
Bridging particle deformability and collective response in soft solids

John D. Treado,1, 2, ∗ Dong Wang,1, ∗ Arman Boromand,1 Michael

P. Murrell,3, 4, 5 Mark D. Shattuck,6 and Corey S. O’Hern1, 4, 7, 2, †

1Department of Mechanical Engineering & Materials Science,
Yale University, New Haven, Connecticut 06520, USA

2Integrated Graduate Program in Physical and Engineering Biology,
Yale University, New Haven, Connecticut 06520, USA

3Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06520, USA
4Department of Physics, Yale University, New Haven, Connecticut 06520, USA

5Systems Biology Institute, Yale University, West Haven, Connecticut 06516, USA
6Benjamin Levich Institute and Physics Department,

The City College of New York, New York, New York 10031, USA
7Department of Applied Physics, Yale University, New Haven, Connecticut 06520, USA

(Dated: December 5, 2020)

Soft, amorphous solids such as tissues, foams, and emulsions are composed of deformable particles.
However, the effect of single-particle deformability on the collective behavior of soft solids is still
poorly understood. We perform numerical simulations of two-dimensional jammed packings of
explicitly deformable particles to study the mechanical response of model soft solids. We find that
jammed packings of deformable particles with excess shape degrees of freedom possess low-frequency
quartic vibrational modes that stabilize the packings even though they possess fewer interparticle
contacts than the nominal isostatic value. Adding intra-particle constraints can rigidify the particles,
but these particles undergo a buckling transition and gain an effective shape degree of freedom
when their preferred perimeter is above a threshold value. We find that the mechanical response
of jammed packings of deformable particles with shape degrees of freedom differs significantly from
that of jammed packings of rigid particles even when they are compressed well above jamming onset,
which emphasizes the importance of particle deformability in modelling soft solids.

Soft solids composed of deformable particles, such as
foams [1, 2] and emulsions [3, 4], are ubiquitous in na-
ture and industrial applications. Their mechanical and
vibrational properties diverge from those of ideal elastic
solids [5–8], in large part due to particle rearrangements
and the ability of the particles to change their shape [9–
11]. While extensive work over the past few decades
has focused on interparticle interactions, less attention
has been placed on how intraparticle degrees of freedom
affect collective behavior. In addition, many biological
materials are composed of deformable objects, such mi-
crobiotic communities [12, 13], cell monolayers [14, 15],
and tissues in both animals [16–23] and plants [24–28].
Shape degrees of freedom of individual particles influence
material properties, but how single-particle deformability
affects collective behavior remains largely unexplored.

We seek to investigate the mapping between single-
particle properties and collective behavior by analyzing
the harmonic vibrational response of jammed packings
of deformable particles [29]. The vibrational response of
jammed packings of spherical [30] and non-spherical [31–
35] particles with rigid shapes has been used to determine
the necessary conditions for system-spanning rigidity.
For example, packings ofN spherical particles in d spatial
dimensions (with periodic boundary conditions) become
mechanically stable with no non-trivial zero-frequency
vibrational modes when they are isostatic [36, 37] and
satisfy dN −Nc = d − 1, where Nc is the number of in-
terparticle contacts. Jammed packings of non-spherical

particles, however, are generically hypostatic, with the
number of degrees of freedom exceeding the number of
interparticle contacts. These packings gain mechanical
stability from higher-order terms (“quartic” modes) in
the expansion of the potential energy, and the number
of quartic modes matches the number of missing con-
tacts [32]. Quartic modes have been observed in jammed
packings of a variety of non-spherical particles [35, 38]
and in jammed packings of “breathing” particles with
size degrees of freedom [39].

Harmonic vibrational response can also be used to de-
termine rigidity in vertex-based models of cellular materi-
als. Previous work has identified a transition from floppy
to rigid tissues, with the accompanying disappearance of
non-trivial zero modes, as a function of the preferred cell
perimeter [40–42]. While this work has demonstrated the
importance of shape changes on bulk mechanical proper-
ties in soft solids, the vertex model mandates that cells
are confluent and the use of vertex degrees of freedom
(that are based on Voronoi tessellations) makes extract-
ing single-cell mechanical properties from these models
difficult. In this Letter, we will show how the shape de-
grees of freedom of individual particles contribute to bulk
mechanical properties of soft solids using a computational
model where each particle is distinct and explicitly de-
formable.

