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The likelihood that an undercooled liquid vitrifies or crystallizes depends on the cooling rate R.
The critical cooling rate Rc, below which the liquid crystallizes upon cooling, characterizes the
glass-forming ability (GFA) of the system. While pure metals are typically poor glass formers with
Rc > 1012 K/s, specific multi-component alloys can form bulk metallic glasses (BMGs) even at
cooling rates below R ∼ 1 K/s. Conventional wisdom asserts that metal alloys with three or more
components are better glass formers (with smaller Rc) than binary alloys. However, there is currently
no theoretical framework that provides quantitative predictions for Rc for multi-component alloys.
In this manuscript, we perform simulations of ternary hard-sphere systems, which have been shown
to be accurate models for the glass-forming ability of BMGs, to understand the roles of geometric
frustration and demixing in determining Rc. Specifically, we compress ternary hard sphere mixtures
into jammed packings and measure the critical compression rate, below which the system crystallizes,
as a function of the diameter ratios σB/σA and σC/σA and number fractions xA, xB, and xC. We find
two distinct regimes for the GFA in parameter space for ternary hard spheres. When the diameter
ratios are close to 1, such that the largest (A) and smallest (C) species are well-mixed, the GFA of
ternary systems is no better than that of the optimal binary glass former. However, when σC/σA . 0.8
is below the demixing threshold for binary systems, adding a third component B with σC < σB < σA

increases the GFA of the system by preventing demixing of A and C. Analysis of the available data
from experimental studies indicates that most ternary BMGs are below the binary demixing threshold
with σC/σA < 0.8. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4927560]

I. INTRODUCTION

When atomic and molecular liquids are cooled suffi-
ciently rapidly (i.e., above the critical cooling rate Rc), they
bypass crystallization and become trapped in disordered glassy
configurations.1 Avoiding crystallization in pure metals is
very challenging and has only been achieved in experiments
recently.2 On the other hand, multi-component liquid alloys
can form bulk metallic glasses (BMGs) that possess centi-
meter or greater casting thicknesses and critical cooling rates
Rc < 1 K/s.3–5 BMGs have shown great promise as structural
materials because they are amorphous with few defects and
possess higher processability than crystalline metals.6,7

The conventional wisdom in the BMG research commu-
nity is that BMGs should contain three or more atomic species8

with atomic size differences above 12% (i.e., the ratio of the
diameters of the smallest to the largest species should be
.0.89).9 Intuitively, more atomic components with different
sizes introduce geometric frustration or “confusion,” which
delays crystallization.4,10,11 Also, it has been suggested that

a mixture of multiple atomic species leads to dense packing
in the liquid state and thus enhanced stability of the glass.11

The minimum critical cooling rate observed for binary BMGs
is Rc ∼ 102 K/s, while it decreases to 10−1 and 10−2 K/s
for ternary and quaternary systems, respectively. Alloys with
similarly sized atomic constituents can only be casted into
glassy thin films (see Table I in Appendix A). Even with
these empirical rules, there is an enormous parameter space of
potential BMGs and we lack a complete theoretical framework
that would enable the prediction of Rc for each alloy in the
design space.

A number of recent studies of hard-sphere mixtures have
emphasized that dense atomic packing plays an important role
in determining the structural properties and glassy dynamics of
metallic alloys.12–17 For example, the efficient cluster packing
model has been successful at predicting spatial correlations in
bulk metallic glasses.13,14,17 In our prior work,18 we directly
measured the glass-forming ability (GFA) of binary hard-
sphere systems to understand the competition between crystal-
lization and glass formation. We found that binary metal-metal
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FIG. 1. (top) Comparison of the volumes of tetrahedral
cells formed by the centers of face-centered cubic packed
atoms with (left) two versus (right) three different sizes
(i.e., either σC/σA= 0.8 with xB = 0 or σB/σA= 0.9,
σC/σA= 0.8, and xB > 0). The tetrahedral volume for
four same-sized atoms is 0.118 σ3

