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Abstract

We employ machine learning techniques to validate the use of Angiopoietin-1 (Ang-1),
Ang-2 and Bicarbonate (HCO3) levels as biomarkers for determining the severity of sepsis
in critically ill children. The study was based on clinical data and plasma samples provided
by Yale-New Haven Children’s Hospital’s Pediatric Intensive Care Unit (PICU) from a
group of 45 patients with varying sepsis severity at the time of admission. Canonical
Correlation Analysis with the Forward Selection and Random Forests methods identi-
fied the above biomarkers as having the strongest correlations with sepsis severity. The
robustness and effectiveness of these biomarkers were validated by constructing a linear
Support Vector Machine diagnostic classifier. Our study demonstrates a consistent pat-
tern for patients with septic shock characterized by 1) decreased levels of Ang-1, which
stabilizes capillaries and promotes endothelial cell survival, 2) increased levels of Ang-2,
which destabilizes endothelial cell junctions and promotes inflammatory cell migration,
and 3) decreased levels of HCO3, which is an indicator of an acid-base imbalance in the
body. We also show that the concentrations of Ang-1, Ang-2 and HCO3 enable predictions
of the time dependence of sepsis severity in children.

Introduction

Diagnosing and classifying the severity of sepsis is a significant challenge due to the highly
variable and nonspecific nature of the signs and symptoms of sepsis. Biomarkers which
play critical roles in the disease process, show great promise in indicating the severity of
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sepsis. There are many biomarkers that have been studied for potential use in the early
diagnosis and classification of sepsis [1, 2].

Among novel biomarkers, studies have shown that Angiopoietin-1 (Ang-1) and Ang-2
are among the most promising endothelial associated sepsis biomarkers in several popula-
tions [3–6]. In particular, levels of Ang-1 and Ang-2 have been shown to be associated with
the severity of sepsis in children [5, 7]. These studies demonstrated a consistent pattern
in children with severe sepsis, characterized by increased levels of Ang-2 and decreased
levels of Ang-1. Others have shown that Ang-2 disrupts endothelial cell barrier function,
while Ang-1 ameliorates the same, in sepsis [8]. Therefore, the relative concentration
of Ang-2 and Ang-1, i.e. the Ang-2/Ang1 ratio, has been identified as a more robust
biomarker than isolated levels of each factor [5, 7]. In addition, the serum concentration
of bicarbonate (HCO3) is an important measure of the acid-base balance during sepsis [9].

However, none of these biomarkers taken individually has sufficient specificity or sen-
sitivity to be routinely employed in clinical practice. A combination of several sepsis
biomarkers may be more effective, as has been suggested by other investigators [10–12].
In this manuscript, we present a systematic study of the multivariate diagnostic capacity
of a scoring system that incorporates Ang-1, Ang-2 and HCO3 to distinguish patients
admitted to Yale-New Haven Children’s Hospital’s Pediatric Intensive Care Unit (PICU)
with or without sepsis (PICU/sepsis group) versus those with severe sepsis (PICU severe
sepsis group).

Materials

Study population

This study was approved by the Pediatric Protocol Review Committee and the Human
Investigation Committee at Yale University School of Medicine. The biological specimens
and clinical data sets were obtained from a prospective observational study of critically
ill pediatric patients with varying degrees of sepsis severity conducted at a tertiary care
center PICU during the time period 9/2009-12/2011 [5].

All patients admitted to the PICU were evaluated for eligibility. Forty-five patients
met the eligibility criteria and consented to participate in the study. Blood samples were
collected every 12 hours for the first 3 days and then once a day for the last 4 days. Data
collection was discontinued when the patient was discharged from the PICU. A maximum
of 10 samples for 7 days were obtained from each patient. Commercial enzyme-linked
immunosorbent assay (ELISA) kits were used to measure plasma levels of Ang-1 and
Ang-2. Descriptive data consisting of demographics and clinical data were also recorded
for all patients. Additional details have been recently published [5].
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Biomarkers

