQ and PPI score landscapes. In Fig. S4, we compare the DockQ
and ZRank2 landscapes of PDB 3WHQ and 2GRN. For the easy target, 3WHQ, the ZRank2
landscape closely resembles the DockQ landscape, while the ZRank2 landscape does not overlap
with the DockQ landscape for the hard target, 2GRN. These results emphasize that the isotropy
of the DockQ landscape and the overlap between the DockQ and PPI score landscape influence
⟨ρ⟩ for each target. However, are there physical features of the binding interface that can provide
information about the difficulty in accurately scoring PPI models?

We identify two important physical properties of protein-protein interfaces that influence scoring
accuracy: the interface separability S and relative surface area fa of the interface. (See Methods
for more details.) The interface separability S is calculated using a support vector machine (SVM)
to best separate the receptor and ligand by an order-three polynomial surface. The separability
satisfies 0.5 ≤ S ≤ 1.0 and the larger the separability, the flatter the interface. In Fig. 6 (a),
we show that as the interfaces become more intertwined (S decreases), |⟨ρ⟩| averaged over scoring
functions increases. In contrast, as S → 1, |⟨ρ⟩| generally decreases, but the data for different
targets are more scattered.

We define the relative surface area of the interface as

fa = (SASAr + SASAl) − SASAr+l

SASAr + SASAl
, (1)

where SASAr is the solvent accessible surface area of the receptor in its bound form in the absence
of the ligand, SASAl is the solvent accessible surface area of the ligand in its bound form in the
absence of the receptor, and SASAr+l is the solvent accessible surface area of the ligand bound to
the receptor. In Fig. 6 (b), we show that targets with larger interfaces (i.e. fa ≳ 0.15) possess large
|⟨ρ⟩|, whereas smaller interfaces with fa ≲ 0.15 typically possess smaller |⟨ρ⟩|, but there is large
scatter in the data. Since “easy” targets have a more isotropic DockQ landscape, and easy targets
have low values of the separability and high values of the relative surface area of the interface fa,
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Figure 6: The Spearman correlation between the DockQ and PPI scores ⟨ρ⟩, averaged over all
scoring functions, plotted versus the (a) interface separability S and (b) fraction fa of the surface
area that is part of the interface for each target.

the anisotropy κ2 is typically smaller for targets with low S and large fa as shown in Fig. S5 (a)
and (b). These results show that the physical properties of the interface, such as the separability
and relative interface size, enable us to separate the “easy” from the “hard” to score interfaces.

The physical interface properties, such as S and fa, can separate targets according to their
scoring difficulty. Therefore, it is interesting to determine how these two physical interface prop-
erties, as well as the number of interface contacts Nc (i.e. heavy atoms on different protein chains
with separations less than 4.5Å), perform as scoring functions for computational models. We first
calculate these physical properties on all models for each target that are uniformly sampled over
DockQ. We then plot the Spearman correlation between DockQ and the PPI scores ⟨ρ⟩t averaged
over all targets for each scoring function, including scores that are based on S, fa, and Nc indi-
vidually (Fig. 7 (a)). The interface separability score is the worst performing score out of S, fa,
and Nc with ⟨ρ⟩t = −0.577, however, it still outperforms VoroMQA on average. The number of
interface contacts had the best performance of the physical-metric-based scores with ⟨ρ⟩t = −0.722.
The success of the three physical interface properties individually in scoring computational models
suggests that a combined scoring function that includes all three physical metrics can outperform
the individual physical metrics. In Fig 7, we show results for a non-linear support vector regression
(SVR) score that uses a gaussian kernel to combine the three physical metrics. (See Methods for
more details.) The SVR score achieves |⟨ρ⟩t| = 0.763 across all targets, only slightly lower than
ZRank2 (|⟨ρ⟩t| = 0.778), which is the highest performing PPI score. Thus, this simple three-feature
SVR scoring function can match the performance of state-of-the-art PPI scoring functions.

