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Calibrated Langevin-dynamics simulations of intrinsically disordered proteins
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We perform extensive coarse-grained (CG) Langevin dynamics simulations of intrinsically disordered proteins
(IDPs), which possess fluctuating conformational statistics between that for excluded volume random walks and
collapsed globules. Our CG model includes repulsive steric, attractive hydrophobic, and electrostatic interactions
between residues and is calibrated to a large collection of single-molecule fluorescence resonance energy
transfer data on the interresidue separations for 36 pairs of residues in five IDPs: α-, β-, and γ -synuclein,
the microtubule-associated protein τ , and prothymosin α. We find that our CG model is able to recapitulate
the average interresidue separations regardless of the choice of the hydrophobicity scale, which shows that
our calibrated model can robustly capture the conformational dynamics of IDPs. We then employ our model
to study the scaling of the radius of gyration with chemical distance in 11 known IDPs. We identify a strong
correlation between the distance to the dividing line between folded proteins and IDPs in the mean charge
and hydrophobicity space and the scaling exponent of the radius of gyration with chemical distance along the
protein.
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I. INTRODUCTION

Intrinsically disordered proteins (IDPs) do not possess
well-defined three-dimensional structures as globular proteins
do. Instead, they display highly fluctuating conformational
dynamics with little or no persistent secondary structure
in physiological conditions [1]. IDPs are more expanded
than collapsed globules, but more compact than self-avoiding
random coils [2]. Because IDPs are structurally disordered
and sample many different conformations, they can interact
and bind to a wide variety of targets and participate in many
important cellular processes [3]. A number of studies have
also shown that IDPs can aggregate to form oligomers and
fibrils that are rich in β-sheet secondary structure and linked
to the development of amyloid diseases such as Parkinson’s
and Alzheimer’s disease [4,5].

There has been a significant research effort aimed at
experimentally measuring and modeling the conformational
dynamics of single IDPs. Although x-ray crystallography has
provided the positions of each atom (accurate in many cases
to <1 Å) in thousands of folded proteins, static representations
of the atomic positions in IDPs cannot be obtained from
x-ray crystallography, and such representations are not even
meaningful for IDPs [6]. Alternatively, many groups have
employed single-molecule fluorescence resonance energy
transfer (smFRET) to obtain the separation distributions
between specific pairs of residues for IDPs in solution. In
brief, smFRET involves exciting a donor fluorophore with a
laser, which then selectively excites an acceptor fluorophore
depending on the distance between the two labeled residues.
The donor or acceptor excitation then decays, emitting a
photon. The donor and acceptor emit two different wavelengths
of light, and the ratio of the amplitudes of light emitted at the
two wavelengths, or FRET efficiency (Feff), is a function of

the distance between the two residues (rij ):

Feff =
〈

1

1 + ( rij

R0

)6

〉
, (1)

where R0 = 54 Å is the Förster distance for the donor-acceptor
pair (Alexa Fluor 488–Alexa Fluor 594), angle brackets
indicate a time average, and we assume that the finite size of the
fluorophores has a negligible effect on Feff. For folded proteins
and complexes, FRET can be employed as a “spectroscopic
ruler,” providing precise measurements of distances between
residues in a single protein or between macromolecules within
cells [7–9]. In these cases, the overall structure of the protein or
complex remains fixed. In contrast, smFRET for IDPs provides
measurements of the separation between residues in a given
IDP averaged over an ensemble of its many different highly
fluctuating conformations [10]. Thus, FRET data from IDPs
are much more difficult to interpret in comparison to that for
folded proteins. For example, in the case of IDPs, one must
know the distribution of interresidue separations to convert Feff

to an average separation. Computer simulations can be used to
bridge the gap between the FRET data and its interpretation,
while also providing far more detailed structural information
than can be extracted from the FRET data.