Systems of deformable particles in two dimensions are
modeled by N distinct polygons, each with nµ vertices
with positions ~riµ for i = 1, ..., nµ and µ = 1, ..., N . We
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FIG. 1. Single-particle vibrational response depends
on shape energy. In each row, we show the first 29 eigen-
values λm,i of the dynamical matrix M for single particles
with n = 24 vertices and three shape energies, DP, DPb,
and DPbb, (Eqns. (1), (3), and (4) , with Uint = 0) ordered
from top to bottom. Insets show energy-minimized shapes
for A0/An = 1, 1.02, and 1.36 from left to right, and the cor-
responding eigenvalue spectra are plotted as circles, squares,
and diamonds, respectively. Vertical lines are drawn at in-
dices i = 24 in the top plot, and i = 4 in the middle and
bottom plots. The associated eigenvalues are indicated by
filled symbols. We draw representative curvature vectors ~κi

from Eq. (3) along the perimeter of the third DPb particle in
the second row. For the DPb and DPbb particles, we show
λi for Kb = 10−1 and Kbb = 10−2.

use Greek indices to denote particle-based quantities, and
Latin indices for vertex-based quantities. Each polygon
has an area aµ and perimeter pµ =

∑nµ

i=1 liµ, where liµ
is the edge joining vertex i and i + 1 on polygon µ. In
previous work [29], we studied the deformable polygon
(DP) energy,

U =
εa
2

N∑
µ=1

(
aµ
a0µ
− 1

)2

+
εl
2

N∑
µ=1

nµ∑
i=1

(
liµ
l0µ
− 1

)2

+ Uint,

(1)

where Uint is the potential energy between interacting
particles, and εa and εl are energies controlling area and
perimeter fluctuations about the preferred area a0µ and
edge length l0µ, respectively. Interactions between ver-
tices i and j on cells µ and ν are governed by the pair
potential v, which we assume depends only on the dis-
tance between two vertices, rµνij = |~riµ − ~rjν |. We treat
each vertex as a repulsive soft disk, where

v
(
rµνij
)

=
εc
2

(
1−

rµνij
σµν

)2

Θ

(
1−

rµνij
σµν

)
, (2)

σµν = (l0µ + l0ν)/2, each vertex has diameter l0µ, εc
controls the strength of the interaction, and Θ is the

Heaviside step function to enforce purely repulsive in-
teractions. The total interaction energy is therefore
Uint =

∑
ν,µ

∑nµ

i=1

∑nν

j=1 v
(
rµνij
)
, though we do not track

overlaps between vertices i and i + 1 and i and i− 1 on
the same cell. We measure lengths in units of the square
root of the minimum preferred area,

√
a0, energies in

units of εa, and times in units of τ =
√
a0/εa, where

all vertex masses have been set to 1. The dimension-
less preferred shape parameter A0µ = (nµl0µ)

2
/(4πa0µ)

measures the amount of excess perimeter above a regu-
lar polygon with area a0µ and thus A0µ controls particle
deformability [29]. For the DP model, particle shapes
depend only on Kl = εl/εa, Kc = εc/εa, and A0µ.

We first investigate the rigidity of single DP particles
by analyzing the eigenvalues λm,i of the dynamical ma-
trix Mkl = ∂2U

/
∂~rk∂~rl . We find the energy-minimized

shapes of single particles using the FIRE algorithm [43].
In Fig. 1, we plot the first 29 eigenvalues λm,i for par-
ticles with n = 24 vertices, Kl = 1, and A0/An = 1,
1.02, and 1.36, where An = n tan(π/n)/π is the shape
parameter for a regular polygon with n vertices. Using
constraint counting, DP particles with 2n degrees of free-
dom, n perimeter constraints, one area constraint, and 3
trivial zero modes (two translations and one rotation)
should have 2n − (n + 1) − 3 = n − 4 unconstrained
shape degrees of freedom [37, 44]. In Fig. 1, we show
that DP particles possess n − 4 eigenvalues λm,i of sim-
ilarly small magnitudes (∼ 10−15 − 10−14) to the 3 triv-
ial zero modes. However, we also show in Fig. 1 that
DP particles with A0 = An have n − 3 low-frequency
modes (λm,i ∼ 10−8, blue circles in Fig. 1) that are
significantly larger than the apparent zero modes when
A0 > An. These low-frequency modes are stabilized by
the geometric constraint that regular polygons minimize
the perimeter-to-area ratio; deviations from this shape
will cost energy even though the vertices are undercon-
strained. Thus, setting A0 < An generates stress in the
area and perimeter contributions to the DP energy, which
stabilizes the n− 4 shape degrees of freedom. Many de-
formable particles are incompressible, therefore we will
restrict our analysis to the case A0 ≥ An to avoid fluc-
tuations in the particle area.