We then measure the classification performance for the PPI scoring functions and the combined
SVR score using the AUC of the ROC curve. Because the ROC requires an arbitrary cutoff between
positives and negatives, we calculate AUC over a range of DockQ cutoffs 0.2 ≤ DockQ0 ≤ 0.8. If
the DockQ score of a model is greater than or equal to the cutoff, it is classified as positive. (See
Methods for more details.) In Fig. 7 (b), we plot ⟨AUC⟩t averaged over targets versus the cutoff
DockQ0. The ordering of the Spearman correlation mirrors the classification performance at the
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Figure 7: (a) The Spearman correlation between DockQ and the PPI score ⟨ρ⟩t (markers) averaged
over targets and the standard deviation ⟨∆ρ⟩t (vertical lines) for each scoring function (including the
individual physical features: fa, Nc, and S). ⟨ρ⟩t for each scoring function is plotted in ascending
order from left to right. (b) The AUC of the ROC plot ⟨AUC⟩t averaged over targets plotted
versus the DockQ cutoff, DockQ0, for each scoring function: ZRank2 (blue triangles), ITScorePP
(turquoise circles), Rosetta (green squares), PyDock (orange hexagons), VoroMQA (purple stars),
Deeprank-GNN-ESM (red-orange diamonds), and the SVR scoring function with three physical
features (burgundy rightward triangles).

lowest cutoff (DockQ0 = 0.2) in Fig. 7 (b). As the DockQ cutoff increases, ⟨AUC⟩t the classification
performance of most scoring functions does not change significantly. However, ⟨AUC⟩t for Rosetta
increases by more than 0.1 as DockQ0 increases, which suggests that Rosetta is better at identifying
high-quality models (with DockQ0 ≥ 0.5). Notably, when DockQ0 = 0.8, ITScorePP and the SVR
score are the top classifiers of high-ranking models, both with ⟨AUC⟩t ≈ 0.92. We compare the
performance of the SVR score and ZRank2 for each target in Fig. S6; we show that the SVR score
has a larger |ρ| than ZRank2 for 41 out of the 84 targets. In addition, the SVR scores are better
than ⟨ρ⟩ averaged over the six scoring functions for 78 out of the 84 targets. Altogether, these
results emphasize that the correlation and classification performance of the simple SVR score is
comparable or better than all of the current PPI scoring functions.

3 Discussion

Predicting the interface between two protein monomers that form a heterodimer complex is an
important, open problem. In this work, we focus on perhaps the simplest aspect of this problem:
rigid-body re-docking of the bound forms of the monomers into the heterodimer, for which we
have an experimentally-determined structure. When re-docking the bound forms, generation of the
computational models is straightforward. Instead, the difficult task is to identify the model that
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is closest to the native structure using a PPI scoring function. We evaluate the performance of
seven PPI scoring functions (ZRank2, PyDock, VoroMQA, Rosetta, ITScorePP, GNN-DOVE, and
Deeprank-GNN-ESM) in carrying out this task. We test these scoring functions on a large dataset
of models for 84 high-resolution x-ray crystal structure targets from the PDB. For each target, we
generated an equal number of positive (DockQ ≥ 0.23) and negative (DockQ < 0.23) models. Our
DockQ-balanced dataset gives consistent results for both classification and correlation measures
between the PPI score and DockQ, i.e. we find that the Spearman correlations ρ between the PPI
score and DockQ and the AUC of the ROC curve obey AUC ≈ −0.5ρ + 0.5. We show that the
targets in our dataset possess a range of difficulty in scoring, where some targets have significantly
lower |ρ| than others. We show that the scoring difficulty of the target increases as the anisotropy of
the DockQ scoring landscape increases. Further, we identified several collective physical properties
of the interface, such as interface separability S and the relative surface area of the interface fa

that can predict the scoring difficulty of the targets. Then, we constructed an SVR scoring function
based on S, fa, and the number of interfacial contacts Nc and show that it meets or exceeds the
classification and correlation performance of the other state-of-the-art PPI scoring functions.