To create a robust model of a specific combination of biomarkers for predicting the severity
of sepsis in children in an unbiased manner, we selected multiple clinical and laboratory
variables from the database of our study [5]. These 17 variables are as follows: (1)
Age, (2) Weight (Wgt), (3) admission Pediatric Index of Mortality 2 (PIM-2) [13], (4)
White Blood Cell count (WBC), (5) Hemoglobin count (Hgb), (6) Hematocrit (Hct), (7)
Platelet count (Plt), and the levels of (8) Sodium (Na), (9) Potassium (K), (10) Chloride
(Cl), (11) HCO3, (12) Blood Urea Nitrogen (BUN), (13) Creatinine (Cr), (14) Ang-1, (15)
Ang-2, (16) Ang-2/Ang-1 ratio, and (17) Vascular Endothelial Growth Factor (VEGF). To
validate the data analysis, we augmented this data set to include (18) Gaussian distributed
noise (g-Noise) and (19) uniformly distributed noise (u-Noise). These 19 variables were
then used to develop sepsis severity prediction models.

Statistical Analysis

Patients were classified within the first 24 hours of PICU admission into the following two
categories based on the 2005 pediatric sepsis and organ dysfunction definitions [14]: 1)
the PICU/sepsis group (n = 28) included those with nonsystemic inflammatory response
syndrome (non-SIRS) (n = 9), SIRS (n = 8), and sepsis (n = 11), and 2) the PICU
severe sepsis group (n = 17) included those with severe sepsis (n = 3), and septic shock
(n = 14). We systematically evaluated the Pearson pairwise correlations between all pairs
of biomarkers for the PICU/sepsis and PICU severe sepsis groups.

Results

Biomarkers Selection

Feature selection is an important part of the data analysis given the fact that the data
contains many redundant or irrelevant features. Redundant features provide no addi-
tional information than the selected features, and irrelevant features provide no useful
information. Feature selection is widely used in data sets with abundant features but
comparatively few samples. In machine learning and statistics, the goal of a feature se-
lection method is to select an optimal subset of relevant features for model construction.

In this study, there are 17 variables (features) augmented by 2 variables consisting
of Gaussian and uniform noise to provide a baseline check for the data analysis. From
the univariate correlation analysis, we found that this data set contained several possible
redundant biomarkers and, not surprisingly, at least two irrelevant features (g-Noise and
u-Noise). To extract an optimal subset of biomarkers, we analyzed the multivariate cor-
relation between the outcome, sepsis severity score (0 for PICU/sepsis and 1 for PICU
severe sepsis), and the input, which is a subset of variables.
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A comparison of the univariate correlations for these two groups is shown in Fig. 1.
The univariate analysis revealed that Na, K, Cl, HCO3 form a group of highly correlated
biomarkers (with correlations that range from 0.937 to 0.998) for the PICU/sepsis group.
However, these variables are not strongly correlated for the PICU severe sepsis group
(with correlations that range from 0.001 to 0.608). This notable difference between the
PICU/sepsis and PICU severe sepsis groups indicates that these biomarkers may not
independently provide information about the sepsis severity diagnosis. We also note that
Ang-1 and Ang-2 are highly correlated with each other in the PICU severe sepsis group
(0.76), but this correlation is significantly reduced for the PICU/sepsis group (0.21).
Meanwhile, Ang-2/Ang-1 does not correlate very strongly with either Ang-1 (0.21 in
PICU/sepsis, 0.24 in PICU severe sepsis) or Ang-2 (0.48 in PICU/sepsis, 0.17 in PICU
severe sepsis). Based on these observations, we seek to identify an optimal set of non-
redundant variables and biomarkers to predict the severity of sepsis.

In our recent study [15], we found that canonical correlation analysis (CCA) [16–18]
can be applied effectively to identify an optimal subset of biomarkers with the maximum
correlation with the outcome. As shown in Table 1, we found that the subset of Ang-2,
Ang-1, and HCO3 maximizes the correlation with the sepsis severity score. As expected,
the two forms of random noise are selected near the end of the process when the correlation
saturates for large subsets. We also applied the forward selection (FS) method to identify
the optimal subset of biomarkers. FS is a greedy algorithm that adds the best feature at
each step [19,20]. We found that the performance of the subset of biomarkers selected by
FS was similar to that selected by CCA on this data set.

