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We describe combined experiments and simulations of droplet breakup during flow-driven interactions
DOI:00.0000/000000000x with a circular obstacle in a quasi-two-dimensional microfluidic chamber. Due to a lack of in-plane
confinement, the droplets can also slip past the obstacle without breaking. Droplets are more likely
to break when they have a higher flow velocity, larger size (relative to the obstacle radius R), smaller
surface tension, and for head-on collisions with the obstacle. We also observe that droplet-obstacle
collisions are more likely to result in breakup when the height of the sample chamber is increased.
We define a nondimensional breakup number Bk ~ Ca, where Ca is the Capillary number, that
accounts for changes in the likelihood of droplet break up with variations in these parameters. As
Bk increases, we find in both experiments and discrete element method (DEM) simulations of the
deformable particle model that the behavior changes from droplets never breaking (Bk < 1) to always
breaking for Bk > 1, with a rapid change in the probability of droplet breakup near Bk = 1. We
also find that Bk ~ S4/3, where S characterizes the symmetry of the collision, which implies that
the minimum symmetry required for breakup is controlled by a characteristic distance h ~ R.

1 Introduction capillary number,

Qv
Droplet formation is key to mixing two immiscible liquids to form Ca="—, €))

an emulsion,m spread of some transmissible diseases via airborne
droplets, and inkjet printing. Furthermore, microfluidic devices
are used to form droplets for lab-on-a-chip applications.E] Making
droplets often involves starting with two liquids, adding energy
by shaking, stirring, or otherwise flowing the two liquids, and
thus mixing the fluids into large droplets of one fluid mixed into
the other. Previous work has studied how further processes cause
large droplets to break into smaller droplets. The simplest case
is simply an isolated droplet in a shear flow™ The surface ten-
sion of the droplet tries to minimize its surface area, and thus
acts to maintain a spherical shape. Competing with surface ten-
sion, viscous stresses caused by the fluid shear flow try to stretch
the droplet. For sufficiently fast flows, these viscous forces make

which gives the ratio of the viscous stresses to the surface tension
~, where the viscous stresses are quantified by continuous phase
viscosity p and a characteristic flow velocity v. For Ca > Cag,
droplet breakup occurs, where the critical value Ca. depends on
the specific details of the fluid flow. Prior work has studied droplet
breakup in relatively simple microfluidic geometries, for exam-
ple, in T-junctions, constrictions where droplets drip from a
nozzle,@, and narrow channels with an obstacle in the middle
where the droplet wraps around both sides of the obstacle and
then breaks.’? In these prior experiments, at large Ca viscous ef-
fects dominate causing increased droplet breakup. At small Ca,
the droplets can deform, but they do not breakup.

the droplets deform or even tear themselves apart into smaller
droplets. One way to quantify the relative strengths of the sur-
face tension forces and the viscous forces is the nondimensional
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Droplet breakup is less understood in more complex geome-
tries, such as porous media. The flow of two immiscible fluids
through porous media is important for numerous applications,
such as petroleum extraction,m pharmaceutical manufactur-
ing, 2314 and agricultural and food production. Droplets mov-
ing through porous media are also crucial for understanding the
flow of groundwater pollutants, such as PFAS. 1917 Ope key fea-
ture of porous media is that droplets can be found in channels
larger than their diameter, allowing them to assume complex
shapes not observed in more confined geometries.

Many previous studies have considered flows through fully wet-
ted porous media (e.g. oil fills the pore space) that is invaded by
an immiscible fluid (water). The effect of surface tension
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Fig. 1 (Left) Images of droplets moving from left to right through the
array of obstacles with collisions highlighted by red circles in each image
pair. (Top Row) A head-on collision (with symmetry S = 1.0) causes
a large droplet with velocity v = 1.8 mm/s to break up; (Middle Row)
An asymmetric collision with S = 0.5 between a large droplet with v =
1.4 mm/s causes droplet break up; and (Bottom Row) An asymmetric
collision with S’ = 0.5 between a small droplet with v =1.1 mm/s does not
lead to break up. The time between the left and right images in each row
is determined by the terminal velocity v¢ = 400 um.(Right) Microfluidics
design of the sample chamber, which is =~ 22 mm long. Droplets form at
the middle top region and exit through the central channel into the wider
region below. In the wider region, droplets collide with small obstacles
before exiting the chamber at the bottom outlet.

is enhanced if one of the fluids forms droplets, thus greatly in-
creasing the interfacial area between the two fluids. A stream of
droplets moves differently through a porous medium compared
to invasion of a continuous phase fluid into a porous medium, %2
mainly due to the increase in interfacial area. Previous studies
of droplets flowing through porous media have in many cases
not considered deformable droplets and droplets that can break
up. 2325

In this article, we seek to understand a simplified version of
droplet flow through a porous medium, i.e. a single droplet in-
teracting with a single obstacle, which is droplet flow through a
porous medium in the limit of small droplet and obstacle densi-
ties (Supplementary Video 1). In Fig.[1] we show that the droplets
can either flow around the obstacle or wrap around it and break
into two smaller droplets due to the flow. Several parameters
determine whether the droplet breaks up or not. First, Ca mat-
ters. Faster flows have larger viscous forces that push the droplet
against the obstacle, and surface tension prevents the droplet
from deforming. Second, larger droplets are easier to deform and
break. Third, head-on collisions of the droplets with the obstacle
cause droplets to wrap around the obstacle and lead to a higher
probability of breaking, which has not been considered in prior
experimental studies.®®1 Droplets can also slide around the ob-
stacle, requiring only small droplet deformations as shown in the
bottom middle panel of Fig.

