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Bulk metallic glasses (BMGs) are amorphous alloys with desirable mechanical properties and
processing capabilities. To date, the design of new BMGs has largely employed empirical rules
and trial-and-error experimental approaches. Ab initio computational methods are currently pro-
hibitively slow to be practically used in searching the vast space of possible atomic combinations for
bulk glass formers. Here, we perform molecular dynamics simulations of a coarse-grained, anisotropic
potential, which mimics interatomic covalent bonding, to measure the critical cooling rates for metal-
metalloid alloys as a function of the atomic size ratio σS/σL and number fraction xS of the metalloid
species. We show that the regime in the space of σS/σL and xS where well-mixed, optimal glass
formers occur for patchy and LJ particle mixtures coincides with that for experimentally observed
metal-metalloid glass formers. Thus, our simple computational model provides the capability to
perform combinatorial searches to identify novel glass-forming alloys.

I. INTRODUCTION

Bulk metallic glasses (BMGs) are metallic alloys that
form amorphous phases with advantageous material
properties [1] such as enhanced strength and elasticity
compared to conventional alloys [2] and thermal plas-
tic processing capabilities that rival those used for poly-
mers [3]. Despite enormous progress over the past 30
years in the development and fabrication of BMGs, their
commercial use has been limited due the high cost of
some of the constituent elements and thickness con-
straints imposed by required rapid cooling. The search
space for potential new BMGs is vast with roughly
46 transition metal, metalloid, and non-metal elements,
which give rise to roughly 103, 104, and 105 candidate
binary, ternary, and quaternary alloys, respectively.

Bulk metallic glass formers can be divided into two
primary classes: metal-metal (i.e. transition metal-
transition metal) and metal-metalloid (i.e. transition
metal-metalloid) systems. The structural and mechan-
ical properties [4–6] and glass-forming ability (GFA) [7]
of metal-metal systems are much better understood than
for metal-metalloid systems. Dense atomic packing is
the key physical mechanism that determines the glass
forming ability in metal-metal systems [3–6, 8], and thus
these systems have been accurately modeled using coarse-
grained, isotropic hard-sphere and Lennard-Jones inter-
action potentials [9, 10]. In contrast, since metalloid
atoms form pronounced covalent interatomic bonds [11],
the atomic structure that influences glass formation is
not simply described by packing efficiency of spherical
atoms [12]. Faithfully describing covalent bonding in
simulations is challenging. Ab-initio simulations can de-
scribe covalent bonding accurately [13], but ab-initio sim-

ulations beyond tens of atoms in amorphous structures
are not currently possible. Another possibility is sim-
ulations of embedded atom models that include pair-
wise interactions and energetic contributions from elec-
tron charge densities [11, 14]. We take a simpler, geomet-
ric computational approach, where we model the covalent
characteristics of metalloid atoms by arranging attractive
patches on the surface of spherical particles to consider
the directionality in covalently bonded structures. This
patchy particle model has also been employed to study liq-
uid stability [15], formation of quasicrystals [16], protein
crystallization [17], and colloidal self-assembly [18, 19].

Here, we perform molecular dynamics (MD) simula-
tions of the patchy particle model with z = 4, 6, 8, and
12 patches per particle that yield diamond, simple cu-
bic, body-centered cubic (BCC), and face-centered cu-
bic (FCC) lattices in the crystalline state. We thermally
quench equilibrated liquids to low temperature over a
range of cooling rates and measure the critical cooling
rate Rc for each system. We show that the maximum
GFA (minimal Rc) for patchy and LJ particle mixtures
as a function of the atomic size ratio σS/σL and number
fraction of the metalloid component xS coincides with
the region where metal-metalloid glass-formers are ob-
served in experiments [20, 21]. We also use the patchy
particle model to investigate the GFA in systems that
form intermetallic compounds [22] since they typically
do not possess characteristic of systems with isotropic
interaction potentials. .
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II. METHODS

We performed molecular dynamics simulations [23] in a
cubic box with volume V of N spherical particles of mass
m decorated with z circular disks or ‘patches’ arranged on
the sphere surface with a particular symmetry. Aligned
patches experience Lennard-Jones (LJ) attractive inter-
actions, whereas the particles interact via short-range re-
pulsions when patches are not aligned. The patchy par-
ticles are bidisperse with diameter ratio σS/σL < 1 and
number fraction of small particles xS .