The Optimal Subset

In this study, we built a diagnostic classifier by selecting the subset of k biomarkers with
the best diagnostic performance for each value of k. For each k, we applied the ensemble
method [21,22] to construct a linear support vector machine (SVM) classifier [23] for the
CCA-selected subset of biomarkers. SVM [24] finds a decision function that separates the
high-dimensional data with the maximum margin. To quantify the classifier performance,
we calculated the true positive rate (TPR), true negative rate (TNR), positive predictive
value (PPV), and negative predictive value (NPV). See the Methods section for details.

In Figure 2, we find that all statistical measures reach a peak or saturate near k =
3 using the CCA-selected biomarkers, Ang-2, Ang-1, and HCO3, which suggests that
these three biomarkers are the optimal subset for our data set (TPR = 0.69,TNR =
0.87,PPV = 0.79, and NPV = 0.83 at k = 3). By adding HCO3 to the optimal subset
from k = 2 to k = 3, the combination has higher TPR (0.60 at k = 2 versus 0.69 at
k = 3) and PPV (0.69 at k = 2 versus 0.79 at k = 3) when compared to the combination
of Ang-2 and Ang-1. TNR (0.84 at k = 6 versus 0.80 at k = 7) and PPV (0.75 at k = 6
versus 0.69 at k = 7) begin to decrease from their plateau values when HCO3 leaves the
subset at k = 7. The improvement at k = 3 and decrease at k = 7 indicate the diagnostic
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importance of HCO3.

Redundant Biomarkers

Recent studies [3–5,7] suggest that plasma levels of Ang-2 and Ang-1 can serve as clinically
informative biomarkers of sepsis severity. Further, the Ang-2/Ang1 ratio is considered to
be a more relevant sepsis severity biomarker than isolated levels of each biomarker because
of their antagonistic roles in regulating the tyrosine kinase receptor, Tie-2 [7]. However,
both of our biomarker selection methods, CCA and FS, select Ang-2/Ang-1 to the optimal
subset relatively late, i.e., at large k (k = 13 and k = 15) as shown in Table 1. This
suggests that a combination of Ang-2, Ang-1, and HCO3, is potentially more effective
than using the ratio of Ang-1 and Ang-2 with other biomarkers.

It is also interesting to consider the univariate and bivariate performance of these
biomarkers. This analysis provides additional insight into the relative performance of
different subsets of biomarkers and how they work together to provide inferences.

In Fig. 3(A), the relative performance of the univariate biomarkers performance is
shown: 1) Ang-1 has consistent performance for all statistical measures compared to other
biomarkers (see Table 2), 2) Ang-2 has a high TNR (0.85) and PPV (0.63) but relatively
low TPR (0.38), and 3) HCO3 has the highest TPR (0.87) and NPV (0.86) but relatively
low TNR (0.42) and PPV (0.48). These observations indicate that the performances of
these biomarkers did not correlate with each other. This supports the observation that
the best subset of biomarkers includes both Ang-1 and Ang-2 since they provide distinct
information. We also show that the combination of Ang-2, Ang-1 and HCO3 improves
the predictive capability by reducing overfitting in Fig. 2. The performance for the CCA-
selected subsets decreases relatively when k>3.

These results suggest, when examining groups of three, Ang-2/Ang-1 may be a redun-
dant biomarker, i.e., no additional information is gained when Ang-1 and Ang-2 data is
known. We explore here how this ratio performs in isolation, i.e., as a derived univariate
statistic. We applied the same procedure as above to construct a SVM classifier for each
single biomarker and show the statistical measures in Fig. 3(A). Overall, we find that
Ang-2 and Ang-2/Ang-1 have comparable prediction performance (Fig. 3(A)). However,
Ang-2/Ang-1 outperforms Ang-2 for PPV (0.76 for Ang-2/Ang-1, 0.63 for Ang-2), which
suggests that Ang-2/Ang-1 alone may be a predictive biomarker. The similar perfor-
mance of Ang-2 and Ang-2/Ang-1 suggest that these two biomarkers capture very similar
information.