We find that an SVR with only three physical features matches or outperforms state-of-the-
art PPI scoring functions with many more features, despite the long history of computational
studies of PPIs24,26,30,45–49. One possible reason for this lagging performance for current PPI
scoring functions18,24–26,30,32–35 is that they have primarily been evaluated using classification-
based metrics, such as hit rate plots, which employ quality cutoffs to define positive or negative
models. However, using low cutoffs will make PPI scoring functions seem “successful,” even if the
scoring functions possess very weak correlations with DockQ. Classification performance can be
important, yet it should not be the sole metric upon which the PPI scoring function performance
is assessed.

We have shown that the recent supervised GNN-based scoring functions, GNN-DOVE34 and
Deeprank-GNN-ESM18, have worse performance for the Spearman correlation between score and
DockQ than all other scoring functions that we tested. One possible reason for the worse perfor-
mance of these supervised GNN-based scoring functions is the quality imbalance in the datasets
used for training. For example, GNN-DOVE is trained on the DockGround1.0 dataset50, where
only ∼ 9% of models have DockQ ≥ 0.23. Deeprank-GNN-ESM created their own training set,
yet only ∼ 11% of models have DockQ ≥ 0.23. Supervised learning methods are most effective
when trained on datasets with a uniform distribution of model quality. It is likely that GNN-based
scoring functions will have improved performance if they are re-trained on datasets with more uni-
form distributions of model quality. Changing the architecture of the GNN to better represent
physical features of the protein interface can also increase the scoring function performance. GNNs
are composed of nodes (representing amino acids or atoms) with typically tens to thousands of
features per node, yet they are currently unable to outperform the SVR in this study with only
three physical features that describe the protein interface. In future studies, we will develop GNNs
that first build-in successful physical features, such as the number of inter-chain contacts Nc. We
will then add node features, such as hydrophobicity and charge of each amino acid, iteratively to
improve the GNN scoring function performance and therefore identify important collective features
of protein interfaces.

Template-free flexible docking is extremely difficult for PPI targets that undergo significant
conformational changes upon binding. For example, recent studies were able to generate models
where the interface Cα RMSD to the x-ray crystal structure was less than 5 Å for only 31% of
the targets (i.e. 10 out of 32 targets that undergo significant conformational changes)9. To make
more rapid progress in template-free flexible docking5,6,9,15, it is important to develop PPI scoring
functions with Spearman correlations with DockQ of |ρ| ∼ 1 for rigid-body re-docking datasets.
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Despite many years of development, all PPI scoring functions we tested have |⟨ρ⟩t| < 0.8 when aver-
aged over all models and targets, but most of the scoring functions have |⟨ρ⟩t| ≤ 0.7. Template-free
flexible docking involves a series of rigid-body docking steps along a trajectory from the unbound to
bound conformations of the monomers. The PPI score serves as the “potential energy landscape”
that directs the system along this trajectory toward the native-like bound monomer conformations.
Without scoring functions that achieve |ρ| ≈ 1, models with both high and low DockQ values for
a given target can end up with the same PPI score. In this case, flexible docking procedures will
yield final protein conformations with a large Cα RMSD compared to the x-ray crystal structure
target. Inconsistencies caused by inaccurate scoring functions are made worse when there are large
differences between the unbound and bound forms of the monomers. Thus, we emphasize the im-
portance of improving the Spearman correlations between PPI scores and DockQ for the field of
computational modeling of PPIs.