To rigidify single DP particles, we add n additional
bending constraints along the particles’ perimeters [29],

Ub =
kb
2

n∑
i=1

~κ2i , ~κi =
~li −~li−1

l20
. (3)

where kb is the bending modulus, and we refer to particles
with this additional energy term as DPb particles. This
bending energy is similar to those used in models of semi-
flexible polymers [45]. In the second row of Fig. 1, we
show the first 29 eigenvalues for DPb particles with n =
24 vertices, as well as representative energy-minimized
shapes for Kb = kb/(εal

2
0) = 10−1. We also introduce

an additional constraint on the average distance between
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opposite vertices (a “belt” spring), which gives the DPbb
model,

Ubb =
εbb
2

(
D

D0
− 1

)2

, D =
2

n

n/2∑
i=1

∣∣~ri+n/2 − ~ri∣∣, (4)

where D0 = l0/ sin(π/n) is the distance between op-
posing vertices of a regular n-sided polygon with edge
length l0. We show representative eigenvalues λm,i and
energy-minimized shapes in the third row of Fig. 1 for
Kbb = εbb/εa = 10−2. The additional n or n + 1 con-
straints in the DPb or DPbb models constrain the par-
ticle shape to a regular polygon when A0 ' An, as the
particle shapes are now overconstrained compared to DP
particles. However, as shown in the second row of Fig. 1
(red diamonds), DPb particles “buckle” when the pre-
ferred shape parameter A0 exceeds a threshold A∗0, and
the first non-trivial eigenvalue λm,4 becomes small. In
the Supplementary Material (SM) [46], we show that an
alternative bending energy with next-to-nearest neigh-
bor (NNN) perimeter springs, which have been shown
to rigidify undercoordinated lattices [47], has qualita-
tively similar buckling behavior, where the first non-
trivial eigenvalue λm,4 → 0 at the buckling transition.
Note that DPbb particles (Fig. 1, green diamonds) also
buckle above a characteristic shape parameter, but λm,4
remains comparable in magnitude to the other non-trivial
eigenvalues.

To investigate how single-particle deformability influ-
ences collective behavior, we prepare jammed packings
of N bidisperse (50:50 by number) deformable particles
in square cells with side length L and periodic boundary
conditions. Small (large) particles are given nµ = 16
(22) vertices, and the segment lengths l0µ are chosen
such that A0µ/An is identical for each particle. Large
particles are given preferred areas a0µ = (22/16)2a0.
As in Ref. [29], particles are first placed randomly in
the simulation cell at low packing fraction φ. We then
isotropically compress the system in small packing frac-
tion increments ∆φ, with each compression step followed
by minimization of the total potential energy U using
FIRE, until the system finds a force- and torque-balanced
configuration with total root-mean-square force, Frms =√
N−1

∑
µ n
−1
µ
∑
i (∇iµU)

2
< 10−12 and minimal inter-

particle overlaps. We monitor jamming onset using the
virial pressure P = (Σxx+Σyy)/2, where the virial stress
is

Σξξ′ = εcL
−2
∑
ν 6=µ

nµ∑
i=1

nν∑
j=1

(
1−

rµνij
σµνij

)
rµνij,ξr

µν
ij,ξ′

rµνij σ
µν
ij

. (5)