Of course it is not necessarily a fair assessment to compare true univariate biomarkers
such as Ang-1 and Ang-2 to their ratio since this contains information from two mea-
surements. Thus, we also compared the performance of combinations of Ang-1, Ang-2,
HCO3, and Ang-2/Ang-1 in Fig. 3(B). The combination of Ang-2 and Ang-2/Ang-1 does
not notably improve each predictive measure compared to these biomarkers alone, which
also indicates that these two biomarkers are redundant. In contrast, the combination of



6

Ang-1 and Ang-2 has notably higher NPV (0.78) and TPR (0.60) and comparable val-
ues for the other prediction measures compared to each single biomarker (NPV = 0.69
and TPR = 0.38 for Ang-2, NPV = 0.57 and TPR = 0.48 for Ang-1) and Ang-2/Ang-1
(NPV = 0.67 and TPR = 0.35). This suggests that the ratio Ang-2/Ang-1 is less effective
than using Ang-1 and Ang-2 separately.

For completeness, we also show the performance for the CCA-selected optimal subset
of three biomarkers HCO3, Ang-1 and Ang-2 on the far right of Fig. 3(B). This optimal
subset notably improves the predictive capability as indicated by the small spread of
values in the predictive measures.

The Diagnostic Classifier

We applied the linear SVM ensemble method [22, 23] to construct a decision function
using the CCA-selected optimal subset of biomarkers at k = 3: Ang-2, Ang-1, and HCO3.
The optimal decision function is

Score = w1Ang-2 + w2Ang-1 + w3HCO3 − b. (1)

Table 3 provides the weights wi, errors ei, means xi and standard deviations σi of the
biomarkers. Since the range of values of the biomarkers varies widely, all values of the
biomarkers are normalized by subtracting the mean and then dividing by the standard
deviation in Eq. 1. See Methods for details. With this decision function, if the sepsis
severity score (Score) is greater than or equal to zero, the severity diagnosis is 1, otherwise
it is 0. The magnitudes of weights wi indicate the importance of the corresponding
biomarker [25]. We find that Ang-2 has a larger weight than Ang-1 and HCO3, which is
consistent with the results for the single biomarker classification in Fig. 3(A), where the
TNR, and PPV are larger for Ang-2 than Ang-1 and HCO3. However, the TPR and NPV
are larger for HCO3 compared to that for Ang-2. The signs of weights wi indicates the
sign of the correlation of the biomarker with the sepsis severity score. Thus, the sepsis
severity score for a patient with a relatively high Ang-2 level and low Ang-1 and HCO3

levels is most likely positive. This relation between biomarkers and sepsis severity score
has been observed in the clinical studies [3, 26, 27].

Longitudinal Measurements of the Predictor

A linear SVM finds the hyper-plane that separates data with maximum margin by cat-
egories. In our study, the sign of the sepsis severity score (Score) in Eq. 1 can predict
the category for a patient. The magnitude of the Score represents the distance from the
decision boundary and indicates the severity of sepsis. A large positive Score indicates
critical severity.

Based on the fact that patients were hospitalized during the study, the longitudinal
measurements should show a decrease in the number of patients in the PICU severe sepsis
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group. Fig. 4 shows that Scores in the PICU severe sepsis group are notably separated
from the PICU/sepsis group for the first two days after admission. After two days,
the Scores in the PICU severe sepsis group decrease and collapse with those from the
PICU/sepsis group indicating the effectiveness of the treatment.

Comparison with the Random Forests learning method

Random forests (RF) [28] is an ensemble method [21, 22], which grows multiple clas-
sification and regression trees (CART) [29] for prediction. Every tree in the forests is
constructed by a random selected bootstrap training set with replacement [21]. The split-
ting criteria for every decision node in a tree are also chosen from a random subset of
the features without replacement. With the replacement from the original data, about
two-third of the samples are used to construct a tree [21]. The out-of-bag (OOB) data,
which are not chosen in the construction, are then used to estimate the prediction accu-
racy and the importance of the features [28, 30]. Unlike a linear SVM, which constructs
a hyper-plane to classify the data, a tree is a hierarchical classification procedure, which
recursively partitions the data to increase the purity of the nodes with respect to the
outcome [29].