We also develop mesoscale simulations to model droplet shape
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evolution and breakup due to stresses arising from interactions
between the droplets and the obstacles and background fluid. For
the simulations, we will employ the deformable particle model
with surface tension® supplemented by a geometric criterion for
the onset of droplet breakup. An advantage of the deformable
particle model is that it includes only a small number of physics-
informed parameters that can be calibrated to the experimental
results. The deformable particle simulations will allow us to map
the regions of parameter space, such as the background fluid vis-
cosity, droplet surface tension, droplet-to-obstacle size ratio, and
collision symmetry, where droplet break up does and does not oc-
cur. Another advantage of the deformable particle simulations is
that they enable exploration of regions of parameter space that
are difficult to access experimentally. In particular, the simu-
lations allow independent variation of the surface tension and
background fluid viscosity, so that we can isolate and quantify
their individual effects on droplet deformation and breakup. In
contrast, in the experiments, the propensity for droplet breakup
is tuned indirectly through changes in the flow conditions, effec-
tively varying the capillary number.

The remainder of this article is organized as follows. In Section
2, we describe the experimental setup and method to generate,
control, track, and quantify droplet-obstacle collisions. In Section
3, we describe mesoscale simulations of fluid-flow driven droplet-
obstacle interactions using the deformable particle model with a
geometric criterion for droplet breakup. In Section 4, we quantify
when droplet break up occurs in the experiments and simulations
by defining a nondimensional “breakup number” Bk, which is Ca
multiplied by the ratio of the area of the droplet to that of the
obstacle, and other geometric factors. Thus, droplet breakup is
more likely at higher Ca, for droplets that are larger relative to
the obstacle, and droplets that incur head-on collisions with the
obstacle. Section 5 concludes with a summary of the results and
possible future research directions. We include three appendices
that provide details of the microfluidics device design (Appendix
A), validation of the background fluid model used in the simu-
lations (Appendix B), and independent variation of the surface
tension and viscosity in the simulations to determine their effects
on droplet breakup (Appendix C).

2 Experimental Methods

The experimental flow cell, as shown in Fig. consists of
droplets, a background fluid flow, and obstacle pillars. The
droplets are composed of water, a rhodamine dye added to sat-
uration, and 1% tween-20 by mass, well above the critical mi-
celle concentration. We did not observe depletion forces, since
the surfactant is in the droplet phase and there was a constant
flow of fresh silicon oil into the cell. The results were replicated
using a grocery-store food coloring instead of rhodamine, sug-
gesting that the properties of the specific dye are unimportant.
The surfactant is included to provide a barrier to coalescence, al-
though occasionally coalescence events are observed and these
events are excluded from the data analysis. The background fluid
phase is 7,;; = 50 ¢St silicon oil with density p;; = 960 kg/ m?, and
the surface tension between the background fluid and droplets is
v~ 20 mN/m. The silicon oil is injected at a flow rate of 20-



60 pL/min, driving the droplets with a velocity in the range of
v=0.5to 2 mm/s. The water is injected at a flow rate in the range
of 15 to 120 pL/hr, which creates droplets using the pinch-off ef-
fect.” The droplet diameters are in the range Do ~ 100 to 600 ym,
and the obstacle radii are in the range R = 60 to 120 um. Based
on these values, the Reynolds number, Re = po;jvR/7oi1 ~ 1072,
which indicates that inertial effects are negligible.

The microfluidic chamber is made from polydimethylsiloxane
(PDMS) created by pouring a degassed mixture of unsolidified
polymer and curing agent (7.5:1 ratio by mass) onto a silicon
wafer with the desired pattern, shown in Fig. [1} etched into it.
This etching is performed using photolithography on an SU-8 sur-
face, with a photomask ordered from ARTNET Pro, Inc. A pro-
filometer measured the depth of the etching on the silicon wafer
to be z =85 um £5 pum, which sets the sample chamber thickness
z. Another sample chamber with z =45 pym +5 um is used for
a subset of experiments to test the influence of 2 on the results.
The PDMS is then allowed to solidify on this etching, either over a
weekend or overnight with 70°C heating. After the PDMS cham-
bers are prepared and cut from the wafer, they are bonded to a
microscope slide covered in PDMS using oxygen plasma cleaning,
which allows it to serve as the “floor" of the chamber.%”

To avoid the need for 3D imaging, we created quasi-2D water-
in-oil droplets with volume V that satisfies ¥/V > z. Thus, the
droplets are “pancake” shaped with small out-of-plane curvature,
which is observable in Fig. (1] as a dark “border ring." The outline
of the droplets aids in detecting when one region contains a single
concave droplet versus two convex droplets.

In untreated sample chambers, we observe that water droplets
can stick to the PDMS chambers. To prevent adhesive forces, we
coat the chambers with Aquapel which increases the hydrophobic-
ity of the surfaces. The process works best when Aquapel flows
through and is heated to 70°C2® for at least 20 minutes. We
also find that fresh Aquapel creates a less hydrophobic surface
than Aquapel stored in a degassed syringe for at least 24 hours.
In addition, Aquapel spoils, visibly changes color, and loses its
hydrophobicity after ~ 2 weeks. Thus, we always use Aquapel
within a few days after it arrives at the laboratory, but after stor-
ing overnight in the syringe.

The microfluidic chamber experiments are recorded using a LE-
ICA DMIRB microscope at 60 frames per second with a ThorLabs
DCC1645C - USB 2.0 CMOS camera at 640 x 512 resolution. We
used a 1.6x objective (0.05 Numerical Aperture air lens) and a
1.5x zoom, resulting in videos with a scale of 5.28 pm/pixel.
These videos are processed by separating the images into three
regions: the background which is ignored, the pink centers of the
droplets, and the black border of each droplet, which is assigned
to the pink droplet that the border encircles. We can detect when
two or more droplets are in contact, and we reject droplets that
are in contact with other droplets during collisions with an obsta-
cle. After segmentation and particle tracking,?? we have data on
the droplet area, velocity, position relative to obstacles, whether
the droplet broke, and if so, the sizes of the daughter droplets
after the collision for 5,056 droplet-obstacle collisions.