A
(thin black line),

while it is 0.084 σ3
A

for two large and two small atoms
(thick blue solid line) and 0.092 σ3

A
for one small, one

intermediate, and two large sized atoms (red dashed line).
Thus, the distortion of the tetrahedral cell is smaller for
the ternary system. (bottom) When atoms of an interme-
diate size (σB/σA= 0.75) are added to a binary system
(with diameter ratio σC/σA= 0.5), it becomes more
uniformly mixed and less ordered, i.e., with global bond
orientational order parameter Q6= 0.02 (right) com-
pared to 0.15 (left).

(i.e., transition metal-transition metal) BMGs, such as Cu–Zr,
Cu–Hf, and Ca–Al, possess atomic size ratios α = σB/σA

and small particle compositions xB that occur in the region of
parameter space with the smallestRc for binary hard spheres.18

Can hard sphere models accurately capture the depen-
dence of the GFA on the atomic size ratios and compositions
for multi-component alloys? In this manuscript, we directly
measure the glass-forming ability of ternary hard-sphere mix-
tures. We find two key results: (1) when the sizes of the three
components are comparable, ternary systems behave similar
to binary systems, and the GFA cannot be larger than that of
a binary system consisting of the largest and smallest compo-
nents. In this case, the packing efficiency of the ternary system
is close to that of the binary systems (see Fig. 1 (top)). (2)
When the diameter ratio of the smallest to the largest compo-
nent is beyond the demixing limit (α . 0.818), adding a third
component with an intermediate size can increase the GFA
by preventing demixing. In this scenario, the packing fraction
of the ternary system is significantly higher than the demixed
binary system (see Fig. 1 (bottom)). This demixing mechanism
has also been found in studies of segregation of granular media
and other particulate solids.19

II. METHODS

We performed event-driven molecular dynamics simu-
lations of N = 500 ternary hard spheres with diameters σA

≥ σB ≥ σC, number fractions xA = NA/N , xB = NB/N , and
xC = NC/N , and the same mass m. We compressed systems
initially prepared in liquid states at packing fraction φ = 0.25
so that they exponentially approach static jammed packings
at φ = φJ as a function of time. In particular, we first run
the simulations at constant volume for a time interval τ and
then compress the system instantaneously until the closest pair
of spheres comes into contact.15,18 This compression proto-
col is repeated until the reduced pressure (or compressibility
factor) increases to 103, which corresponds to (φJ − φ)/φJ

< 10−3. We vary the compression rate R ≡ 1/τ over 5 orders
of magnitude.18 Note that R is given in units of


kBT/mσ2

A

and R = 1 corresponds to a cooling rate R ≈ 1012 K/s for

metal alloys.20 The crystal structures that compete with glass
formation possess face-centered cubic (FCC)-like order, and
thus, we characterize the positional order of the packings using
the global bond orientational order parameter Q6

21 averaged
over 96 independent compression runs. The critical compres-
sion rate Rc is determined by the intersection of the mean and
median Q6 as a function of R (see Appendix B). To explore
the glass-forming ability diagram for ternary systems, we stud-
ied more than 20 compositions and 10 pairs of atomic size
ratios σB/σA and σC/σA. Additional details of the simulation
methods can be found in Ref. 18.

III. RESULTS

In our previous studies of binary hard-sphere mixtures
with diameter ratio α = σB/σA and small particle number
fraction xB, we found that the critical compression rate Rc

decreases exponentially, Rc ∼ exp[C(xB)(1 − α)3], where C
is a composition-dependent constant, for α & 0.8 above the
demixing limit (see Fig. 2). In contrast, for α . 0.8, the large
and small particles in binary systems can demix, which then
induces crystallization. Thus, the glass-forming ability for bi-
nary hard-sphere systems first increases with decreasing α, but
then begins to decrease for α . 0.8.18

We first focus on ternary hard-sphere systems with weak
size disparities. In Fig. 3 (top), we plot the critical compres-
sion rate Rc as a function of the number fractions of the
three components xA, xB, and xC at fixed diameter ratios
σB/σA = 0.95 and σC/σA = 0.9. We find that the best glass-
forming regime (i.e., the region with the smallest Rc) occurs on
the binary composition line AC near xC = 1 − xA ≈ 0.6 and
xB = 0. Adding the third component B with an intermediate
size σC < σB < σA causes a decrease in the glass-forming
ability (or increase in Rc).