rµνij,ξ is the ξ-component of the vector separating vertex
i on cell µ and vertex j on cell ν and ξ = x or y. We
identify jamming onset, with packing fraction φJ , when
the pressure 10−7 < P < 2 × 107. We have confirmed
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FIG. 2. DP packings are hypostatic, DPb packings
are hyperstatic. (a) Four representative jammed packings
of N = 32 bidisperse DP particles with A0/An = 1.001, 1.02,
1.1, and 1.2. Vertices on particles with zero vertex-vertex
contacts are drawn with open circles. (b) Number of missing
contacts per particle m/N in packings of N = 32 DP parti-
cles vs. number of quartic modes per particle Nq/N . Black
solid line gives m = Nq, and colors represent shape parameter
values from A0/An = 1.0001 to 1.24, sorted from low (blue)
to high (red) values. (c) Same as (a), but for N = 32 DPb
particles with Kb = 10−2. (d) m/N in packings of DPb par-
ticles plotted vs. δA0/δA∗0 = (A0 −An)/(A∗0 −An), where
A∗0 is the buckling shape parameter. Colors represent Kb

(sorted from blue to green), spanning Kb = 0.005 to 0.05,
and shapes represent different system sizes: N = 16 (circles),
32 (squares), and 64 (stars).

that the results do not depend on the pressure threshold
as long as it is sufficiently small.

Example packings of DP and DPb particles are shown
in Fig. 2 (a) and (c). In Fig. 2 (a), DP particles with
largerA0 jam at increasingly higher packing fractions due
to increased particle deformability [29], while in Fig. 2
(c), jammed packings of DPb particles resemble pack-
ings of rigid “bumpy” disks [34], dimers [35, 48] and el-
lipses [29], depending on the preferred shape parameter
of the particles. While jamming onset for DP particles
occurs at large packing fractions when the particles are
more deformable, we show in Fig. 2 (b) these packings
are hypostatic with fewer contacts than expected from
constraint counting.

As described above, each DP particle has nµ + 1 in-
ternal shape constraints, so a packing with Nvv vertex-
vertex contacts gives a total of N(n + 1) + Nvv con-
straints, where n = N−1

∑
µ nµ is the mean number

of vertices per particle. An isostatic packing would
then have N iso

vv = N(n − 1) − 1 contacts. However, we
show in Fig. 2 (b) that the number of missing contacts
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FIG. 3. Quartic modes and buckling strongly influence
low-frequency behavior of vibrational response. (a)
Visualization of representative eigenmodes in a jammed pack-
ing of N = 64 DP particles with A0/An = 1.02. Top-left and
-right are quartic modes at low frequency and near ω0, respec-
tively, while bottom-left and -right are typical modes in the
mid- and high-frequency bands near ω1 and ω2, respectively.
(b) Density of vibrational modes D(ω) for the same system in
(a). Vertical lines are drawn at ω0, ω1, and ω2. (c) D(ω) for
jammed packings of N = 32 DP particles (inset is DPb with
Kb = 10−2). Color represents A0/An from 1.0001 to 1.24
sorted from blue to red. The black solid and dashed lines in
the inset indicate D(ω) for DPb packings with A0/An = 1.01
and 1.03, which are respectively below and at the buckling
transition A∗0. (d) Characteristic frequencies ω0 (black), ω1

(blue), and ω2 (red) as a function of δA0 = (A0 −An)/An

for DP (top) and DPb (bottom) packings. In the top panel,

black and blue lines represent ω ∼ δA−1/3
0 and ∼ δA1/2

0 ,
respectively. In the bottom panel, the vertical dashed line
corresponds to δA∗0.

m = N iso
vv − Nvv > 0 for DP packings at jamming on-

set. Hypostatic jammed packings are ubiquitous in sys-
tems with non-spherical particles [39], and recent work
has shown that the extra degrees of freedom can be sta-
bilized by higher-order “quartic” modes of the potential
energy [32, 35]. In the SM [46], we show that quartic
modes can be identified by decomposing the dynamical
matrixM into stiffness H and stress S matrices [31, 49].
We show in Fig. 2 (b) that the number of missing con-
tacts is exactly matched by the number of quartic modes
Nq in each DP packing.