The droplet-obstacle collisions are obtained under several ex-
perimental conditions. The standard parameters are the fol-

lowing: obstacle radius R = 85 pm, continuous phase viscosity
Noil = 50 cSt, and sample chamber thickness z = 85 ym. In addi-
tion to the standard set of parameters, we also vary each param-
eter one at a time, investigating 7,; =100 cSt by changing the
silicon oil, R=60 pm and 120 um, and z=45 pym. Each experi-
mental movie (Supplementary Video) contains multiple instances
of droplet-obstacle collisions both with and without break up, de-
pending on the experimental conditions. The velocity of droplets
is modified by changing the background fluid pump rate, and
the size of droplets is modified by controlling the relative flow
rates between the background and droplet fluid”. The angle of
collision (later defined as the symmetry parameter in Sec. [4) is
spontaneously varied by droplets within each experiment as they
move through the arrays since neighboring droplets slightly mod-
ify each others’ flow paths.

3 Simulation Methods

3.1 Deformable Particle Model

We performed simulations of a single droplet colliding with a sin-
gle obstacle using the deformable particle model, which can ac-
curately model large deformations of capillary droplets flowing
through confined geometries.2® In two-dimensions, the droplet
is defined as a deformable polygon with N, vertices, whose posi-
tions and velocities are the degrees of freedom of the system. (See
Fig.[2)) The mass of the droplet is uniformly distributed among
the vertices, and the motion of the vertices is determined by the
droplet shape-energy function:

Nu
k N,
US:?“(A—Aeq)z—k 12”;(12-—1801)%%. 2)
=

The first term in eqn imposes a harmonic energy penalty
for changes in the droplet area A from the equilibrium value Aeq
and k, controls the fluctuations in the droplet area. This term rep-
resents the analog of the bulk modulus of the droplet in 2D. The
second term in the shape-energy function imposes a harmonic en-
ergy penalty for deviations in the separations /; between adjacent
vertices ¢ and ¢+ 1 from the equilibrium length loq (which is also
the diameter of each of the vertices) and k; controls fluctuations
in [;. This term ensures that the vertices are evenly distributed
on the droplet surface, preventing them from clumping when the
droplet interacts with the obstacle. The factor of N, in the nu-
merator of the second term of eqn makes Us independent of
Ny. The third term is the energy arising from line tension. We
observe in the experiments that the droplet and the obstacle are
coated by a thin layer of the background fluid (i.e. oil) and hence

N

Uy :72DP:72DZZZ" 3)
i=1

where o p ~ 7z is the line tension corresponding to the oil-water
interface, and P is the droplet perimeter.

To prevent overlap between the droplet and the obstacle, we
assume that the droplet interacts with the obstacle via pairwise,
purely repulsive spring interactions between the obstacle and
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each of the droplet vertices:

N,
Uw :Z%"u72di/ch)2@(1f2di/ch), 4
=1

where d; is the distance between the center of the vertex 7 and
the surface of the obstacle and e, sets the scale of the repulsive
interactions. The Heaviside step function ©(-) ensures that the
force is non-zero only when vertex i overlaps with the obstacle.
The total potential energy U of the droplet is given by the sum of
the shape-energy function and droplet-wall interaction energy:

U=Uy+Us. )

3.2 Modeling the Effect of the Background Fluid

To mimic the experiments, the fluid flow in the simulations is
pressure-driven. We neglect the effect of the droplet on the back-
ground fluid profile, but we include the drag force on each droplet
vertex 1 from the fluid flow,

s Do,
F = =55 @ =), ©

where ¥; is the velocity of vertex i, Wf is the velocity of the fluid
at vertex 4, p is the fluid viscosity, and Dg = y/4Acq/7 is the
diameter of the undeformed droplet. In eqn (6), the factor of
1/N, ensures that the drag force on the droplet is independent of
the number of vertices. To model the flow field, we use

2
Vp(1,0) =Vfoe |:—1n(1j) — % (1 — };) cos(QG)] , @)

2
vfg(rﬁ) = —Vfoo |:; (1 — ]:2> sin(?@)] , (8)

which enforces no slip boundary conditions on the surface of the
obstacle for the radial vy, and angular vsg components of .
Voo is the velocity of the fluid far from the obstacle. The co-
ordinate system is set so that the origin is at the center of the
obstacle, the horizontal axis is aligned with the fluid flow, r is the
distance from the origin, and @ is the angle relative to the hori-
zontal axis. We observe that when the droplets are much smaller
than the obstacle, this choice for the flow field yields an accurate
trajectory for the droplet around the obstacle. For droplets that
are much larger than the obstacle, the droplet can distort the flow
field. However, we find that the deformation of large droplets is
insensitive to the form of the flow field in the low Reynolds num-
ber regime, provided that the no-slip boundary condition at the
obstacle is satisfied. (See Appendix B.)

3.3 Mesoscale Modeling of Droplet Breakup

When a droplet in a shallow microfluidic channel encounters an
obstacle, the confinement forces it to deform around the obsta-
cle and produces a neck that thins as the in-plane deformation
increases. The neck thickness decreases through a combination
of viscous drainage and capillary pressure gradients set by the
channel height. Once the neck reaches a critical thickness at
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Fig. 2 Schematic of a droplet (shaded pink) with area A interacting
with an obstacle (shaded gray) with radius R. The inset highlights the
vertices that define the droplet surface in the deformable particle model.
We also define vertex center-to-center distance r;; and the arc length s;;
between vertices ¢ and j. The droplet neck thickness, dyeck, is identified
using the method described in Sec. @}

which capillary stresses can no longer sustain a connected inter-
face across the confined gap, small perturbations at the interface
grow and the neck ruptures, resulting in break up of the droplet.
The 2D deformable particle simulations do not capture this pro-
cess. Instead, we use a simple, geometric criterion to determine
when a droplet breaks up.

We define the neck thickness d, .. as the smallest of the center-
to-center distances r;; between every pair of vertices ¢ and j
subject to the constraint that the length s;; of the shortest arc
joining them (as measured along the perimeter of the droplet)
is larger than a threshold dpjn.sep = 0.28Dp. (See Fig. ) Min-
imizing ;; subject to this constraint on s;; prevents unphysical
breakup events. Specifically, in the limit dpyipsep — 0, daughter
droplets form with an unrealistically small number of vertices.
Conversely, as dminsep — Do, it becomes increasingly difficult to
identify a vertex pair whose shortest connecting arc length ex-
ceeds the threshold. Consequently, dpyin.sep must fall within a
small range. If the neck thickness falls below a smaller threshold
dneck < Amin—neck at any point during the simulation, we break
the droplet into two daughter droplets along the line defining the
neck. The value of dp,in_neck €an be calibrated to experimental
results for the likelihood of droplet breakup. We find that setting
dmin—neck = 0.17Dq results in the best match to the experimental
results.