To date, smFRET has been performed on tens of IDPs,
but data for the distribution of interresidue separations has
been obtained only for several pairs of residues for each
protein. In addition, small-angle x-ray scattering (SAXS)
[11–16], nuclear magnetic resonance (NMR) [17,18], and
fluorescence correlation spectroscopy (FCS) [19,20] have been
performed on a number of IDPs. These provide more coarse
measurements of the structure of the protein, such as the radius
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of gyration (or hydrodynamic radius), which characterizes the
average size of the protein.

In a recent manuscript [21], we introduced a physical model
to describe the fluctuating conformational dynamics of IDPs.
The motivation for the new computational model for IDPs
stems in part from the fact that commonly used molecular
mechanics force fields, such as Amber [22] and CHARMM
[23], can bias the simulation results toward folded behavior
since they have been calibrated using x-ray crystal structures
of folded proteins [24]. In addition, coarse-grained models,
such as ABSINTH [25], have been employed to study IDPs,
but we are not aware of any that have been calibrated to detailed
structural information such as smFRET data. Our coarse-
grained model is an extension of the model in Ref. [26], which
investigated the chain length dependence of the correlation
between charge and hydropathy for polypeptides.

Our physical model includes repulsive steric interactions,
screened electrostatic interactions between charged residues,
and attractive hydrophobic interactions between Cα atoms.
We employed two representations of IDPs at different spatial
scales. The united-atom (UA) description provides a real-
istic atomic-level representation of protein stereochemistry,
whereas the coarse-grained (CG) description employs one
bead per residue with bond-length, bond-angle, and backbone
dihedral-angle potentials derived from interactions in the UA
description.

For both UA and CG descriptions, the model requires only
one free parameter that gives the ratio of the hydrophobic to
electrostatic energy scales. In our previous work [21], we deter-
mined this ratio by matching Langevin dynamics simulations
of the model to experimental smFRET data for the interresidue
separations for the IDP, α-synuclein. We then showed that
our calibrated Langevin dynamics simulations for α-synuclein
were able to accurately recapitulate SAXS measurements of
the radius of gyration and give conformational statistics that
are intermediate between random walk and collapsed globule
behavior. An advantage of our calibrated Langevin dynamics
simulations over constraint methods is that they do not assume
random walk statistics with artificial constraints imposed on
the interresidue separation distributions [27].

In this manuscript, we present extensive new results on
the CG description of IDPs. We improve the calibration of
the CG model by considering a larger dataset of smFRET
results from experiments that includes five IDPs: α-, β-, and
γ -synuclein (αS, βS, and γ S), the microtubule-associated
protein τ (MAPT), and prothymosin α (ProTα). For this set
of proteins, there is smFRET data on a total of 36 pairs of
residues (αS, 12 [28,29]; βS and γ S, 5 each [30]; MAPT, 12
[27]; and ProTα, 2 [31]), which includes most of the smFRET
data that is currently available for IDPs. In future work, our
CG Langevin dynamics simulations can be employed to study
association, aggregation, and formation of β-strand order in
systems containing multiple IDPs.

IDPs typically possess low mean hydrophobicity and high
mean charge relative to folded proteins, with a dividing line in
charge-hydrophobicity space that separates the two [32,33],
as shown in Fig. 1. The synucleins and MAPT are both
close to the dividing line, whereas ProTα is highly charged
with relatively low hydrophobicity, and is in this sense an
ideal IDP. What physical properties distinguish IDPs that are

FIG. 1. (Color online) Absolute value of the electric charge per
residue Q versus the hydrophobicity per residue H (using the
shifted and normalized Monera hydrophobicity scale) for known
IDPs (small circles) and 221 folded proteins [32] (small open
squares). The IDPs αS (large circle), βS (large square), γ S (upward
triangle), ProTα (diamond), MAPT (star), ATN (pentagon), HMG-17
(hexagon), TOPO-1 (leftward triangle), SPRP (rightward triangle),
and the folded protein lysozyme C (X) are highlighted. The line
Q = 2.785H − 1.151 represents the dividing line between IDPs
(above the line) and natively folded proteins (below the line) given in
Ref. [32].

close versus far from the folded protein and IDP dividing
line? In this study, we perform calibrated Langevin dynamics
simulations of CG descriptions of IDPs to investigate the
effects of hydrophobicity and charge on the conformational
statistics of IDPs. A significant result of our work is that we
find a strong correlation between the distance to the folded
protein and IDP dividing line and the scaling exponent of the
radius of gyration with chemical distance along the protein.