Recent studies have shown that phase-separated Barlow
packings are the densest structures for binary hard spheres
with diameter ratio α & 0.66.22,23 However, we find that these
packings are not kinetically accessible during compression
for α & 0.8.18 Instead, we find that the competing crystal for
bidisperse hard-sphere systems in this diameter ratio regime is
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FIG. 2. In binary hard-sphere mixtures with diameter ratio α > αc(xB) and
fixed number fraction xB of small particles, log10Rc drops linearly with
(1−α)3 (dotted line). For α < αc, the large and small particles demix and Rc

begins to increase with decreasing α. The composition-dependent threshold is
αc ≈ 0.8 for xB = 0.2. The inset shows snapshots of configurations at R ∼ Rc

for xB = 0.2 and α = 0.9, 0.7, and 0.5 from left to right, which illustrates
increasing demixing as α decreases.

a deformed FCC crystal.18 As shown in Fig. 1 (top), adding a
third component with an intermediate size to a binary system
in this diameter ratio regime reduces the FCC lattice distor-
tion as well as the glass-forming ability. These results are
consistent with experimental observations for bulk metallic
glasses, which are summarized in Table I in Appendix A. There
are no observed ternary bulk metallic glasses with weak size
polydispersity, i.e., the diameter ratio of the smallest to the
largest component satisfies α & 0.8.

We now consider ternary hard-sphere systems with a diam-
eter ratio disparity that is beyond the demixing threshold, i.e.,
σC/σA . 0.8. In Fig. 3 (middle), we plot the critical compres-
sion rate Rc as a function of the compositions xA, xB, and xC
for ternary systems with diameter ratios σB/σA = 0.95 and
σC/σA = 0.5. For this system, the smallest value of Rc does
not occur at xB = 0. Instead, for this ternary system, Rc(xB)
possesses a minimum near xB ≈ 0.4 (see Fig. 3 (bottom)).

We can also measure the glass-forming ability at fixed
composition and vary the diameters of one of the particles. In
Fig. 4, we fix the compositions xA = xB = xC = 1/3 and diam-
eters σA and σC of two components and measure Rc as a func-
tion of the diameter ratio σB/σA. Note that, when σB = σA

(σC), the ternary systems reduce to binary systems with xC
= 1/3 (2/3). In experimentally observed ternary BMGs, when
the diameters of two of the three components are similar,
for instance, CuNi and AlTi, the ternary glass-forming ability
diagram is symmetric and equivalent to that of the corre-
sponding binary system.24 We first focus on ternary systems
with σC/σA = 0.9, which does not lead to demixing. When
σC/σA < σB/σA < 1, Rc has a maximum at σB/σA < 1 and
the ternary systems are worse glass formers than binary sys-
tems with σB = σC. These ternary systems show enhanced
glass-forming ability above that for binary systems only when
σB/σA . 0.9 (see Fig. 4).