RF provides two measures, the mean decrease in accuracy (MDA) and mean decrease
in the Gini index [28, 30], to estimate the importance of the features. In our study, the
MDA is chosen to estimate the feature importance since the decrease in the Gini index is
not as reliable as MDA [30, 31]. By randomly permuting the values of a given feature in
the OOB data for each tree, RF measures the accuracy difference between untouched and
permuted OOB data. The average of this accuracy difference over all trees in the forest
is the MDA for the given feature. The MDA is the average increase in misclassification
rate due to the permutations. The larger the MDA the more important the corresponding
feature is with respect to the outcome.

Following Ref. [28], we construct a forest with 1,000 trees to estimate the MDA for
biomarkers. We generated two RF: one for which Ang-2/Ang-1 is excluded (Fig. 5(A)) or
included (Fig. 5(B)). Because of the interaction of Ang-2, Ang-1, and Ang-2/Ang-1, the
existence of Ang-2/Ang-1 suppresses the importance of Ang-2 and Ang-1. However, both
CCA and FS methods tend to select the combination of Ang-2 and Ang-1 as the most
predictive feature. We notice that HCO3 is considered important for all three methods,
which suggests HCO3 is also an important biomarker. The RF ranked biomarkers based
on the importance are also shown in Table 1.

We also constructed a SVM ensemble using the RF-selected subset for each step k in
Fig. 2 for comparison. Similar to the CCA-selected subset in Fig. 2, all prediction measures
saturate at k = 4 and decrease for k>4. We find that the RF-selected optimal subset,
Ang-2/Ang-1, HCO3, Ang-2, Ang-1 at k = 4, have comparable prediction performance
with the CCA-selected optimal subset at k = 3.
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Discussion

In this study, we employed machine learning approach to analyze the clinical data of
children with severe sepsis using feature selection methods, such as CCA, SVM, FS and
RF. Feature selection methods are helpful in identifying biomarkers with minimum redun-
dancy that can be useful in clinical diagnosis. Our multivariate feature selection methods
select the combination of Ang-1, Ang-2, and HCO3 as the optimal biomarkers for our
data set. We demonstrated that this optimal combination of biomarkers significantly out-
performed each single biomarker and all other combinations with redundant or irrelevant
biomarkers for all statistical measures.

Our work [5, 7], and that of others, has shown the biological plausibility and clinical
relevance of Ang-2 and Ang-1 levels in PICU patients with severe sepsis. It is interesting
to note that combining Ang-2 and Ang-1 with a well-established (and routinely measured)
indicator of an imbalance in the acid-base levels performs much better than other scoring
systems that are more complex (for example, PIM-2 [13]).

Our data driven approach indicates that there is an optimal set of biomarkers for
diagnosing severe sepsis. We have demonstrated that the use of additional biomarkers
actually reduces the quality of the diagnostic scoring system. This is a potentially im-
portant observation in the sense that it suggests that more feature rich data may not be
helpful, but actually harmful.

In addition, a sepsis severity score function (Eq. 1) using this optimal combination of
biomarkers was constructed by the SVM ensemble method. With this function, we can
interpret the relation between these three biomarkers and the sepsis severity from the
associate weight, wi [25]. Given that these relations have also been observed in clinical
studies [3–5] we assert that our methodolgy is useful from the perspective of unbiased
data analytical confirmation. It also holds promise for the discovery of novel biomarkers.

The proposed sepsis severity score for each sample is also evaluated during the treat-
ment. The patients in PICU severe sepsis have significantly high severity scores after
admission. After two days treatment, the severity scores for each patient decline and
collapse to match patients without severe sepsis. Based on the fact that all patients sur-
vived hospitalization, the change in the longitudinal measurements of this score function
validates the robustness and effectiveness of this function as regards its potential utility
at different stages of treatment.