The interaction potential between patchy particles i
and j includes an isotropic short-range repulsive inter-
action and an anisotropic attractive interaction between
patches [24]:

u(rij , ~siα, ~sjβ) = uR(rij) + uA(rij)v(ψiα, ψjβ), (1)

where rij is the separation between particles i and j,
uR(rij) is the Weeks-Chandler-Andersen (WCA) purely
repulsive potential [25], uA(rij) is the attractive part
of the Lennard-Jones potential truncated and shifted so
that it is zero at rc = 2.5σij (Fig. 1 (a)), the patch α
on particle i has orientation ~siα = (σi/2)n̂iα with surface
normal n̂iα, and ψiα is the angle between ~rij and ~siα
(Fig. 1 (b)). For the patch-patch interaction, we assume

v(ψiα, ψjβ) = e
− (1−cosψiα)2

δ2
iα e

−
(1−cosψjβ)2

δ2
jβ , (2)

which is maximized when ψiα = ψjβ = 0. δiα gives
the width of the interaction for patch α on particle i.
For each patch α, we only include an interaction with
the patch β that has the largest v(ψiα, ψjβ). In the
large patch size limit, equation (2) becomes isotropic
and the patchy particle model becomes identical to the
full Lennard-Jones potential. In the opposite limit, as
δ → 0, the patchy particle potential reduces to uR(rij).
We considered particles with z = 4, 6, 8, and 12 patches
arranged on the sphere surface with tetrahedral, simple
cubic, body-centered cubic (BCC), and face-centered cu-
bic (FCC) symmetry (inset to Fig. 1 (a)). For the inves-
tigations of AB2 compounds, we also considered systems
with zL = 12 and zS = 6 for the large and small parti-
cles and arrangements that are compatible with the AB2

symmetry [26].
To assess the glass-forming ability of patchy particle

systems, we measured the critical cooling rate Rc below
which crystallization begins to occur. The systems are
cooled using one of two protocols: (1) the temperature
is decreased exponentially in time T (t) = T0e

−Rt at re-
duced density ρ∗ = Nσ3

L/V = 1.0 from T0/εLL = 2.0 in
the liquid regime to Tf/εLL = 0.01 in the glassy state
and (2) both the temperature and pressure p are de-
creased exponentially in time with p(t) = p0e

−Rpt, where
Rp = R, the state point T0/εLL and p0σ

3
LL/εLL = 20

is in the liquid regime, and the state point Tf/εLL and
pfσ

3
LL/εLL = 0.1 is in the glassy regime. Protocol 2 was

implemented for systems with z < 12 to allow the system

FIG. 1: (a) The purely repulsive WCA potential uR(rij) is

zero for rij ≥ rm = 21/6σij and the attractive part uA(rij) of
the Lennard-Jones potential is truncated and shifted so that
it is zero at rc = 2.5σij . Here, the Lennard-Jones energy
parameters are εSS/εLL = εLS/εLL = 1. The inset shows
examples of particles with 4, 6, 8, and 12 patches with tetra-
hedral, simple cubic, BCC, and FCC symmetry, respectively.
Red patches correspond to those on the front surface of the
sphere, while dark yellow patches indicate those on the back
surface. (b) Definitions of quantities in the patchy particle
interaction potential in equations (1) and (2).

to choose a box volume most compatible with the low-
energy crystal structure. The emergence of crystalline
order is signaled by a strong increase of the bond orien-
tational order parametersQ6 andQ4 [27] for cooling rates
R < Rc. We focused on systems with N = 500 particles,
but also studied systems with N = 1372 to assess finite-
size effects [26]. The dynamics were solved by integrating
Newton’s equation of motion for the translation and rota-
tional degrees of freedom using Gear predictor-corrector
methods with time step ∆t = 10−3σLL

√
m/εLL [28].