In Fig. 4, we also consider fixed diameter ratio σC/σA

= 0.5 for which the two components tend to demix. In this
case, Rc does not possess a maximum at σB/σA < 1, and thus,
these ternary systems can possess enhanced glass-forming
ability compared to corresponding binary systems. The intro-

c

FIG. 3. (top) Critical compression rate Rc as a function of the composi-
tions xA, xB, and xC in ternary hard-sphere systems with diameter ratios
σB/σA= 0.95 and σC/σA= 0.9. The minimum Rc occurs on the edge
AC , i.e., binary systems with xB = 0. Moving perpendicular to AC on the
diagram causes increases in Rc. (middle) Same as the top plot, but with
diameter ratios σB/σA= 0.95 and σC/σA= 0.5. The minimum Rc no
longer occurs for binary systems on the edge AC . Note that the contour plots
of log10Rc are interpolated from ∼20 simulation runs (triangles) and given on
a color scale that decreases from dark to light. (bottom) Rc as a function of
xB at fixed xC = 0.4 (dashed line in top and middle panels) for the diameter
ratios studied in the top (squares) and middle (circles) panels.
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FIG. 4. The critical compression rate Rc as a function of the diameter
ratio σB/σA at fixed composition xA= xB = xC = 1/3 and σC/σA= 0.9
(squares) or σC/σA= 0.5 (circles). The solid line gives a polynomial fit
to the data for σC/σA= 0.9 to show the qualitative trend. Ternary systems
reduce to binary systems when σB =σA or σC (solid symbols). In the inset,
we show configurations obtained at a slow compression rate R = 10−3 for
σB/σA= 0.5 (left) and 0.75 (right). Large, intermediate, and small particles
are shaded from dark to light.

duction of the third component with an intermediate size σB

prevents demixing. As shown in the insets of Fig. 4, binary
systems with σB/σA = 0.5 demix and crystallize (left), while
ternary systems with σB/σA = 0.75 remain well-mixed and
amorphous (right). Although the large particles A exclude the
small ones C, A particles mix with B particles and B particles
mix with C particles, which leads to effective mixing of A and
C particles.

Because packing efficiency and vibrational entropy deter-
mine the stability of crystals in hard-sphere systems,25,26 one
can correlate the packing fraction at jamming φJ with the crit-
ical compression rate Rc as demonstrated in binary systems.18

We study three relevant packing fractions: φRCP
J obtained in

the limit R → ∞,27–29 φa
J for amorphous packings obtained at

R ∼ Rc, and φx
J for partially crystalline packings obtained at

R ∼ Rc.
We do not correlate the critical cooling rate with the

packing fraction of the densest crystalline packing for a given
set of particle number fractions and diameter ratios.22,23,30,31

We have shown in previous work18 and confirmed here that
the crystalline configurations that compete with glass forma-
tion for compression rates R ∼ Rc are not the densest ones.
For α & 0.8, the crystalline configurations that compete with
glass formation are polycrystalline FCC solid solutions, not
the denser phase-separated Barlow-packed crystals of small
and large particles. For all α . 0.8, the crystalline configu-
rations that compete with glass formation are partially de-
mixed Barlow-packed crystals, not compound crystal struc-
tures. We find little correlation between the packing fraction of
the densest crystalline structures and the critical compression
rate of the system.

As shown in Fig. 5 for ternary systems with diameter ratio
pairs σB/σA = 0.95 and σC/σA = 0.9 and σB/σA = 0.9 and
σC/σA = 0.88 that do not demix, the relations between Rc and
packing fraction φJ at jamming follow the trends for binary
systems, i.e., as φa

J and φx
J approach each other, Rc → 0. In

addition, the packing fraction in these ternary systems is not
larger than in binary systems, contrary to the intuition that

FIG. 5. (a) For each binary and ternary system, we plot the corresponding
critical compression rate Rc and three definitions of the packing fraction at
jamming: φRCP

J obtained in the R→ ∞ limit, φa
J for amorphous packings

obtained at R ∼ Rc, and φx
J for partially crystalline packings obtained at

R ∼ Rc with φRCP
J < φa

J < φx
J . The solid lines give polynomial fits to the data

for the packing fraction at jamming for α ≥ 0.8. (b) Rc plotted versus the
normalized difference ∆φJ/⟨φa