It has been observed that single biomarkers, in isolation, have limited diagnostic capac-
ity [1]. This study supports this conclusion. Our analysis strongly supports the conclusion
that a combination of different biomarkers is more effective, i.e., using multiple biomark-
ers for diagnosis is superior to drawing conclusions from single biomarkers. The rationale
for this observation may be that the biomarkers are not independent of each other but,
as we have shown with our canonical correlation analysis, are correlated in groups. The
identification of an optimal combination of biomarkers allows clinician to focus on a small
subset of indicators thus simplifying the diagnosis of sepsis in children with a spectrum
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of severities.
In conclusion, based on three different models, we found that a linear additive com-

bination of 3 biomarkers, namely Ang-2, Ang-1 and HCO3 provides a robust prediction
of sepsis severity in patients admitted to the PICU. Additional independent studies are
needed to confirm or refute the clinical utility of our biomarker combination for sepsis
severity prediction. The collection of data sets with larger sample sizes would also be very
useful for validating our statistical study.

Methods

Data Preprocessing

Our dataset (input), a n× p real-valued matrix x, contains n = 45 attributes and p = 19
biomarkers. Since the range of values of the biomarkers varies widely, it should be normal-
ized so that each biomarker contributes approximately proportionately. We normalized x
to have zero mean and unit standard deviation for each biomarker [32]:

xnorm =
x− x
σ(x)

, (2)

where xnorm is a n× p matrix, x and σ(x) are the mean value and standard deviation of x
for each biomarker. We also assigned each attribute i = 1, . . . , n, a sepsis severity score,
yi. yi = 0 is given to each in the PICU/sepsis group and yi = 1 for the PICU severe sepsis
group.

Canonical Correlation Analysis

CCA finds linear combinations of variables between two sets of data, x and y in our study,
which have maximum correlation with each other [16, 17]. Here we selected the optimal
subset of biomarkers x that has the maximum correlation with y for k = 1, . . . , p, by
calculating the correlations between all possible k-combinations of x and y. The results
are displayed in Table 1.

Linear Support Vector Machines

In machine learning, a linear support vector machine (SVM) is a learning model used for
classfication and regression analysis [33]. A SVM model separates two categories by a
hyper-plane that has maximum margin for a given training dataset. New attributes are
predicted to belong to a category based on which side of the hyper-plane they fall on.
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The search of this hyper-plane can be translated into the following optimization problem:

Minimize ‖w‖1 + C+

∑
i:yi=+1

ξi + C−
∑

j:yj=−1

ξj

subject to

wTxi + b+ ξi ≥ 1, yi = +1,

wTxj + b− ξj ≤ −1, yj = −1, and

ξ ≥ 0,

(3)

where ‖w‖1 =
∑

i |wi| is the 1-norm of a vector, which induces the sparsity in the weight
vector w [24].

Ensemble Method

Due to the limited size and noise of our data, we follow the training procedure in Ref. [21].
A random one-third of the data is selected as test set, T . The remaining data is used as
training set, L. Bagging is used to construct the classifiers ensemble. Each new training
set, Li, is drawn, with replacement, from the original training set, L. Then a classifier,
SVM or tree, is constructed on this new training set, Li. In this study, we construct
a classifiers ensemble 50 times, i ∈ {1, . . . , 50}. The final classification is obtained by
calculating the mean of the ensemble of 50 classifiers. This procedure is repeated 100
times and statistical measures on T are averaged.

Calculation of Statistical Measures

TPR, TNR, NPV, and PPV are statistical measures of the predictive performance of a
binary classification test.

TPR (or sensitivity) measures the proportion of actual positives that are correctly
identified.

TNR (or specificity) measures the proportion of actual negatives that are correctly
identified.

PPV (or precision) measures the proportion of positives that are true positive.
NPV measures the proportion of negatives that are true negatives.
These statistical measures are calculated for each one of the 100 random divisions of

test sets T by the classifier built on the bootstrap aggregation method. Their mean and
standard error are calculated from the groups obtained from the 100 random divisions.
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25. Mladenić D, Brank J, Grobelnik M, Milic-Frayling N (2004) Feature selection using
linear classifier weights: interaction with classification models. In: Proceedings of
the 27th annual international ACM SIGIR conference on Research and development
in information retrieval. ACM, pp. 234–241.