III. RESULTS

In previous work [10], we showed that the slowest crit-
ical cooling rates for binary hard sphere systems occur
in the range 0.8 & σS/σL & 0.73 and 0.8 & xS & 0.5,
which coincides with the parameters for experimentally
observed metal-metal binary BMGs, such as NiNb, CuZr,
CuHf, and CaAl [29–31]. Similar results hold for dense
binary Lennard-Jones glasses with isotropic interatomic
potentials [9]. In contrast, the metal-metalloid glass for-
mers AuSi, PdSi, PtSi, and FeB occur at smaller σS/σL
and xS [32]. We present results from MD simulations
that quanitfy the glass-forming ability of patchy parti-
cles as a function of the number of patches, their size,
and placement on the sphere surface to model the GFA
of metal-metalloid binary glass formers. (See the Meth-
ods section.)

We first consider monodisperse systems with z = 12
patches per particle and FCC symmetry and measure the
average bond orientational order parameter 〈Q6〉 versus
cooling rate R (using protocol 1 in the Methods section)
for several patch sizes δ. For each δ, 〈Q6〉(R) is sigmoidal
with a midpoint that defines the critical cooling rate Rc.
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FIG. 2: The bond orientational order parameter 〈Q6〉 versus
cooling rate R for monodisperse patchy particles with z = 12
cooled at fixed reduced density ρ∗ = 1 for several patch sizes δ.
〈Q6〉 was averaged over 96 separate trajectories with different
initial conditions. For each δ, 〈Q6〉(R) was fit to a logistic
function, whose midpoint gives the critical cooling rate Rc.
The inset shows Rc versus δ. The dashed horizontal lines
give Rc as the patchy particle potential approaches either the
LJ (δ →∞) or WCA (δ → 0) limiting forms.

As R decreases toward Rc, systems with z = 12 form
ordered Barlow packings [33] and 〈Q6〉 begins to increase
as shown in Fig. 2. In the δ → 0 limit, Rc converges
to that for the Weeks-Chandler-Andersen (WCA) purely
repulsive potential [25]. As the patch size increases, the
12 attractive patches promote the formation of FCC nu-
clei and Rc increases. For δ & 0.05 when patches begin
to overlap, Rc begins to decrease because nucleation and
growth of FCC clusters is frustrated by the concomitant
formation of BCC and other types of nuclei. For suffi-
ciently large δ, Rc converges to that for Lennard-Jones
(LJ) systems. This nonmonotonic behavior for Rc versus
δ occurs for other z as well.

We now investigate the glass-forming ability at fixed
patch size δ = 0.1 as a function of the number and place-
ment of the patches for z = 4, 6, 8, and 12, which al-
lows us to tune the crystalline phase that competes with
glass formation. The GFA for z = 12 and 8 is simi-
lar. As shown in Fig. 3 (a), 〈Q6〉 begins to increase for
R < Rc ≈ 0.04 with the formation of FCC and BCC
clusters for z = 12 and 8, respectively. 〈Q4〉 displays a
much more modest change over the same range of R. For
z = 4, the glass competes with the formation of two in-
terpenetrating diamond lattices [34] (Fig. 3 (b) and (c)),
which can be detected using either 〈Q6〉 or 〈Q4〉. For
z = 6, the simple cubic (SC) phase first forms as R de-
creases (indicated by a strong increase in 〈Q4〉), but as R
continues to decrease BCC coexists with SC order (Fig. 3
(c)), which causes 〈Q4〉 to decrease and 〈Q6〉 to increase.
In addition, we find that systems for which the competing
crystals are more open possess lower Rc.