J⟩, where ∆φJ =φ
x
J −φ

a
J . The master curve

(solid line) obeys log10Rc ∼ (∆φJ/⟨φa
J⟩)−2.18 In (a) and (b), we considered

binary systems with diameter ratios α ≥ 0.8 (crosses) and ternary systems
with diameter ratio pairs σB/σA= 0.95 and σC/σA= 0.9, σB/σA= 0.9
and σC/σA= 0.88, and σB/σA= 0.95 and σC/σA= 0.5 (squares, cir-
cles, and triangles, respectively). In the absence of demixing, Rc versus the
jammed packing fraction for ternary systems is quantitatively similar to that
for binary systems. However, ternary systems that demix deviate from the
master curve.

ternary systems are always denser than binary systems and thus
possess higher glass-forming abilities.11 These results show
that ternary systems with weak diameter ratio disparities can
be described effectively as binary systems since the additional
intermediate-sized particles only decrease the particle size
gradient in the original binary system without changing the
mechanism that drives crystallization.18,32 The deviations from
the master curve (solid lines) in Fig. 5 indicate demixing in
the ternary system with diameter ratio pairs σB/σA = 0.95
and σC/σA = 0.5. However, compared with the binary system
with diameter ratio α = 0.5,18 the deviation of the ternary sys-
tem from the master curve is smaller, which indicates weaker
demixing than the binary system. The packing fractions for
all of the systems in Fig. 5 were also studied as a function of
system size. The packing fractions φRCP

J , φa
J, and φx

J obtained
in the large-system limit differ from those presented in Fig. 5
by less than 1%, which is consistent with our prior results.33

In Fig. 6, we illustrate the diameter ratio variation for
15 180 combinations of three elements from a set of 46 poten-
tial BMG-forming elements. The atomic sizes of the elements
are given by their metallic radii,12,13 which are shown in the
inset of Fig. 6. We define the component types so that they
satisfy σC ≤ σB ≤ σA, and thus, the data occur in left corner
of the plot.

In previous studies, we predicted that the optimal bi-
nary hard-sphere glass formers occur in the diameter ratio
range 0.73 < α < 0.82, where α is sufficiently small to prevent
ordering, but not too small to cause demixing. We can estimate
the optimal glass-forming regime in the σB/σA and σC/σA

plane for ternary systems using the following arguments. First,
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two of the boundaries (ab and cd) can be obtained directly
from the results for binary systems. Because adding a third
intermediate-sized component can prevent demixing of the
original two components, we expect that the lower bound for
the diameter ratio in ternary BMG-forming systems to be much
smaller than 0.73. We propose that 0.732 is the lower bound
for the diameter ratio for ternary systems. In this case, σC/σA

= 0.732, σB/σA = 0.73, and σC/σB = 0.73 (point e in Fig. 6),
and thus, all binary combinations are above the lower bound
of the good GFA regime.

We predict that good BMG-forming alloys will occur
within the polygon defined by lines connecting the points (a)-
(e) in the σB/σA and σC/σA parameter space. 33 ternary alloy
systems have been observed experimentally in amorphous
states (filled circles),5,13,34 all of which fall in the good glass-
forming regime predicted by hard-sphere systems. For the
experimentally observed ternary BMGs, the diameter ratio
for the smallest versus the largest particle σC/σA satisfies
α < 0.8, which is below the demixing limit for binary systems.
Therefore, the experimentally observed ternary BMGs have
better GFA than the best binary glass-forming alloys. In addi-
tion, the experimentally observed BMGs tend to be positioned
away from the boundaries ab and cd. As ternary systems
approach ab (cd), σB/σA → 1 (σC/σA → 1), which causes
them to behave as binary systems and reduces their glass-
forming ability. The experimentally observed ternary BMGs
cluster roughly into three groups: (i) (Zr,Hf,Sn,Mg)–(Al,Ti,Nb)
–(Cu,Ni,Co), (ii) (Y,Ln)–Al–(Cu,Ni,Co), and (iii) (Au,Pd,Pt)–
(Cu,Ni)–(Si,P) (see Table I in Appendix A).