3.4 Definitions of the Model Parameters

In the simulations, we use Dg as the length scale and ¢y =
Do /v as the time scale. Using these along with the droplet
mass M, we define the dimensionless viscosity 1 = utg/M, line
tension Y2 p = y2pto/(Mwvss), edge-length spring constant El =
k;Do/v2p, and area spring constant ka = ko D¢/ (M vj%oo). We



impose fluid incompressibility of the droplet by setting ka > 10%
and fix k; /Y2 p < 0.05 so that the line tension energy dominates
the perimeter spring energy. In a Hele-Shaw geometry30 such
as that used in the experiments, the deformation of a pancake-
shaped droplet is governed by a balance between viscous pres-
sure variations induced by confinement and the restoring cap-
illary pressure associated with interfacial curvature. Since the
flow is pressure driven, the dominant viscous forcing acting on
the droplet originates from lubrication pressure within the thin
wetting film separating the droplet interface from the confining
plates. This lubrication pressure p satisfies !
Op 0%
2=y, ©)
oz oy
where z denotes the flow direction and y is the direction normal
to the flow. If the characteristic thickness of the lubrication layer
is denoted by 4, a simple scaling argument gives us
Apvisc v
Shvise = 10
Do Fsa (10
where v is the droplet velocity.
The restoring pressure scale associated with surface tension is
set by the inverse radius of curvature of the interface,
Apeap ~ . 11
Pcap Do an
The degree of droplet deformation is therefore controlled by the
ratio of these two pressure scales,

Apvisc uv (DO)2 (DO)2
Cag = ———~ | — — | =Ca|— ) , 12
eff Apcap ~ 5 K ( )
where Ca is the experimentally accessible capillary number. Clas-
sical lubrication theory predicts that, for a Hele-Shaw gap of
height z, the lubrication film thickness scales as § ~ 2Ca?/3 32434
In the present experiments, Ca = O(10~2), which implies
0 2
~=0(107%. (13)
Since Dy and z are of the same order-of-magnitude in our setup,
it follows that

Ca (6

2
_ (9 _ —4
= DO) — 0107, 14

consistent with the strong amplification of viscous stresses in-
duced by confinement.

In the simulations, we define a capillary number Cagjy =
vy /v2p. This quantity corresponds to the effective capillary
number Cacg, rather than to the experimental capillary number
Ca. Consequently, a direct comparison between experiments and
simulations requires the conversion

5 2
Ca = Casim (FO) . (15)
Determining the precise value of the conversion factor (J/ Do)2

is nontrivial, as it depends on details of the lubrication film that
are not directly accessible in the experiments. We therefore treat

this factor as an effective parameter and choose it to compare
the experimental Ca axis and the simulation Cagj,, axis. This
procedure gives us

Ca=9.8x10"° Cagim, (16)

which is consistent with the order-of-magnitude estimate in
eqn (14). Henceforth, when discussing the simulation results,
we report Ca from eqn (16).

3.5 Equations of Motion
The equations of motion for vertex i of the deformable particle is

d>7;

me—y = —ViU + F}. 17)

where m = M/N, is the mass of each vertex and M is the to-
tal mass of the droplet. We integrate eqn using a modi-
fied velocity-Verlet numerical integration scheme with time step
At =10"*t(. The droplet is initialized as a regular polygon of N,
sides with area Aeq. We then set the edge lengths equal to their
equilibrium values loq = \/4Aeq tan (w/Ny) /Ny. At the start of
the simulation, we place the droplet at rest at a distance of 5D
from the center of the obstacle to allow it to reach vy, before it
collides with the obstacle.

4 Results

We seek to understand the key physical properties that determine
droplet breakup as a droplet collides with a circular obstacle. One
of the important parameters involves the location of the first con-
tact between the droplet and obstacle, which can be character-
ized by a symmetry parameter S. Given that droplets are not
perfectly circular when they contact the obstacle, the definition
of S is based on the observable droplet area relative to a center-
line as shown in Fig. 3] The centerline passes through the cen-
ter of the obstacle and is parallel to the droplet’s center of mass
velocity when the droplet first makes contact with the obstacle.
The symmetry parameter is defined using the two subareas Ajyrge
and Agp,,y above and below the centerline where the total area is
A= Ajarge + Asmall®

. Alarge - Asmall

S=1 1

(18)
S =1 indicates a perfectly symmetric collision and S = 0 indi-
cates a collision where all of the droplet is on one side of the
obstacle. Droplet break up requires S > 0, otherwise the droplet
slides around the obstacle.

In Sec. 4.1} we will show that using the symmetry parameter .S
and the combined control parameter CaAz, where A = A/R? is
the nondimensional droplet area and z = z/R is the nondimen-
sional chamber thickness, we can identify distinct regions in the
parameter space where droplets break up versus where droplets
do not break up. We find that the boundary separating these
regimes follows a power-law relation in § and CaAZ. In Sec.
we use the power-law scaling relation to construct a dimension-
less breakup number Bk, where Bk > 1 indicates that the droplet
will break up and Bk « 1 indicates that the droplet will not break
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Fig. 3 lllustration of the definition of the symmetry parameter S. When
a droplet first contacts an obstacle (shaded gray), a dividing line (dashed
line) is drawn through the droplet to form two regions with areas Aj,rge
(shaded blue) and Agna (shaded yellow). The dividing line is parallel to
the center of mass velocity vector of the droplet (large white arrow) and
passes through the center of the obstacle.

1.0

0.1
10° 10" 10" 10° 10" 10’
CaA? CaA7

Fig. 4 The symmetry parameter S plotted versus CaAz for all droplet
collisions separated into those for which the droplets (Left) break up and
(Right) do not break up. The separating line (black dashed line) is given
in eqn with power-law scaling exponent g = —0.74.

up. In Sec. [4.3] we focus on droplets that undergo breakup and
determine how the ratio of the daughter droplet areas depends
on S. Finally, in Sec. we measure the minimum neck thick-
ness that a droplet can sustain without breaking up and use these
measurements to validate the break up model employed in the
deformable particle model simulations.