Our manuscript is organized as follows. In Sec. II, we
describe Langevin dynamics simulations of the CG model for
IDPs and discuss important biological and physical aspects
of the IDPs we consider. In Sec. III, we demonstrate that
the calibrated Langevin dynamics accurately recapitulate
the available smFRET and SAXS experimental data and
that the results are robust to variations in how we model
hydrophobicity. We then describe our studies of the scaling
of the radius of gyration with chemical distance for a large
sample of known IDPs. Finally, in Sec. IV, we discuss the
implications of our results on future research of IDPs.

II. METHODS

This manuscript focuses on the conformational dynamics of
IDPs, including the synuclein family (αS, βS, and γ S), MAPT,
and ProTα. Table I provides the numbers of each amino acid
type in these five IDPs. In Fig. 2, we show the hydrophobicity
and electric charge averaged over nearby residues as a function
of the residue index (originating at the N-terminus) for each
IDP and the folded protein lysozyme C [35,36].

The synucleins are a family of small proteins commonly
expressed in neuronal tissue [5]. They possess hydrophilic
and negatively charged C-terminal regions [37–39]. MAPT
is a microtubule-associated protein commonly expressed in
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TABLE I. Numbers of each amino acid type in αS, βS, γ S,
MAPT, and ProTα. “+” and “−” denote positively and negatively
charged residues, respectively (Table III). “a” and “r” indicate highly
hydrophobic (εi ∼ 1) and hydrophilic (εi ∼ 0) residues using the
scaled and shifted Monera hydrophobicity scale described in Sec. II.

Amino acid type αS βS γ S MAPT ProTα

ALA 19 18 16 34 11
ARG+ 0 2 2 14 2
ASN 3 1 4 11 6
ASP-r 6 3 3 29 19
CYS 0 0 0 2 0
GLN 6 6 6 19 2
GLU- 18 25 20 27 34
GLY 18 13 10 49 9
HIS+ 1 1 0 12 0
ILEa 2 2 2 15 1
LEUa 4 7 1 21 1
LYS+ 15 11 15 44 8
MET 4 4 2 6 1
PHEa 2 3 2 3 0
PROr 5 8 2 43 1
SER 4 6 10 45 4
THR 10 7 10 35 6
TRPa 0 0 0 0 0
TYR 4 4 1 5 0
VAL 19 13 21 27 5
Total 140 134 127 441 110

FIG. 2. (Color online) (a) Electric charge Qi (in units of the
electron charge qe) and (b) hydrophobicity εi as a function of the
residue index i originating from the N-terminus for the IDPs αS
(thick, solid red line), βS (thick, dashed blue line), γ S (thick, dotted
green line), MAPT (thin, solid purple line), ProTα (thin, dashed
orange line), and the folded protein lysozyme C (thin, dotted black
line). We quote the normalized and shifted Monera hydrophobicity
scale [34], where 0 is the least and 1 is the most hydrophobic
[see Eq. (8)]. Data for each i is averaged over 31 nearby residues,
with data at the endpoints reflected beyond the endpoints to reduce
edge effects. This averaging is employed to visualize the general
differences between biologically important regions of the proteins.
Note that the curves for Qi and εi are not strongly sensitive to the
averaging length.

neurons [40]. We study isoform F of MAPT with Np = 441
residues [41]. The N-terminus is negatively charged, while
the remainder is nearly neutral, and most of the protein is
slightly hydrophilic. ProTα, with Np = 110 residues, is both
highly charged and hydrophilic [42,43]. Note that the net
hydrophobicity is larger and the net charge is much smaller
for the folded protein lysozyme C compared to the IDPs.