IV. CONCLUSION

We performed event-driven molecular dynamics simula-
tions of ternary hard-sphere systems over a wide range of

FIG. 6. Scatter plot of the diameter ratios σB/σA versus σC/σA with
σC ≤σB ≤σA for all 15 180 combinations of three elements chosen from
46 possible BMG-forming elements (dots). 33 of the combinations (filled
circles) have been shown experimentally to form BMGs and occur in
roughly three main clusters: (i) (Zr,Hf,Sn,Mg)–(Al,Ti,Nb)–(Cu,Ni,Co), (ii)
(Y,Ln)–Al–(Cu,Ni,Co), and (iii) (Au,Pd,Pt)–(Cu,Ni)–(Si,P). The predicted
BMG-forming alloys are located within the polygon bounded by the solid
lines. The inset gives the atomic radii in pm of the 46 potential BMG-forming
elements ordered from smallest to largest.5,12,13 The symbols of the elements
alternate from top to bottom on the horizontal axis and the lanthanide ele-
ments are shown as filled circles.

compositions and diameter ratios to identify the optimal glass-
forming parameter regime. We identify two mechanisms for
optimizing the glass-forming ability in ternary systems. First,
if the sizes of the three components are similar, i.e., less than
10% deviation in the diameters, the ternary system behaves
effectively as a binary system containing only the largest and
smallest particles. Second, if the diameter ratio of the small-
est to the largest particle is below the demixing threshold
σC/σA . 0.8, adding the third component B with σC/σA

< σB/σA < 1 will dramatically enhance the glass-forming
ability above that for binary systems. We show that all exper-
imentally observed ternary BMGs to date possess atomic spe-
cies for which the diameter ratio of the smallest to the largest
satisfies σC/σA < 0.8. Thus, an efficient strategy to design
BMGs with good GFA is to maintain large atomic size differ-
ences and prevent demixing by introducing three or more
atomic components.

We recognize that the inter-atomic potentials describing
BMGs are far more complicated than the pairwise additive
hard-sphere potential that we employed. For example, the
apparent distance between the repulsive cores of two elements
can be shorter than the mean core size of the two elements.35

Also, in a more exact treatment, Friedel oscillations origi-
nating from perturbations to the electron density should be
included since they are known to change the stability of various
crystalline lattices.36 Despite these caveats and others, we
show that the hard-sphere model is able to semi-quantitatively
predict the regime of optimal glass-forming ability in experi-
mentally observed ternary BMGs. In the near future, we will
consider how non-additivity of the particle diameters, attrac-
tive interactions, and barriers in the pairwise potential and
multi-body interactions affects crystal and glass formation and
modifies the hard-sphere predictions.37
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APPENDIX A: GLASS-FORMING ABILITY
OF EXPERIMENTALLY OBSERVED BMGs

In this appendix, we provide a table of the critical cooling
ratesRc in units of K/s for experimentally observed binary and
ternary BMGs; see Table I. In the first column, we list each
class of binary and ternary BMGs according to the atom types
that are present. Atom types with similar sizes and properties
are grouped together in parentheses. In the second column, we
provide examples of specific alloys within each BMG class.
The third column gives diameter ratios: σB/σA with σB ≤ σA
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for binary systems and σB/σA and σC/σA with σC ≤ σB

≤ σA for ternary systems.5,12,13,34

APPENDIX B: MEASUREMENT OF CRITICAL
COMPRESSION RATE Rc IN SIMULATIONS

In this appendix, we describe the measurement of the
critical compression rate Rc in the molecular dynamics simu-
lations of hard-spheres. We performed 96 independent runs to
generate jammed configurations at each compression rate R.
We find that the distribution P(Q6) of the global bond orien-
tational order parameter becomes bimodal as R → Rc with

peaks that correspond to amorphous and partially crystalline
configurations. In Fig. 7, we show that both the mean and
median Q6 possess a sigmoidal shape on a logarithmic scale in
R. We define Rc as the critical compression rate at which the
mean and median Q6 intersect. A configuration is determined
to be crystalline (amorphous) if Q6 > Qc (Q6 < Qc), where Qc

is the value of Q6 at which the mean and median Q6 intersect.
Since the distribution P(Q6) is bimodal at R ≈ Rc, one can also
fit P(Q6) by the sum of two Gaussian distributions and identify
Rc as the rate at which the two Gaussian contributions have
equal area. This method can be more time efficient since it
avoids measurements at R ≪ Rc.