4.1 Parameter Regimes for Droplet Breakup

In Fig. |4] we separate the experimental data for droplet-obstacle
collisions into two sets in the parameter space of S versus CaAz:
(Left) droplets that break up and (Right) droplets that do not
break up. These results show that droplet break up involves a
tradeoff between S and CaA%; for example, a droplet that col-
lides with the obstacle off-center (S < 1) can be made to break
up by increasing the velocity, since Ca ~ v. The two clouds of ex-
perimental data are best separated by a power-law scaling form:

~\B
Se=a (caAZ) , 19)
where the prefactor o ~ 0.083 and the power-law scaling expo-

nent 3~ —0.74. Since S scales with Ca, droplets are more likely
to break up when they have a large velocity, are immersed in a
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Fig. 5 Results from the deformable particle model (DPM) simulations
(stars) showing droplets that break up (upper right; green) and do not
break up (lower left; purple) as a function of S and CaAz overlaid on the
experimental data from Fig.[4] We set z' =1 for the simulation data. The
best fit lines that separate the droplets that break up and do not break up
have slopes —0.72 (black dashed; simulations) and —0.74 (orange solid;
experiments).

fluid with large viscosity, and have small surface tension.

Eqn shows that larger droplets are also easier to break,
i.e. a larger object feels more pressure when pushed against a
smaller object. Our data have A ~ O(1). When A < 1, we expect
different behavior than that shown in Fig. 4] because the obstacle
will appear more like a wall, which is a situation that has been
previously studied.®

Additionally, droplets in thicker chambers are more likely to
break up. Between the parallel plates of the sample chamber,
the droplet interface curves between the top and bottom surface
with a radius of curvature ~ z/2.2> This small curvature increases
the Laplace pressure inside the droplet, AP ~ ~/z. Thus, thicker
droplets are “softer” and more easily deform and break.

In the experiments, the surface tension is fixed and the viscosity
is varied between two values, 50 cSt and 100 cSt. Consequently,
in experiments we varied the capillary number by changing the
droplet velocity. In contrast, the simulations allow independent
changes of the surface tension and viscosity. By varying these pa-
rameters independently, we show in Appendix C that S¢ ~ (ﬂ/?)ﬁ
with 8 &~ —0.72, which is in agreement with the experimental
results as shown in Fig. Note that because the simulations
are two-dimensional, the chamber thickness z cannot be varied.
Hence, we set z = 1 for the simulation data in Fig. We per-
formed a sweep over a range of values of S and CaAz, noting
whether the droplet breaks up or not for each (S, Cagi) pair. We
then hold CaA? fixed and increase S until we find the largest
value S, for which the droplet does not break up. Repeating this
for all of the CaAZ values in our simulation gives us a set of points
that form the separation boundary between regions of no-breakup
and break up. We find that this separation curve is best described



by the power law
~\—0.72
Se=0089 (Cadz) (20)

which is excellent agreement with the separation curve obtained
from experiment, as can be seen in Fig. [5|and by direct compari-

son to

4.2 Breakup Number

To determine the power-law exponent in eqn (19), we use the
maximum likelihood method.®® We start by assuming an equa-
tion for the dividing line of the form:

Se=« (CaAEIR62 zes)'ﬁ , 21

where 3 is the power-law exponent and 2¢; + €3 + €3 = 0 such
that the equation is nondimensional. We next define the “breakup
number"

Bk = o/ Cad® R, /5P, (22)

to quantify the distance from the dividing line S.. With these
definitions, droplets that break up will have large values of Bk,
and droplets that do not break up will have Bk — 0.

We apply the maximum likelihood method for separating the
experimental data for which droplets break up and droplets do
not break up because the experimental data is noisy near Sc. As
shown in Fig.[4] some droplet-obstacle collisions are observed on
the “wrong” side of the dividing line. There are examples in the
data set close to S. where for similar experimental parameters,
some droplets break and others do not. One reason for this be-
havior could be small uncertainties in the experimental measure-
ments of velocity or S stemming from the image analysis. How-
ever, these quantities are defined at the moment a droplet first
contacts the obstacle, and a more likely concern is that droplets
can and do change their speed and direction of motion as they in-
teract with the obstacle. In addition, other droplets near the given
droplet-obstacle collision may influence the flow of oil around the
droplet, again changing the behavior of the droplet as it interacts
with the obstacle. Therefore, for the experimental data, we con-
sider break up as a probabilistic process, and Bk= 1 corresponds
to the case where droplets are equally likely to break up or not.

To mathematically implement the break-up probability, we de-
fine the breakup characteristic k as:

(23)

1 breakup
0 no breakup.

We then define the probability of observing outcome k, using x =
(Bky, 5)1/ ' (where the subscripts indicate that Bk is a function of
« and ) and the function

(249

which means that for Bk, g > 1 break up is likely [P(k=1) — 1]
and for Bk, g < 1 no break up is likely [P(k = 0) — 1]. P(z,k) is
a sigmoid function of In(Bk) with w the width of the sigmoid. We

then define the likelihood L of observing the data by a product
over all droplet-obstacle collision events ¢ as:

Lopaw =] [ P(BKG )" ki) (25)

Terms in the product are close to 0 for data points with a low
probability of the actual outcome, and close to 1 when the predic-
tion matches the actual outcome. Therefore, incorrectly chosen
« and 8 dramatically reduce the likelihood due to the contribu-
tions from many incorrectly assigned points. In contrast, optimal
« and B will create many more matches and a much larger total
likelihood. w accounts for the width of the region where droplets
have an intermediate chance of break up. Maximizing the loga-
rithm of the likelihood*=® yields power-law exponent 5 = —0.74
and o ~ 0.083.