13

26. van der Heijden M, Pickkers P, van Nieuw Amerongen GP, van Hinsbergh VW,
Bouw MP, et al. (2009) Circulating angiopoietin-2 levels in the course of septic
shock: relation with fluid balance, pulmonary dysfunction and mortality. Intensive
care medicine 35: 1567–1574.

27. David S, Mukherjee A, Ghosh CC, Yano M, Khankin EV, et al. (2012) Angiopoietin-
2 may contribute to multi-organ dysfunction and death in sepsis. Critical care
medicine 40: 3034.

28. Breiman L (2001) Random forests. Machine learning 45: 5–32.

29. Breiman L, Friedman J, Stone CJ, Olshen RA (1984) Classification and regression
trees. CRC press.

30. Pang H, Lin A, Holford M, Enerson BE, Lu B, et al. (2006) Pathway analysis using
random forests classification and regression. Bioinformatics 22: 2028–2036.

31. Breiman L (2002) Manual on setting up, using, and understanding random forests
v3. 1. Retrieved October 23: 2010.

32. Morik K, Brockhausen P, Joachims T (1999) Combining statistical learning with a
knowledge-based approach-a case study in intensive care monitoring. In: Machine
Learning-International Workshop Then Conference. Morgan Kaufmann Publishers,
Inc., pp. 268–277.

33. Vapnik V (2000) The nature of statistical learning theory. springer.

Figure Legends



14

Ag
e

Wg
t

PIM
-2

WB
C

Hg
b Hc
t Plt Na K Cl

HC
O3 BU

N Cr
An

g-1
An

g-2
An

g-2
/An

g-1
VE

GF
g-N

ois
e

u-N
ois

eA g eW g tP I M - 2W B CH g bH c tP l tN aK
C lH C O 3B U NC rA n g - 1A n g - 2A n g - 2 / A n g - 1V E G Fg - N o i s eu - N o i s e

( A )

0 . 0 0

0 . 2 5

0 . 5 0

0 . 7 5

1 . 0 0

Ag
e

Wg
t

PIM
-2

WB
C

Hg
b Hc
t Plt Na K Cl

HC
O3 BU

N Cr
An

g-1
An

g-2
An

g-2
/An

g-1
VE

GF
g-N

ois
e

u-N
ois

eA g eW g tP I M - 2W B CH g bH c tP l tN aK
C lH C O 3B U NC rA n g - 1A n g - 2A n g - 2 / A n g - 1V E G Fg - N o i s eu - N o i s e 0 . 0 0

0 . 2 5

0 . 5 0

0 . 7 5

1 . 0 0

( B )

Figure 1. Heatmaps of pairwise correlations. Heatmaps of all pairwise
correlations between the 17 variables (plus two noise samples) for patients in the (A)
PICU/sepsis and (B) PICU severe sepsis groups. The color scale from blue to red
indicates increasing correlations between the pair of biomarkers at the corresponding
locations on the horizontal and vertical axes.
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Figure 2. Prediction measures obtained from the Support Vector Machine
(SVM) using the k-combinations selected by Canonical Correlation Analysis
(CCA) and Random Forests (RF) methods. The prediction measures (A) true
positive rate (TPR), (B) true negative rate (TNR), (C) positive predictive value (PPV),
and (D) negative predictive value (NPV) are shown for each step k. For each k, a SVM
ensemble with bagging is constructed based on the CCA- and RF-selected subset of
biomarkers.
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Figure 3. Prediction measures for single and pairs of biomarkers from the
Support Vector Machine (SVM). True positive rate (TPR), true negative rate
(TNR), positive predictive value (PPV), and negative predictive value (NPV) are shown
for (A) each single biomarker and (B) all pairwise combinations of Ang-1, Ang-2, HCO3

and Ang-2/Ang-1. The prediction measures for the CCA-selected optimal subset of
biomarkers at k = 3 (Ang-2, Ang-1, and HCO3 are also shown in (B) for comparison.
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Figure 4. Longitudinal measurements of the sepsis severity score. The sepsis
severity scores (Score) for patients from the PICU/sepsis group and the PICU severe
sepsis during the 7 days of illness. Both the mean and individual severity scores are
plotted.
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Figure 5. Measures of the biomarker importance obtained from the Random
Forests method. Mean Decrease in Accuracy (MDA) are shown for biomarkers in (A)
without Ang-2/Ang-1 and (B) with Ang-2/Ang-1 using the Random Forests method
with 1,000 trees for each.
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Tables

Table 1. Stepwise Biomarker Selection using Canonical Correlation Analysis,
Forward Selection and Random Forests.