To model metal-metalloid glass formers, we study

binary mixtures of isotropic LJ particles (large metal
species) and z = 4 patchy particles (small metalloid
species). We chose patchy particles with tetragonal sym-
metry to represent silicon atoms since they often interact
with other atoms with four valence electrons in sp3 hy-
bridization orbitals. In Fig. 4 (a), we show a contour
plot of the critical cooling rate Rc (obtained by measur-
ing 〈Q6〉(R)) as a function of σS/σL and xS . We find two
regions along the lines xS ∼ 0.2 and 0.8 with small values
for Rc as determined by global measures of 〈Q6〉. How-
ever, it is also important to determine whether the patchy
and LJ particles are uniformly mixed at the patchy par-
ticle number fractions xS ∼ 0.2 and 0.8.

In Fig. 4 (b), we characterize the solubility of the
patchy particles within the matrix of LJ particles in
glassy states created by rapid cooling to Tf using proto-
col 2 in the Methods section. To quantify the solubility,
for each configuration, we first determine the largest con-
nected cluster of Nc patchy particles that share faces of
Voronoi polyhedra. We then calculate the radius Rc of
the sphere that Nc patchy particles would assume when
confined to a sphere of volume 4πR3

c/3 = Nc/ρS at den-
sity ρS = NS/VS , where VS = V xSσ

3
S/(xLσ

3
L + xSσ

3
S)

and V is the volume of the cubic simulation cell. We
define the patchy particle solubility fS = Nsc/NS for
each configuration, where Nsc is the maximum number
of patchy particles that can be enclosed by a sphere of
radius Rc among all possible locations centered at each of
the Nc patchy particles. Small values of fS indicate that
patchy particles are more likely to be neighbors with LJ
particles, not other patchy particles, while fS ∼ 1 indi-
cates all patchy particles are in a spherical aggregate [26].

Although the global bond orientational order parame-
ter 〈Q6〉 indicates good glass-forming ability for LJ and
patchy particle mixtures at both small (xS ∼ 0.2) and
large (xS ∼ 0.8) fraction of patchy particles, we find that
strong demixing of the patchy and LJ particles occurs
for xS ∼ 0.8. Thus, when taken together, Fig. 4 (a)
and (b) show that there is only one region in the σS/σL
and xS plane where well-mixed, good glass-formers oc-
cur: 0.2 . xS . 0.4 and 0.5 . σS/σL . 0.75. This re-
gion in the σS/σL and xS plane coincides with the region
where binary metal-metalloid glass alloys (e.g. AuSi,
PdSi, PtSi, and FeB) are observed. We also find simi-
lar simulation results for mixtures of tri-valent (z = 3)
patchy and LJ particles, which mimic FeB glass-formers.
In addition, the fact that ternary metal-metal-metalloid
glass formers (CoMnB, FeNiB, FeZrB, and NiPdP), for
which the metal components have similar atomic sizes,
also possess metalloid number fractions xS ∼ 0.2 sup-
ports our results [21].

It is also difficult to capture the formation of inter-
metallic compounds that possess particular atomic sto-
ichiometries in each local environment using isotropic
hard-sphere or Lennard-Jones potentials. We show that
crystallization of intermetallic compounds can be studied
efficiently using binary mixtures of patchy particles. We
focus on two model intermetallic compounds: (1) an AB
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FIG. 3: (a) Average bond orientational order parameters 〈Q6〉
(open symbols) and 〈Q4〉 (filled symbols) versus cooling rate
R for monodisperse patchy particles with z = 4 (squares), 6
(circles), 8 (upward triangles), and 12 (downward triangles)
and patch size δ = 0.1. (b) and (c) Ordered configurations of
patchy particles in bond representation with particles colored
blue and patches white: (b) interpenetrating diamond lattices
for z = 4 and (c) coexistence of simple cubic and BCC lattices
for z = 6.