We also used the maximum log-likelihood method to calculate
the exponents €1, €2, and €3 in eqn that are subject to the
constraint 2¢; + e + €3 = 0. We find that Se ~ A'2' R~3 as shown
in Fig.[4] As an additional check, we allowed the power-law scal-
ing exponent ¢, for x in eqn to vary. Maximizing the log-
likelihood returned ¢, = 1, confirming the Ca dependence for S..
We determined the uncertainty of in «, 3, and w using the boot-
strapping method (with 100 samples of 2,528 randomly selected
data points). We find oo = 0.083 +0.006, 3 = —0.74 +0.03, and
w = 0.098 £ 0.006.

We now present an argument to justify the observed value of
the power-law exponent 3~ —0.74 in eqn (I9). Consider droplet-
obstacle collisions with fixed velocity, geometry, and fluid proper-
ties, but varying A. In this case, droplet-obstacle collisions on the
dividing line in Fig. @are described by S. = (A/A)?, where all of
the other parameters are subsumed into A with units of area. We
can then use eqn to rewrite S¢ in terms of the two droplet

subareas: A A 5
- A
So=1— large — small _ (K) . (26)

Solving for Ay, gives:
1 _
Asman = §A1+BA B‘ @7

A comparison of droplet-obstacle collisions for two droplet ar-
eas is shown in Fig. [6] where the yellow shaded circular seg-
ments have area Agn,;. The figure defines the length scale h
and droplet diameter Dy, and in the limit h < Dy one can show
Agman ~ D(l]/ 2h3/2. We can relate the diameter and area of the
droplet using Dg ~ A'Y/? and express eqn li for Agman in terms
of h:

b~ A23 A-1/6, (28)

small
Next, consider the case h ~ A®, where h has a fixed value that
is independent of A for a droplet-obstacle collision at S.. With
these assumptions, we substitute eqn into eqn to obtain

AO ~ (A1+ﬁ)2/3A_1/6. (29)

To ensure that A is independent of A, we must set 8 = —3/4. The
power-law exponents S = —0.74 obtained in the experiments and
B = —0.72 obtained in the simulations are in excellent agreement
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Fig. 6 Image of two droplets colliding with an obstacle (shaded gray).
The droplets have equal velocities (v = 1.0 mm/s), identical chamber
geometries, the same fluid parameters, but one droplet is twice the radius
of the other. The smaller droplet has A =0.02 mm?. The two droplets
have Bk =1, and the smaller area below the symmetry line (in yellow)
of the larger droplet is 1.4 times that of the smaller droplet. The droplet
radius Dg/2 and height of the smaller circular section h are indicated.

with this scaling analysis. Using eqns. and (28), we can also
show how the small circular segment height h scales with the
obstacle radius R, sample thickness z, and Ca:

R
h~VA s (30)
Thus, our results in Figs. [ and [5]suggest that the separating curve
Sc depends on the droplet area A such that h is constant, which
yields the scaling behavior in eqn (30).
We now consider experimental measurements of Bk. Using
eqn (22), we can write the breakup number as:

Bk = 28CaAzS./3 (1)
where Bk < 1 indicates that the droplets are not likely to break
up, and Bk > 1 indicates that the droplets are likely to break up.
In Fig. [7] we plot the fraction Ny eak/Niotal Of droplet-obstacle
collisions that yield droplet break up as a function of Bk. The
probability is a sigmoid function with a narrow width: the range
of Bk over which the probability grows from 5% to 95% is only
a factor of ~ 2 in Bk. The results in Fig. [7} which extend over
six orders of magnitude in Bk, illustrate that we have identified
the key parameters that determine droplet break up during single
droplet-obstacle collisions.

4.3 Area Ratio of Daughter Droplets

We find that single obstacle droplet break up events in low
Reynolds number flows nearly always result in the formation
of two daughter droplets. If we denote the area of the smaller
daughter droplet as A; and that of the larger daughter droplet as
Ag, we can define the daughter droplet area ratio 0 < A; /As <,
which depends on Ca and A of the original droplet. We con-
trast these areas with Agpan and Ajarge, which are defined at
first contact of the droplet with the obstacle. In off-centered
collisions (S < 1), we find that A1 < Agyan and Az > Ajarge
(with Ay + A2 = Agman + Alarge from mass conservation), be-
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Fig. 7 The fraction Npreak/Ntotal Of droplet-obstacle collisions in the
experiments (black solid line) that yield droplet break up plotted versus
Bk. eqn (purple solid line) and the step function ©(Bk) (pink solid
line) are also shown. (inset) A close-up of Npreak/Ntotal in the main
panel near Bk =1.

cause the larger lobe partially slides along the obstacle prior to
breakup, dragging the smaller lobe with it, and thereby redis-
tributing area before break up. However, when Ca > 1, we ex-
pect that the timescale for mass redistribution is much larger than
the timescale for droplet deformation (and subsequent break up).
In this limit, A1 — Agan and Ao — Ajarge, and thus

Al o Asmall _ S

=—. (32)

lim 5-3S

Ca>1 Ag B Alargc

In Fig. [8] we plot the daughter droplet area ratio A; /A versus
S for droplet-obstacle collisions that yield droplet break up from
experiments and simulations. We observe that all of the simula-
tion data and nearly all of the experimental data occur below this
limiting curve. However, given the presence of continuous phase
fluid flow driven by other nearby droplets, it is possible for some
of the droplet fluid to move into the smaller lobe such that A; /Ag
exceeds the limiting prediction. Other confounding influences on
Aj/As in the experiment are droplets that change velocity while
they are in contact with the obstacle, and droplets that are pre-
deformed upon the initial contact with the obstacle (due to the
motion of other nearby droplets).

We also show A;/As versus S in Fig. |8] from the simulations
for a range of Ca. For the simulations, we find that A;/As
approaches S/(2 —S) in the large-Ca limit in agreement with
eqn . In particular, A;/A> =1 when S = 1. In this case, the
two lobes are identical and there is no fluid redistribution across
the lobes during break up for all Ca. For A; /As toreach S/(2—.5)
for S < 1, Ca must progressively increase as S decreases.