Dim Corr Entering Leave Forward Selection Random Forests
1 0.3811 Ang-2 Ang-2 Ang-2/Ang-1
2 0.4772 Ang-1 Ang-1 HCO3
3 0.5501 HCO3 HCO3 Ang-2
4 0.5842 Plt Plt Ang-1
5 0.6079 Age Age Cl
6 0.6183 Cl WBC PIM-2
7 0.6221 BUN, Hct, WBC Cl, HCO3 Hct Age
8 0.6286 VEGF BUN K
9 0.6311 PIM-2 VEGF Hgb
10 0.6359 Cl, HCO3 PIM-2 PIM-2 VEGF
11 0.6395 Cr, Wgt Age g-Noise Wgt
12 0.6409 Hgb, Na, Age Cl, Wgt Cl Na
13 0.6414 Ang-2/Ang-1 Cr g-Noise
14 0.6419 Wgt u-Noise Plt
15 0.6424 PIM-2 Ang-2/Ang-1 WBC
16 0.6427 Cl, u-Noise Na Hgb u-Noise
17 0.6429 K Wgt Cr
18 0.6429 Na, g-Noise K K BUN
19 0.6430 K Na Hct

We apply Canonical Correlation Analysis for all possible k-combinations (k = 1, . . . , 19)
to determine the subset of k biomarkers with the highest correlation with the sepsis
severity score. The ‘Enter’ column indicates the biomarker that is added to achieve the
highest correlation at each k. The ‘Leave’ column indicates the biomarker that is
eliminated from the combination at each k. A biomarker will stay in the combination
until it occurs in ‘Leave’ column. The ‘Forward Selection’ column gives the biomarker
selected by the Forward Selection method when applied one biomarker at a time. The
‘Random Forests’ column gives the biomarker ranked by the mean decrease in accuracy
measured by the Random Forests method.
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Table 2. Prediction measures for single variable from Support Vector
Machine.

Variable TPR TNR PPV NPV
Age 0.666 0.555 0.490 0.728
Wgt 0.496 0.636 0.466 0.671
PIM-2 0.276 0.611 0.407 0.524
WBC 0.298 0.192 0.183 0.255
Hgb 0.249 0.076 0.121 0.195
Hct 0.248 0.104 0.126 0.184
Plt 0.636 0.501 0.451 0.697
Na 0.710 0.105 0.297 0.710
K 0.737 0.112 0.309 0.735
Cl 0.570 0.073 0.236 0.570
HCO3 0.868 0.415 0.480 0.865
BUN 0.343 0.358 0.197 0.411
Cr 0.430 0.065 0.177 0.440
Ang-1 0.477 0.457 0.384 0.566
Ang-2 0.378 0.846 0.625 0.690
Ang-2/Ang-1 0.353 0.881 0.760 0.675
VEGF 0.773 0.370 0.424 0.764
g-Noise 0.481 0.251 0.266 0.496
u-Noise 0.461 0.442 0.340 0.564

True positive rate (TPR), true negative rate (TNR), positive predictive value (PPV),
and negative predictive value (NPV) are shown for each single variable.

Table 3. Parameters for the decision function that includes the
CCA-selected optimal subset of biomarkers at k = 3.

i Biomarker Mean Standard Deviation Weight Standard Error of Weight
xi σi wi (b = 0.313) ei

1 Ang-2 8518.1 13264 1.994 0.065
2 Ang-1 2649.2 4008.9 -1.396 0.050
3 HCO3 27.270 24.361 -1.340 0.072

The values of the weights wi, errors ei, means xi, and standard deviations σi for the
biomarkers in Eq. (1).