DPb particles, however, can form hyperstatic pack-
ings at jamming onset, where the number of interparticle
contacts exceeds the minimal number required to con-
strain the particle degrees of freedom. In Fig. 2 (d), we
show that m ∼ 0 when the preferred shape parameter
A0 < A∗0. Here, m = N iso

vv − Nvv, but the DPb single-

particle energy is overconstrained, so DPb particles have
3 degrees of freedom each and N iso

vv = 3N − 1. However,
m < 0 when jammed packings are generated with buck-
led DPb particles. This surprising result is likely due to
buckling of single DPb particles (Fig. 1), which is sig-
naled by the rapid decrease of λm,4. When particles are
buckled and 0 < λm,4 � 1, transiently isostatic, but ul-
timately unstable networks of interparticle contacts are
formed and broken due to low-frequency shape changes
along the λm,4-eigenvector. We verify this behavior by
showing in the SM [46] that a single buckled DPb particle
has an ultra-low frequency shape mode when pinned by
two fixed vertices, even though the DPb particle has four
contacts and would be iso-constrained if it were rigid.
We decompose vibrational eigenmodes into translational
(T ), rotational (R), and shape (S) components in the
SM [46], and show that DPb packings always have a non-
zero contribution of S at low-frequencies when we take
the rigid-particle limit Kc → 0. However, S → 0 for the
first 3N modes in packings of DPbb particles when we
take the rigid-particle limit, suggesting that the addition
of the “belt” spring fully rigidifies the particle shape.

To further investigate the collective behavior, we com-
pute the density of vibrational modes D(ω) for modes
with frequency ωi =

√
λm,i. We find that D(ω) varies

dramatically across each model of single-particle de-
formability. In packings of DP particles, we observe three
distinct bands of vibrational response in Fig. 3 (a)-(f)
due to quartic modes (with mean frequency ω0), mid-
frequency collective modes (with mean frequency ω1),
and high-frequency shape modes (with mean frequency
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FIG. 4. Shape degrees of freedom account for a signif-
icant fraction of vibrational response in DP packings.
Magnitude of mode projection onto the shape degrees of free-
dom (S) versus eigenmode frequency ω for DP packings with
N = 256 and A0/An = 1.02 (circles), 1.06 (triangles), 1.1
(squares), 1.14 (diamonds), and 1.18 (asterisks). Inset: S(ω)
for DP packings with A0/An = 1.02 at several packing frac-
tions from φ = φJ (blue circles) to 0.98 (red circles) in φ
increments of 2× 10−2.
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FIG. 5. Shear response differs in particle models with
increasing deformability. (a) Static shear modulus G ver-
sus pressure P for N = 256 DP packings with A0/An = 1.02
(circles), 1.06 (triangles), 1.1 (squares), 1.14 (diamonds), and
1.18 (asterisks). The dashed lines are best fits to Eq. 6. Inset:
Exponents α (triangles) and β (circles) from Eq. 6 for data in
(a) versus A0. Horizontal lines indicate α = 1.0 and β = 0.75.
(b) G(P ) for N = 128 DPbb packings with A0/An = 1.02 for
Kc = 1 (circles) and 10−1 (triangles) and rigid, bumpy el-
lipses with the same shape parameter (squares). All DPbb
systems have Kl = 1, Kb = 10−1 and Kbb = 10−2. The
dashed lines are best fits to Eq. 6. Inset: Exponents α (tri-
angles) and β (circles) from Eq. 6 for models with increasing
rigidity. Horizontal lines indicate α = 1.0 and β = 0.5.

ω2). In the SM [46], we show that D(ω) and the charac-
teristic frequencies do not change significantly with sys-
tem size. A similar three-band structure is found in the
vibrational response of jammed packings of rigid non-
spherical particles [35], although here the second band
of modes corresponds to shape fluctuations at particle-
particle interfaces rather than particle rotations. Addi-
tionally, in Fig. 3 (g), we find a characteristic scaling

ω0 ∼ δA−1/30 , indicating collective motion becomes less
costly as particles become more deformable. This result
differs from that for frictionless non-spherical particles
with rigid shape [39, 49], where the exponent ∼ 1/2 for
the scaling of ω0 with shape parameter. We find ap-
proximate 1/2 scaling with shape parameter in the mid-
frequency band ω1, although this exponent is∼ 1 in pack-
ings of rigid non-spherical particles. The stiff shape mode

band with mean frequency ω2 does not vary with particle
shape, as these modes are controlled solely by the perime-
ter spring constant Kl and not on interparticle contacts.
We also computed D(ω) for packings of DPb particles, as
shown in Fig. 3 (h). Since there are no quartic modes in
DPb packings, there is no ω0 band. Also, we do not ob-
serve distinct band structure separating ω1 and ω2. The
only role shape plays in the vibrational response for DPb
particles is that there is a cusp in ω1 near A∗0 (inset to
Fig. 3 (h)), and an increased density of vibrational modes
at lower frequencies. This observation is consistent with
the inability of the DPb model to reach the rigid-particle
limit (see SM [46]), and is likely due to the small value
of λm,4 in buckled DPb particles.