A. Coarse-grained model

We model IDPs using a coarse-grained description [44]
of the backbone of a protein chain, where each residue i is
represented by a spherical bead with diameter σ , mass Mi ,
hydrophobicity εi , and charge Qi . The bond lengths and bond
angles are constrained using linear spring potentials:

V bl = k�

2

∑
〈ij〉

(rij − �)2 (2)

V ba = kθ

2

∑
〈ijk〉

(θijk − θ0)2, (3)

where 〈ij 〉 (〈ijk〉) indicates a sum over distinct pairs (triples)
of adjacent beads, rij is the separation between the centers
of beads i and j , and θijk is the angle between the bonded
residues i, j , and k. The average bond length 〈rij 〉 = �, bond
angle 〈θijk〉 = θ0, and the spring constants kl and kθ in Eqs. (2)
and (3) are obtained by calculating the average and standard
deviation of rij and θijk from Langevin dynamics of the
UA model for the five IDPs we considered with hard-sphere
atomic interactions and stereochemical constraints obtained
from the Dunbrack database of high-resolution protein crystal
structures [45]. We found � = 3.9 Å, (k�/kbT )−

1
2 = 0.046 Å,

θ0 = 2.12 radians, and (kθ/kbT )−
1
2 = 0.26 radians for simu-

lations of αS, where T is the temperature. Similar results are
found for the other four IDPs.

We show the probability distribution P UA(φijkl) of back-
bone dihedral angles (defined for four consecutive Cα atoms)
from Langevin dynamics simulations of the UA model for
αS with hard-sphere atomic interactions and stereochemical
constraints on the bond lengths and angles in Fig. 3. (Similar
results are found for the other four IDPs.) The distribution
possesses a large broad peak at φijkl = ±180◦ and a plateau
in the range 0◦ < φijkl < 120◦. The broad peak and plateau
region in P UA(φijkl) arise from the β-sheet and α-helix
backbone conformations, respectively. We assume that a
fourth-order Fourier series can describe an effective backbone
dihedral angle potential,

V da =
∑
〈ijkl〉

4∑
s=1

As cos(sφijkl) + Bs sin(sφijkl), (4)

that governs P CG(φijkl) for the CG model. In Eq. (4), 〈ijkl〉
indicates all distinct combinations of four bonded residues (i,
j , k, and l) along the chain, and the coefficients As and Bs are
obtained by inverting the probability distribution P UA(φijkl) =
P CG(φijkl). V da = −kbT 〈ln P CG(φijkl)〉 with the coefficients
As and Bs given in Table II.

As in our previous studies [21], we employed a purely
repulsive Weeks-Chandler-Andersen (WCA) potential, the
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FIG. 3. (Color online) The backbone dihedral angle distribution
P UA(φijkl) obtained from the UA description of αS (light green solid
line) with only hard-sphere atomic interactions plus stereochemical
constraints obtained from the Dunbrack database of high-resolution
protein crystal structures. We fit P UA(φijkl) for the UA model using
four coefficients (Table II) in the Fourier series in Eq. (4) (blue dotted
line). We show that P CG(φijkl) from Langevin dynamics simulations
of the CG model for αS with only bond-length, bond-angle, and
dihedral angle interactions in Eqs. (2), (3), and (4) (thick solid red
line) matches that from the hard-sphere UA model for α-synuclein.
P (φijkl) from stretches of α helices (orange horizontal lines) and
β sheets (purple vertical lines) that are longer than 10 residues in
the Dunbrack database of high-resolution protein crystal structures
are also shown for comparison. For ease of visual comparison, the
dihedral angle distributions from α-helical and β-sheet structures
were not normalized.