compound with BCC symmetry and (2) an AB2 com-
pound composed of hexagonal layers. We model the AB
compound using a binary mixture of zS = zL = 8 patchy
particles with diameter ratio σS/σL = 0.8 (Fig. 5 (b)).
For the AB2 compound, we consider a binary mixture of
zL = 12 and zS = 6 patchy particles with σS/σL = 0.5
(Fig. 5 (c)). To encourage compound formation, we only
include attractive interactions between patches on dif-
ferent particle species (with δ = 0.1) and repulsive LJ
interactions between particles of the same type. We find
that the critical cooling rate Rc has a local maximum
(and glass-forming ability has a minimum) at the num-
ber fraction expected for compound formation (xS = 0.5
for AB and xS = 2/3 for AB2) (Fig. 5 (a)). For both
AB and AB2, xS ∼ 0.2 has the smallest critical cool-
ing rate. These results emphasize that searches for good
glass-formers should avoid xS and σS/σL combinations
that yield intermetallic compound formation, which can
be both stable or metastable.
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FIG. 4: (a) Contour plot of the critical cooling rate Rc versus
size ratio σS/σL and small particle number fraction xS for a
binary system composed of isotropic (large) LJ particles and
(small) patchy particles with z = 4 and δ = 0.1. Contours are
interpolated using roughly 20 MD simulations (downward tri-
angles) spread over parameter space. Known metal-metal and
metal-metalloid binary glass-formers are indicated by circles
and squares, respectively. (b) Measure of the solubility (fS)
of patchy particles within the patchy and LJ particle mix-
tures. Number fraction fS of patchy particles that occur in
the largest connected cluster of patchy particles from glassy
configurations generated at fast cooling rates (R = 0.1).

IV. CONCLUSION

We performed molecular dynamics simulations to mea-
sure the critical cooling rate Rc and assess the glass-
forming ability (GFA) of patchy and LJ particle mix-
tures. We found several key results. First, we identified
nonmonotonic behavior in Rc as a function of the patch
size δ, indicating a competition between sphere reorienta-
tion and dense sphere packing in determining GFA in the
patchy particle model. Second, we tuned the number of
patches per particle z and their placement on the sphere
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FIG. 5: (a) Critical cooling rate Rc versus xS for model AB
(squares) and AB2 (circles) intermetallic compounds. (b) and
(c) Intermetallic compounds formed at cooling rate (protocol
2) R = 10−3 < Rc. The solid lines, which interpolate between
the data points using polynomials, are meant as guides to the
eye. (b) AB compound with zL = zS = 8 (patches are shown
as small white and red bumps), BCC symmetry, and σS/σL =
0.8. (c) AB2 compound with zL = 12 and zS = 6 (patches
not shown), stacked hexagonal planes, and σS/σL = 0.5.

surface to vary the symmetry of the crystalline phase that
competes with glass formation. We found that systems
with more open lattice structures possess lower critical

cooling rates. Third, we showed that the region of σS/σL
and xS parameter space where well-mixed, optimal glass-
forming LJ and patchy particle mixtures occur coincides
with the region where metal-metalloid glass-formers are
experimentally observed. In particular, the number frac-
tion of the metalloid species is small xS ∼ 0.2. The
patchy particle model can also be employed to mimic the
formation of intermetallic compounds, and our results
emphasize that searches for good glass-formers should
focus on stoichiometries that do not favor compound for-
mation.

The search for new BMGs has largely been performed
using empirical rules [35, 36] and trial-and-error experi-
mental techniques [37]. Thus, only a small fraction of the
search space of atomic species has been explored with
fewer than 100 observed BMGs to date [38]. Our sim-
ple computational model for metal and metalloid atomic
species provides the capability to perform more efficient
and exhaustive combinatorial searches to identify novel
ternary, quaternary, and multi-component glass-forming
alloys. The smaller set of alloys that are predicted from
simulations to possess slow critical cooling rates can then
be tested experimentally using combinatorial sputter-
ing [39] and other high-throughput BMG characteriza-
tion techniques [40].
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