4 Materials and Methods

Data Set Selection

The target data set is composed of 84 heterodimer x-ray crystal structures obtained from the Protein
Data Bank (PDB). (See Table S1 in the Supplementary Material for a list of the structures.) The
heterodimers were chosen according to the following criteria: all structures must have a resolution ≥
3.5 Å; no non-protein polymers are allowed in the structure (e.g. nucleic acids or polysaccharides);
no metal ions or bound small molecules are present in the structure; both protein chains must be
at least 50 amino acids long; the proteins cannot be artificially engineered or include amino acid
mutations; and there are no missing amino acids in both chains. In addition, all heterodimers
were filtered so that the structures have less than 20% sequence similarity. Also, homodimers were
excluded from the dataset to ensure that all targets occur as PPIs in a natural biological context
and are not artifacts from crystallization57.

In Fig. S7 (a), we show that there are very weak correlations between the resolution of the
x-ray crystal structure and ⟨ρ⟩ up to 3.5Å. In addition, in Fig. S7 (b), we show that the average
Spearman correlation for each scoring function does not depend strongly on resolution. Thus, the
resolution of the x-ray crystal structure does not affect PPI scoring, at least for resolutions that
are more accurate than 3.5 Å.

Model Generation and Sampling

The computational models were generated for each of the 84 heterodimer targets using ZDOCK
3.0.2 with 6-degree Euler angle increments, which yields 54,000 models per ZDOCK run. ZDOCK
was run 10 times per target. For each run, the monomers were randomly rotated and translated in
space to ensure that all computational models were distinct. We calculate 0 ≤ DockQ ≤ 1 for all
540,000 models for each target and sort them into 20 evenly spaced DockQ bins. For each target, a
maximum of 50 models were selected from each DockQ bin, yielding a maximum of 1000 models per
target. In addition, to provide even sampling of negative models, 1000 models with DockQ < 0.23
were randomly selected from the models that were not already selected. All selected models had
hydrogens added to them using Reduce51 from the PHENIX software package52 and were then
relaxed using Rosetta v3.1228,29. After relaxation, the set of models was balanced so that each
target has an equal number of positive (DockQ ≥ 0.23) and negative (DockQ < 0.23) models.
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Scoring Protein Models

The ∼ 1000 uniformly sampled models for each target were scored using ZRANK224,25, ITScorePP27,
Rosetta 3.12 (using the ref2015 weight function)9,29, VoroMQA version 1.2630, PyDock326, Deeprank-
GNN-ESM18, and GNN-DOVE34.

Hit Rate Plots

The hit rate fraction h is defined as

h = 1
N

N∑
k=1

1
Nk,+

m

R∑
i=1

Θ(DockQi
k − DockQ0), (2)

where N is the number of targets in the dataset, R is the maximum rank considered in the set of
models ordered by a given PPI score, Nk,+

m is the number of positives in the set of models up to
rank R, DockQi

k is the DockQ value of the ith model for target k, DockQ0 = 0.23 is the DockQ
cutoff that defines a “positive” model, and Θ(·) is the Heaviside step function which is nonzero for
DockQi

k > DockQ0.
The effective hit rate plots in Fig. 1 (b) and (d) were calculated for targets (b) 3RCZ and (d)

3YGS. Nt = 108,000 models were generated for 3RCZ, while Nt = 20,000 were generated for 3YGS.
The effective hit rate fraction hk for the kth target is defined as

hk = 1
Ns

Ns∑
l=1

1
Nk,l,+

m

R∑
i=1

Θ(DockQi
k,l − DockQ0). (3)

For each target, multiple samples with sizes Nm are drawn from the total number of models Nt

ranging from Nm = 500 to 15,000. Ns = 1000 samples are drawn for each value of Nm, and hk

is calculated at each rank i using Eq. 3, where DockQi
k,l is the DockQ value for the lth sample at

rank i for the kth target. We only consider up to rank R = 100, and the models are scored and
ordered using the Rosetta scoring function.

In Fig. 2 (a), we calculated the effective hit rate hk at i = 100 for each target k as a function of
Nm/Nt using the exhaustively sampled model dataset, not the dataset that was uniformly sampled
in DockQ. We collected Ns = 1000 random samples of size Nm from Nt = 10,000 models. All
models in each set were ordered using the ZRank2 scoring function.