4.4 Droplet Neck Thickness

We also examine the minimum neck thickness d .. (as defined
in Sec.[3.3) attained during droplet-obstacle interactions, consid-
ering both droplets that undergo breakup and those that do not.
In Fig. [9] we show the frequency distribution of the thinnest neck
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Fig. 8 The daughter droplet area ratio A;/Az for droplet-obstacle col-
lisions that yield droplet break up plotted verses the symmetry S of the
collision in experiments (blue filled circles). We also show eqn (dot-
ted black line), where the droplet breaks along the collision axis with
no fluid exchange, A1 = Agmail, and Az = Ajarge. The simulation data
(solid lines) are shaded according to the value of Ca from Ca = 0.0006
to 0.0045. Two linear clusters of data are observed; these correspond to
experiments where droplets collide reproducibly over a narrow range of
S, leading to A1/Az ~ S.

dpeck Observed in the experiments. We find that droplets which
undergo breakup never appear in their final recorded frame with
neck thicknesses larger than d, e &~ 70 pm (green histogram),
while droplets that do not break up never thin below approxi-
mately 110 um. Taken together, these observations support the
existence of a finite critical neck thickness d,;,-neck below which
breakup is inevitable.

Due to the finite temporal resolution of the experiments
(1/60 s), the measured value of this threshold is expected to be bi-
ased toward smaller values. If a droplet reaches a neck thickness
smaller than d,,j,neck Within a given frame, breakup will occur
before the subsequent frame is captured, and the neck thickness
recorded in the histogram corresponds to the last pre-breakup
measurement. Conversely, droplets whose neck thickness is only
slightly larger than dy,inneck May persist into the next frame,
during which the neck can thin substantially to values well be-
low din-neck before breakup occurs. This temporal discretization
naturally explains why the histogram of breaking droplets spans a
wide range of neck thicknesses, extending from very small values
up to values just below the critical threshold. As a result, the true
value of dinneck 1S expected to be slightly larger than 70 um,
while remaining below 110 pm.

In the simulations, we set dyin.neck = 0.167Dg. Using the ex-
perimentally observed median diameter of droplets that undergo
breakup, Dy = 481 pm, this corresponds to dpinneck =~ 80.3 pm,
which is consistent with the experimental bounds.

5 Conclusions

We carried out coordinated experiments and simulations of
quasi-two-dimensional deformable droplets flowing in microflu-
idic chambers that collide with cylindrical pillars. For some con-
ditions, droplet-obstacle collisions give rise to droplet break up.

100

Count

10

10 100
dneck (I’lm)

1000

Fig. 9 Frequency distribution for the minimum neck thickness dyeck
of droplets that (green) do and (purple) do not break up (purple) in
experiments. (insets) Example droplets (i-iii) for regions (i-iii) of dpeck
marked on the histograms, with fluid flow from right to left, obstacle
radius R = 85 um (shaded pink), and neck outline (orange solid line).
The data shown are for the standard experimental parameters given in

Sec. El

For others, droplets collide with the obstacle, but slide around
it, and do not break up. Break up is influenced by the inter-
play between the viscous surface stresses that deform the droplet
and the surface tension that resists deformation, which is quanti-
fied by the capillary number Ca in eqn (I). We find that droplet
break up also depends on several geometrical parameters. For ex-
ample, larger droplets relative to the obstacle are more likely to
break up. Droplets in thinner sample chambers are less likely to
break up, as a result of the larger internal Laplace pressure that
resists droplet deformation required for break up. In addition, we
show that the symmetry of the droplet trajectory relative to the
center of the obstacle influences droplet break up, i.e. head-on
collisions with S = 1 maximize the likelihood of break up. The
results for droplet break up can be collapsed using the nondimen-
sional breakup number Bk, which is proportional to CaAzs?/ 3,
and A and 7 are the droplet area and sample chamber thickness
normalized by the obstacle radius R. Bk accurately predicts the
likelihood of droplet breakup in experiments over six orders of
magnitude of Bk, with a narrow region of Bk near Bk = 1 where
the droplet break up probability transitions from zero to one with
increasing Bk.

The experimental results are also verified through discrete ele-
ment method simulations using the deformable deformable par-
ticle model with line tension in 2D. We demonstrate that incor-
porating a geometric criterion for droplet break up related to the
neck thickness is sufficient to capture the droplet break up statis-
tics. In particular, we find that the characteristic symmetry for

~\B
which a droplet undergoes breakup is S. = « (CaAE) , which

is the same functional form observed in experiments, and the
power-law exponent 3 ~ —0.72 is in close agreement with exper-
iments. Further, the geometric break up criterion implemented in
the simulations is consistent with the experimental observations
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that droplets whose neck thickness is above a threshold value do
not break up.

Our work gives additional insight into the daughter droplets
formed after break up. In low Reynolds number flows, we ob-
serve that single obstacle-induced droplet breakup events pre-
dominantly produce two daughter droplets, and the resulting
daughter droplet area ratio is constrained by the initial symme-
try of the collision. For off-centered collisions, interfacial sliding
and lobe interactions prior to break up redistribute area, causing
the daughter droplet areas to deviate from those defined at first
contact and the daughter droplet area ratio to be below the upper
bound A; /A3 = S/(2—S). In the limits of large capillary number
and large droplet area, area redistribution is negligible and the
daughter droplet area ratio approaches the upper bound, which
is verified by the simulations.

These results suggest several promising future research direc-
tions. First, we can extend our studies of droplet break up to
three dimensions (3D), where thin droplet necks are completely
unstable due to surface tension. Second, droplets can coalesce, as
well as break up.*78 Thus, in future studies, we will investigate
droplet coalesence in a microfluidic porous medium. With a fun-
damental understanding of both droplet break up and coalesence,
we will be able to predict the resulting droplet size distributions
as they move through the medium.®? As droplets flow though
a microfluidic porous medium composed of obstacles, we expect
that a steady-state size distribution will be reached where break
up events are balanced by coalesence events.“? We can also con-
sider the problem of fluid wetting; in real porous media flows,
droplets are not perfectly dewetted to the media.*! This effect
may have significant effects on fluid-flow induced droplet break
up and coalesence.
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Appendix A: Microfluidic Chamber Design

Fig. 10 We label regions of the microfluidics chamber pattern. The de-
sign was converted into a photomask after it was designed in openSCAD.