We find that the shape degrees of freedom always play
an important role in the collective response for DP pack-
ings. In Fig. 4, we show that low-frequency modes have a
significant shape contribution S(ω) in DP packings with
preferred shape parameters 1.02 ≤ A0/An ≤ 1.18. We
find that S(ω) remains > 0 even as ω0 grows with increas-
ing compression. Previous studies of driven amorphous
solids have argued that deformability can be captured by
spherical particles with soft interparticle potentials [9].
Here, we find that, for sufficiently deformable particles,
explicit shape change accounts for a large fraction of
the total vibrational response. Explicit shape change
is therefore necessary to capture important features of
driven soft materials, such as flows of bubbles [2] and
emulsions [50, 51].

To investigate the effect of particle deformability on
bulk mechanical properties, we computed the static shear
modulus G for jammed packings of DP and DPbb par-
ticles. Packings were compressed to a given pressure
P , subjected to small, successive simple shear steps of
size ∆γ with Lees-Edwards boundary conditions [52],
and energy-minimized after each step. We measure
G = − ∂Σxy/∂γ , where Σxy is the virial shear stress.
We report G averaged over an ensemble of at least 500
configurations. In Fig. 5, we show that, although DP
packings contains collective low-frequency quartic modes,
they possess G > 0 at low pressure [29, 32]. In the
SM [46], we also show characteristic N−1 scaling of G
in the P → 0 limit [53]. We find in Fig. 5 (a) that
G(P ) for DP packings over of wide range of A0 is well-
approximated by a double-power-law functional form [54]
used to describe the shear response of packings of soft
frictionless spheres:

G = G0 +
aPα

1 + cPα−β
(6)

Values of α ≈ 1 and β ≈ 0.5 have been reported in pre-
vious studies of jammed packings of frictionless spherical
particles [6, 53], frictional spherical particles [55], and
bumpy particles [34]. However, we find that the large
pressure scaling exponent β ≈ 0.75 for DP packings. In
Fig. 5 (b), we show that we recover the β ≈ 0.5 scaling
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exponent by taking the rigid-particle limit (DPbb par-
ticles and Kc → 0) and for rigid, bumpy ellipse-shaped
particles with identical A0/An. For packings of less-rigid
DPbb particles, we obtain β ≈ 0.6, suggesting that DPbb
particles away from the rigid-particle limit possess bulk
mechanical properties between those of truly deformable,
DP particles and those of truly rigid particles with no
shape degrees of freedom.

This work has demonstrated that truly deformable par-
ticles with explicit shape degrees of freedom can form
amorphous jammed solids, but that their vibrational and
mechanical response differs significantly from jammed
packings of particles without shape degrees of freedom.

In particular, the scalings ω0 ∼ δA−1/30 and G ∼ P 3/4

observed for jammed DP packings indicate important dif-
ferences from previous studies of jammed packings of soft
particles without shape degrees of freedom [6, 39, 53]. In
future work, we will investigate why hyperstatic pack-
ings occur for buckled DPb particles at jamming onset
by developing a theoretical framework that determines
exactly the number of degrees of freedom for each parti-
cle near jamming onset. Here, we focused on linear re-
sponse, but in future studies, we will also consider driven,
soft solids [50, 51] and motile tissues [56] to uncover how
explicit particle deformability impacts transport and dif-
fusion both close to and far from the jamming transition.

We acknowledge support from NSF Grants No. CBET-
2002782 (J.T. and C.O.), No. CBET-2002797 (M.S.),
and No. CMMI-1463455 (M.S.) and NIH award No.
5U54CA210184-04 (D.W.). This work was also sup-
ported by the High Performance Computing facilities op-
erated by Yale’s Center for Research Computing.

∗ These authors contributed equally.
† corey.ohern@yale.edu

[1] F. Bolton and D. Weaire, Rigidity loss transition in a
disordered 2d froth, Phys. Rev. Lett. 65, 3449 (1990).