attractive part of the Lennard-Jones potential, and screened
Coulomb potential to model the steric, hydrophobic, and
electrostatic interactions, respectively:

V r = εr

∑
ij

{
4

[(
σ

rij

)12

−
(

σ

rij

)6
]

+ 1

}

×�(2
1
6 σ − rij ) (5)

V a = εa

∑
ij

(
εij

{
4

[(
σ

rij

)12

−
(

σ

rij

)6]
+ 1

}

×�(rij − 2
1
6 σ ) − εij

)
(6)

TABLE II. The four Fourier coefficients of the backbone dihedral
angle potential V da in Eq. (4) that are employed to recapitulate
the probability distribution P UA(φijkl) of backbone dihedral angles
(defined by four consecutive Cα atoms) from UA simulations of αS.

s As Bs

1 0.705 −0.175
2 −0.313 −0.093
3 −0.079 0.030
4 0.041 0.030

TABLE III. Electric charge Qi (in units of the electron charge qe)
for the charged residues LYS, ARG, HIS, ASP, and GLU [46].

Residue Residue charge Qi

LYS 1
ARG 1
HIS 0.1
ASP −1
GLU −1

V es = εes

∑
ij

QiQj

q2
e

σ

rij

e− rij

λ , (7)

where �(x) is the Heaviside step function, σ = 4.8 Å is the
average distance between the centers of mass of neighboring
residues, and Qi is the electric charge associated with each
of the charged residues LYS, ARG, HIS, ASP, and GLU
(Table III). The WCA potential V r is zero for rij > 21/6σ ,
the hydrophobicity potential V a includes a −1/r6

ij attractive
tail, and the screened Coulomb potential V es is negligible
beyond the screening length λ. The mixing rule εij for the
(shifted and normalized) hydrophobicity index 0 � εi � 1 for
each residue i will be discussed in Sec. II. εes = εes/kbT

is a parameter that controls the strength of the electrostatic
interactions. Typical experimental solution conditions with
150 mM salt concentration, pH = 7.4, and temperature T =
293 K, yield λ = 9 Å and εes = κes = q2

e /(4πε0DσkbT ) ≈
1.485, where D = 80 is the permittivity of water. For most
of the simulations, we set the energy scale for the repulsive
interactions εr/kbT = 1 and calibrate the ratio of strength
of the hydrophobic interactions to that of the electrostatic
interactions αCG = εa/κes to match the smFRET data.

B. Hydrophobicity models

We model hydrophobic interactions between residues using
the attractive part of the Lennard-Jones potential [Eq. (6)]. In
this section, we describe the possible choices for assigning the
hydrophobicity index εi to each residue and mixing rule εij for
pairwise hydrophobic interactions between residues i and j .

There are many different hydrophobicity scales for as-
signing the hydrophobicity for whole residues [53], and
each scale has its own mean, maximum, and minimum. To
enable comparison between different hydrophobicity scales,
we shifted and normalized the original values ε̃i to obtain

εi = ε̃i − mini( ε̃i)

maxi( ε̃i) − mini( ε̃i)
, (8)

with 0 � εi � 1 as shown in Fig. 4.
Below, we investigate the sensitivity of the simula-

tion results to three choices for the hydrophobicity scales:
(1) the shifted and normalized Kyte-Doolittle [47] scale,
(2) the shifted and normalized Monera [34] scale, and
(3) an average of seven commonly used hydrophobicity
scales [Kyte-Doolittle, Monera, augmented Wimley-White
[48,49], Eisenberg [50], Miyazawa [51], Sharp [52], and
Sharp (corrected for solvent-solute size differences [52])]. The
“average” scale is obtained by averaging the seven shifted and
normalized scales and then shifting and normalizing the result.
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FIG. 4. (Color online) Seven commonly used hydrophobicity
scales (Kyte-Doolittle [47], Monera [34], augmented Wimley-White
[48,49], Eisenberg [50], Miyazawa [51], Sharp, and Sharp with
solvent-solute size difference corrections [52]) for each amino acid
type that have been shifted and normalized so that 0 � εi � 1. The
“average” value for each residue indicates the shifted and normalized
average over the seven shifted and normalized hydrophobicity scales.
The residues are ordered according to their average εi .