TABLE I. Glass-forming ability (characterized by the critical cooling rate Rc in units of K/s) and atomic diameter
ratioa for experimentally observed binary and ternary BMGs.5,13,34 Elements with similar sizes and properties are
grouped together using parentheses (see also Fig. 6). The lanthanide elementsb are indicated by Ln.

Binary system Alloy Rc (K/s) Diameter ratio σB/σA

Fe–B Fe91B9 2.6×107 0.62
(Au,Pd)–Si

Au80Si20 1.0×106 0.71
Pd95Si5 5.0×107 0.74
Pd82Si18 1.8×103

Pd75Si25 1.0×106

Ti–Be Ti63Be37 6.3×106 0.76
Zr–Be Zr65Be35 1.0×107 0.7
Zr–Cu Zr50Cu50 250 0.8
Nb–Ni Nb40Ni60 1400 0.85

Ternary system Alloyc Rc (K/s) Diameter ratios
σC/σA, σB/σA

Au–Si–Ge Au77.8Si8.4Ge13.8 3.0×106 0.71, 0.79
(Au,Pd,Pt)–(Cu,Ni)–(Si,P)

Pd40Ni40P20 0.167 0.73, 0.91
Pd77Cu6Si17 125 0.74, 0.93
Pd79.5Cu4Si16.5 500
Pd77.5Cu6Si16.5 100

(Y,Ca,Ln)–Mg–(Cu,Ni)
Nd15Mg70Ni15 178.2 0.69, 0.88
Nd15Mg65Ni20 30
Nd10Mg75Ni15 46.1
Nd5Mg77Ni18 49 000
Nd5Mg90Ni5 53 000
Nd10Mg80Ni10 1 251.4
Y10Mg65Cu25 50 0.71, 0.89
Gd10Mg65Cu25 1 0.71, 0.89

(Y,Ln)–Al–(Cu,Ni,Co)
La55Al25Ni20 67.5 0.66, 0.76
La55Al25Cu20 72.3 0.68, 0.76
La66Al14Cu20 37.5

(Zr,Hf,Sn,Mg)–(Al,Ti,Nb)–(Cu,Ni,Co)
Zr66Al8Ni26 66.6 0.78, 0.89

(Zn,Al,Ag)–Mg–Ca
Zn20Mg15Ca65 20 0.69, 0.81

aAtomic radii are obtained from Refs. 12 and 13, which determine the atomic sizes using the first peak of the radial distribution
function of amorphous liquid alloys or half of the spacing between atoms in metallic solids.
bLn refers to the series of fifteen metallic elements (La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu) with atomic
numbers 57-71. Together with two more chemically similar elements Sc and Y, these seventeen elements are collectively known
as the rare earth elements and are typically the largest sized component in BMGs.
cFor each system, we only list alloys for which the critical cooling rate Rc has been reported. Other alloys such as Ca–Mg–Cu,
Hf–Al–Cu, and Y–Al–Co are also BMG formers, but with unreported values of Rc.
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FIG. 7. The mean and median Q6 as a function of compression rate R for
ternary hard spheres with diameter ratios σC/σA= 0.88 and σB/σA= 0.9
and compositions xA= xB = xC = 1/3. The critical compression rate Rc and
bond orientational order parameter Qc are defined by the intersection of the
mean and median Q6. The solid lines are fits to a logistic function.
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