[2] Y. Bertho, C. Becco, and N. Vandewalle, Dense bubble
flow in a silo: An unusual flow of a dispersed medium,
Phys. Rev. E 73, 056309 (2006).

[3] H. Princen, Rheology of foams and highly concentrated
emulsions: I. elastic properties and yield stress of a
cylindrical model system, J. Colloid. Interf Sci. 91, 160
(1983).

[4] A. Boromand, A. Signoriello, J. Lowensohn, C. S. Orel-
lana, E. R. Weeks, F. Ye, M. D. Shattuck, and C. S.
O’Hern, The role of deformability in determining the
structural and mechanical properties of bubbles and
emulsions, Soft Matter 15, 5854 (2019).

[5] M. L. Falk and J. S. Langer, Dynamics of viscoplastic
deformation in amorphous solids, Phys. Rev. E 57, 7192
(1998).

[6] C. S. O’Hern, L. E. Silbert, A. J. Liu, and S. R. Nagel,
Jamming at zero temperature and zero applied stress:
The epitome of disorder, Phys. Rev. E 68, 011306 (2003).

[7] C. P. Goodrich, A. J. Liu, and S. R. Nagel, Solids be-

tween the mechanical extremes of order and disorder,
Nat. Phys. 10, 578 (2014).

[8] D. Bonn, M. M. Denn, L. Berthier, T. Divoux, and
S. Manneville, Yield stress materials in soft condensed
matter, Rev. Mod. Phys. 89, 035005 (2017).

[9] D. J. Durian, Foam mechanics at the bubble scale, Phys.
Rev. Lett. 75, 4780 (1995).

[10] M. van Hecke, Jamming of soft particles: geometry, me-
chanics, scaling and isostaticity, J. Phys.: Condens. Mat-
ter 22, 033101 (2009).

[11] C. F. Schreck, T. Bertrand, C. S. O’Hern, and M. D.
Shattuck, Repulsive contact interactions make jammed
particulate systems inherently nonharmonic, Phys. Rev.
Lett. 107, 078301 (2011).

[12] W. P. J. Smith, Y. Davit, J. M. Osborne, W. Kim, K. R.
Foster, and J. M. Pitt-Francis, Cell morphology drives
spatial patterning in microbial communities, Proc. Natl.
Acad. Sci. USA 114, E280 (2017).

[13] F. Beroz, J. Yan, Y. Meir, B. Sabass, H. A. Stone, B. L.
Bassler, and N. S. Wingreen, Verticalization of bacterial
biofilms, Nat. Phys. 14, 954 (2018).

[14] J.-A. Park, J. H. Kim, D. Bi, J. A. Mitchel, N. T.
Qazvini, K. Tantisira, C. Y. Park, M. McGill, S.-H. Kim,
B. Gweon, J. Notbohm, R. Steward Jr, S. Burger, S. H.
Randell, A. T. Kho, D. T. Tambe, C. Hardin, S. A.
Shore, E. Israel, D. A. Weitz, D. J. Tschumperlin, E. P.
Henske, S. T. Weiss, M. L. Manning, J. P. Butler, J. M.
Drazen, and J. J. Fredberg, Unjamming and cell shape in
the asthmatic airway epithelium, Nat. Mater. 14, 1040
(2015).

[15] X. Trepat and E. Sahai, Mesoscale physical principles of
collective cell organization, Nat. Phys. 14, 671 (2018).

[16] T. Lecuit and P.-F. Lenne, Cell surface mechanics and the
control of cell shape, tissue patterns and morphogenesis,
Nat. Rev. Mol. Cell Bio. 8, 633 (2007).

[17] M. Murrell, P. W. Oakes, M. Lenz, and M. L. Gardel,
Forcing cells into shape: the mechanics of actomyosin
contractility, Nat. Rev. Mol. Cell Bio. 16, 486 (2015).

[18] M. K. Jolly, M. Boareto, B. Huang, D. Jia, M. Lu,
E. Ben-Jacob, J. N. Onuchic, and H. Levine, Implica-
tions of the hybrid epithelial/mesenchymal phenotype in
metastasis, Front. Oncol. 5, 155 (2015).

[19] P. McMillen, V. Chatti, D. Jülich, and S. A. Holley, A
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