In this appendix, we describe individual sections of the mi-
crofluidics chamber pattern labeled 1-7 in Fig.

1. (Yellow) Inputs for the background oil-based phase (left)
and the droplet water-based phase (right). The design
within the input regions catches dust and debris brought in
with the fluid.

2. (Light green) The central region where droplet formation
occurs via pinch-off of the water phase.” The droplets then
continue down the central channel, and the oil travels
through all three channels.

3. (Green) Extra oil input regions to modify the symmetry of
the droplet-obstacle collisions. These inputs were not used
for any of the experiments in this article, and once they were
filled with oil, they did not affect the flow of the droplets.

4. (Light blue) The oil phase expands in cross-sectional area,
and slows down. This main expansion occurs before the
droplet phase enters the main chamber, which ensures a
minimal velocity gradient between the main observing re-
gion and central droplet channel.

5. (Dark blue) Structural obstacles to ensure minimal wall ef-
fects, a consistent cross-sectional area of the flow, and struc-
tural stability to prevent the chamber from collapsing.

6. (Purple) The main imaging area, where obstacles have ra-
dius R.

7. (Orange) The exit region, where the wall separation de-
creases and flow velocity increases. Therefore, no droplet
behavior is recorded in this region, though the obstacles still
have radius R.



Appendix B: Comparing Droplet Shape and
Motion from Simulations and Experiments
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Fig. 11 (a)—(d) Snapshots of a small droplet (Dg/R = 0.78) flowing
past an obstacle (R = 85um) in experiments with snapshots from the
deformable particle model simulations overlaid in red. The droplet moves
from panels (a) to (d) in ~ 0.43 seconds. The bottom panel shows the
y-component of the droplet center of mass y-,, plotted versus the z-
component xc s for the simulations (solid line) and experiments (filled
circles).

In this appendix, we show that the deformable particle model
simulations (described in Sec. accurately recapitulate the
flow trajectories of the droplets and the droplet shapes as they in-
teract with the obstacles, especially in the limit of small droplets
relative to the obstacles Dg/R <« 1. In Fig. (a)-(d), we show
experimental images of a droplet with Dy /R = 0.78 that does not
break up with the simulation results overlaid on the experimen-
tal results. The bottom panel shows the trajectory of the droplet
around the obstacle for both the experiments and simulations. In
particular, we plot the y-coordinate of the droplet center of mass
ycMm versus the z-coordinate xyr, where the droplet flow is in
the z-direction. Note that for the simulations, the center-of-mass
coordinates are obtained from the z- and y-coordinates of the
vertices x; and y;:

NU
1
XeM = g7 Z (i +2it1) (TiYit1 — Tit1¥i) s (33)
i=1
1
YoM =54 Z; (Yi +Yit1) (TiYit1 — Tip19i) - (34)
i=
In the bottom panel of Fig. we find strong qualitative agree-
ment between the droplet trajectories in experiments and simula-
tions, which indicates that the simplified fluid model is appropri-
ate for the experimental studies.
As the droplet size increases relative to the obstacle size, its
motion induces perturbations to the surrounding flow field, lead-
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Fig. 12 (a)—(f) Snapshots of a large droplet (Dg/R = 2.5) flowing past
an obstacle (R = 85um) in experiments with snapshots from the de-
formable particle model simulations overlaid in red. The droplet moves
from panels (a) to (f) in ~ 1.05 seconds. The bottom panel shows the
droplet shape parameter A plotted versus the z-component of the droplet
center of mass zcy for the simulations (solid line) and experiments (filled
circles).

ing to distortions of the flow streamlines and higher-order hy-
drodynamic effects on the droplet dynamics. Resolving these
effects would require two-way coupled computational fluid dy-
namics simulations with moving deformable interfaces. In the
low Reynolds number regime, viscous dissipation dominates and
inertial effects are suppressed, which limits the extent to which
droplet-induced flow perturbations affect the droplet motion.

We can quantify the deformation of the droplet using the
dimensionless shape parameter: A = P2/(4mA), where P =
Zﬁi”l l; is the droplet perimeter, .A = 1 for a circle, and A > 1 in-
dicates shape-deformation due to interactions of the droplet with
the obstacle. In Fig.[12]|(a)-(f), (Supplementary Video 2) we show
experimental images of a droplet that is larger than the obstacle
with Dg/R = 2.5 as it interacts with the obstacle. The bottom
panel shows a plot of the shape parameter A versus xcy; of the
droplet for both experiments and simulations. Once again, we
find qualitative agreement between the simulations and experi-
ments. This level of agreement indicates that, despite its simpli-
fying assumptions, the fluid model in the simulations can capture
droplet shape evolution with sufficient accuracy to reliably pre-
dict the transition between break up and no-breakup regimes.
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Fig. 13 (Top) The boundary in the symmetry parameter S, that sepa-
rates break up and non-breakup outcomes for droplet-obstacle collisions
as a function of the normalized fluid viscosity x for several values of 7.
The dashed lines have slope 8 = —0.72. (Bottom) The same data in the
top panel except the horizontal axis is rescaled as ﬁ/; showing that S,
collapses onto a single curve: S, ~ Caf (dashed line) with 8 = —0.72,
which matches the experimental observations of section

Appendix C: Verifying the Role of Capillary
Number in Droplet Breakup

In this appendix, we describe results from simulations of a sin-
gle droplet colliding with a single obstacle, while tuning the nor-
malized droplet line tension 7 and fluid viscosity u separately.
For each v, we vary S and p to determine S (u) that separates
droplet break up from no break up behavior. In the top panel of
Fig. we show that the separating curve scales as S. ~ 7i” for
each value of 5. In the bottom panel, we show that all of the S,
curves collapse when the horizontal axis is scaled as jz/7. The col-
lapse demonstrates that the combined influence of fluid viscosity
and droplet surface tension on droplet break up is governed by
the capillary number Ca = vu /7.
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