We also consider the sensitivity of the simulation results
to three pairwise mixing rules for the shifted and normalized
hydrophobicities εi and εj : (1) arithmetic mean: εij = (εi +
εj )/2, (2) geometric mean: εij = √

εiεj , and (3) maximum:
εij = max(εi,εj ). Below, we will show results (Sec. III) for
Langevin dynamics simulations of the five IDPs (αS, βS,
and γ S, MAPT, ProTα) using nine different models for the
pairwise hydrophobic interactions between residues (three
hydrophobicity scales, each with three mixing rules).

C. Langevin dynamics simulations

We performed coarse-grained Langevin dynamics simu-
lations of single IDPs at fixed temperature T = 293 K with
bond-length, bond-angle, dihedral-angle, steric, hydropho-
bic, and screened Coulomb interactions [Eqs. (2)–(7)]. We
employed free boundary conditions, a modified velocity-
Verlet integration scheme with a Langevin thermostat [54],

damping coefficient γ = 0.001
√

kBT

m0�
2
0

≈ 16 ns−1, and fixed

time step �t = 0.03
√

m0�
2
0

kBT
≈ 1.9 fs, where m0 = 1 Da and

�0 = 1 Å. We chose the time step �t so that the relative
energy fluctuations in the absence of the thermostat satisfy√

〈E2〉−〈E〉2

〈E〉 < 10−4 and the damping parameter so that 1/γ is
much smaller than total run time ttot = 0.5 μs. The chains were
initialized in a zigzag conformation with random velocities at
temperature T and then equilibrated for 104tR , where tR is the
time for the normalized Rg autocorrelation function to decay
to 1/e. After equilibration, production runs were conducted to
measure the interresidue separations and radius of gyration for
each IDP.

FIG. 5. (Color online) FRET efficiencies Feff for αS (upper left),
ProTα (upper right), βS (lower left), and γ S (lower right) from ex-
perimental measurements (black circles) and CG Langevin dynamics
simulations. We include data for three choices for the strength of the
hydrophobic and electrostatic interactions εa and εes for each IDP:
(1) εa = 0 and εes = κes such that the chains behave as extended coils
(blue diamonds), (2) the optimal αCG for each protein with εes = κes,
where the root-mean-square deviations between the experimental and
simulation Feff are minimized (red squares), and (3) the optimal αCG

for each protein with no electrostatic interactions εes = 0 (purple
triangles). The error bars for Feff from the simulations give the error
in the mean. Error bars that are not visible are smaller than the
symbols.

III. RESULTS

A. smFRET efficiencies

In Fig. 5, we show experimental results for the smFRET
efficiencies (Feff) for 12 interresidue separations for αS
[28,29], 5 for βS and γ S [30], 2 for ProTα [31], and 12 for
MAPT [27]. Large Feff indicate small average interresidue
separations and vice versa [Eq. (1)]. We directly measure
Feff for each IDP in our simulations and compare it to the
experimental values. For most simulations, we varied the ratio
of the hydrophobic to the electrostatic interactions αCG (i.e.,
change εa at fixed εes = κes) to minimize the root-mean-square
deviation in Feff between the simulations and experiments:

� =
√√√√ 1

Nrp

Nrp∑
i=1

[
F

exp
eff (i) − F sim

eff (i)
]2

, (9)

where F
exp
eff (i) is the FRET efficiency for residue pair i from

experiments and Nrp is the number of residue pairs. For
the simulations described in this section, we employ the
shifted and normalized Monera hydrophobicity scale with the
geometric mean as the mixing rule.