DockQ Landscape for Heterodimers

The DockQ landscape in Fig. 5 (b) and (c) contains a series of points (in spherical coordinates)
that represent the centers of mass (COM) of the ligand Cα atoms of computational models for a
given target. We assign the receptor and ligand using the same definition as that in the target
PDB file. All models are aligned so that the receptor in each model has minimal Cα-RMSD to the
receptor in the x-ray crystal structure of the target. Each model is translated so that the center of
mass of the receptor is at the origin. In the DockQ landscape, the ligand COM position for each
model is placed at distance R between the centers of mass of the receptor and ligand in the x-ray
crystal structure of the target.

Relative Anisotropy of the DockQ Landscape

The anisotropy κ2 of the DockQ landscape is calculated using the eigenvalues of the moment of
inertia matrix formed from the centers of mass of the ligands of the computational models. The
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moment of inertia matrix for a single target is defined as

Iαβ = 1
Nm

Nm∑
i=1

DockQ3
i

(
r2

i δαβ − ri
αri

β

)
, (4)

where Nm is the number of models, α,β = x,y,z, δαβ is the Kronecker delta, ri
α is α-component of

the position of the ith point, and r2
i = x2

i + y2
i + z2

i . The moment of inertia is weighted by DockQ3
i

to emphasize native-like models. The components of the moment of inertia matrix I are

Iαβ =

Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz

 . (5)

I can be expressed as
I = UtΛU, (6)

where U represents an orthogonal matrix whose columns are the normalized eigenvectors of I and
Λ is the diagonal matrix of eigenvalues,

Λ =

λ1 0 0
0 λ2 0
0 0 λ3

 , (7)

where λ1 ≤ λ2 ≤ λ3. The eigenvalues of I can be used to calculate the relative anisotropy:

κ2 = 1 − 3λ1λ2 + λ2λ3 + λ1λ3
(λ1 + λ2 + λ3)2 . (8)

Physical Features of Proteins

We calculate the separability S of each interface using a degree-3 polynomial support vector machine
(SVM) from the SciKit-Learn package in python53. The separability satisfies 0.5 < S < 1.0, where
the SVM surface can perfectly separate the ligand and receiptor for S = 1.0, while S = 0.5
corresponds to a highly intertwined interface.

The number of interface contacts Nc is defined as the number of heavy atom pairs in different
protein chains with separations less than dc = 4.5 Å. We also calculated the number of contacts for
all possible distance cutoffs from dc = 1-30 Å with an increment of 0.1 Å. We find that dc = 4.5
Å yielded the largest Spearman correlation beteen Nc and DockQ for the uniformly sampled
dataset.

The fractional interface surface area fa is defined by

fa = (SASAr + SASAl) − SASAr+l

SASAr + SASAl
, (9)

where SASAr+l is the SASA of the bound model, and SASAr and SASAl are the SASA for the fully
solvated subunits for the receptor and ligand, respectively. The SASA for all models was calculated
using the FreeSASA Python API54 with the Lee and Richards55 algorithm and atom sizes specified
in Gaines, et al.56, which recapitulate the side chain dihedral angle distributions in high-resolution
protein x-ray crystal structures.
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Physical SVR Score

The SVR scores were calculated using the leave-one-out method, where each target and its models
were tested on an SVR scoring function trained on the models for the 83 other targets. The input for
the SVR were the three physical features: interface separability S, the number of interface contacts
Nc, and the fractional interface surface area fa. The input features were normalized before training
to have zero mean and unit standard deviation. The kernel coefficient for the Gaussian kernel was
set to γ = 1/[Nf (⟨X2⟩ − ⟨X⟩2)], where Nf = 3 is the number of features on which the SVR model
was trained and X is the training vector with dimensions N ×Nm ×Nf . The SVR scoring function
was trained to predict DockQ from the input vector X.
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