For αS, the experimental values for Feff for the 12 residue
pairs vary from ≈0.90 to 0.40 as shown in Fig. 5. From
the CG Langevin dynamics simulations of αS, we find that
αCG ≈ 0.48 ± 0.03 minimizes the root-mean-square deviation
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FIG. 6. (Color online) Root-mean-square deviation � in Feff

between experiments and simulations versus the ratio αCG of the
hydrophobicity and electrostatic interactions for αS (red circles), βS
(blue squares), and γ S (green triangles), MAPT (orange stars), and
ProTα (purple diamonds).

between the simulations and experiments. This optimized
value of αCG yields �min ≈ 0.06 ± 0.02 (Fig. 6), which indi-
cates close agreement between simulations and experiments.
(The error bar for αCG was obtained by determining the change
in αCG necessary for � to increase beyond the error bars
of �min.) In contrast, when the strength of the hydrophobic
interactions is set to zero (αCG = 0), Feff for the simulations are
significantly below the experimental values for all residue pairs
with � ≈ 0.26. To investigate the relative contributions of the
hydrophobic and electrostatic interactions to Feff, we also per-
formed simulations with εes = 0 and αCG = 0.48. We find that
the quality of the match between simulations and experiments
is comparable for the simulations with (� ≈ 0.06 ± 0.02) and
without (� ≈ 0.08 ± 0.02) electrostatic interactions.

We find that αCG ≈ 0.48 ± 0.03 yields the best match
of the FRET efficiencies from the CG simulations and
experiments for αS. This value of the ratio of the hydrophobic
and electrostatic interactions differs by about a factor of
2.5 from the optimal value (αUA ≈ 1.2) obtained from our
previous UA simulations of αS [21]. This result shows that
the optimal numerical value of α can be sensitive to the
geometrical representation of residues in IDPs, as well as the
hydrophobicity scale implemented in the model.

For βS and γ S, the FRET efficiencies for three of
the five residue pairs (with similar chemical distances) are
approximately equal (Feff ≈ 0.85), while Feff for the other two
pairs drop to 0.6 and 0.2 (Fig. 5). Similar to the results for αS,
the root-mean-square deviation in Feff between simulations
and experiments is minimized when αCG ≈ 0.42 ± 0.07 and
0.46 ± 0.05 for βS (�min ≈ 0.02) and γ S (�min ≈ 0.04),
respectively (Fig. 6). In addition, the CG simulations with
εes = 0 and αCG = 0.42 (0.46) show reasonable agreement
with the experimental Feff for βS (γ S) with � ≈ 0.10 (0.04),
except for residue pair 102–126 for βS. For ProTα (Fig. 5), we
find that � is minimized for αCG ≈ 0.64 ± (0.36). The optimal
αCG for ProTα has larger error bars because �(αCG) is nearly
flat. These error bars encompass the optimal αCG for αS, βS,
and γ S.

The Feff for MAPT is more complex. In Fig. 7, we
show Feff for MAPT for residue pairs ordered from small

FIG. 7. (Color online) FRET efficiencies Feff for MAPT from
smFRET experiments (black solid line with circles) and three CG
simulations: (1) εa = 0 and εes = κes (blue diamonds), (2) the optimal
αCG = 0.52 with εes = κes, where the root-mean-square deviations
between the experimental and simulation Feff are minimized (red
squares), and (3) the optimal αCG = 0.52 with no electrostatic
interactions εes = 0 (purple triangles).

to large chemical distances along the protein chain. Despite
the monotonic increase in chemical distance from left to right,
Feff shows an anomalously large drop for residue pair 103–183
followed by an increase in Feff, even though the chemical
distance continues to increase. This behavior differs from the
dependence of Feff on chemical distance for the synuclein
family and ProTα, where Feff decreases roughly monotonically
with chemical distance with only minor fluctuations. In Fig. 6,
we show that � is minimized at αCG ≈ 0.52 ± 0.02. This
yields �min ≈ 0.09 ± 0.02, which is significantly larger than
that for the other IDPs (0.02, 0.02, 0.04, and 0.06). In particular,
the CG model with the optimal αCG shows large deviations
with the experimental Feff for residue pairs 354–433, 103–184,
and 17–103. Although the CG model without electrostatic
interactions (εes = 0 and αCG = 0.52) is able to recapitulate
Feff for the synuclein family and ProTα, it yields �min ≈ 0.18
for MAPT. In the electrostatics-only CG model, we find that
�min ≈ 0.34, which is much larger than �min for the CG model
with both hydrophobic and electrostatic interactions.

We find that for the synucleins and ProTα, optimized
models with and without electrostatics interactions provide
an accurate description of the experimental Feff. However,
the optimized model with both electrostatic and hydrophobic
interactions provides the best match to experimental Feff for
MAPT. More importantly, the minimal RMS deviations in Feff

between simulations and experiment for MAPT are larger than
those for the synuclein family and ProTα as well as typical
experimental error bars. The fact that MAPT is three times as
long as and less charged and hydrophobic (Fig. 1) than the
other IDPs may contribute to the larger RMS deviations [55].

B. Sensitivity analysis of hydrophobicity models

In this section, we describe results from CG Langevin
dynamics simulations of each IDP using nine different hy-
drophobicity models (Sec. II): three hydrophobicity scales
(the shifted and normalized Kyte-Doolittle [47] and Monera
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FIG. 8. (Color online) RMS deviations �min in Feff (and its error)
between the experiments and simulations for (from left to right) αS
(red), βS (blue), γ S (green), ProTα (purple), and MAPT (orange)
for nine hydrophobicity models. The labeling scheme for the nine
hydrophobicity models is (hydrophobicity scale)-(mixing rule) as
numbered in Sec. II. The RMS deviations are calculated from CG
simulations with αCG chosen such that the RMS deviations are
minimized for each hydrophobicity scale and mixing rule. The
black dotted line indicates the average error in Feff from smFRET
experiments.

[34] scales, and an average of seven commonly used hy-
drophobicity scales), plus three pairwise mixing rules for the
hydrophobicities of the residues (arithmetic mean, geometric
mean, and maximum). For the CG simulations of each IDP
and hydrophobicity model, we varied αCG to minimize �.

In Fig. 8, we show the minimum root-mean-square de-
viation �min between the smFRET data and coarse-grained
simulations for each hydrophobicity model for the synucleins,
ProTα, and MAPT. For each IDP considered, �min does not
vary significantly over the nine hydrophobicity models. More-
over, for the synucleins and ProTα, �min is comparable to or
below experimental error. For MAPT, all of the hydrophobicity
models are less accurate than for the other IDPs, but this
accuracy does not depend significantly on the hydrophobicity
model. This indicates that while the coarse-grained simulations
are not as accurate for MAPT, the simulation results are robust
to changes in the hydrophobicity model.

C. Scaling exponents

The charge-hydrophobicity plane [32] is a common rubric
for differentiating natively folded and intrinsically disordered
proteins. In Fig. 1, we plot the absolute value of the electric
charge per residue Q = N−1

p | ∑Np

i=1 Qi | versus the hydropho-

bicity per residue H = N−1
p

∑Np

i=1 εi (using the shifted and
normalized Monera hydrophobicity scale) for many known
IDPs and folded proteins. We highlight 10 specific proteins
in Fig. 1: αS, βS, γ S, ProTα, high mobility antitermination
protein N (ATN), MAPT, nonhistone chromosomal protein
(HMG-17), DNA topoisomerase 1 (TOPO-1), basic salivary
proline-rich protein 4 (SPRP), and lysosyme C (LYZ). The
majority of IDPs occur above the line Q = 2.785H − 1.151,
while natively folded proteins occur below the line. For
example, the IDPs ProTα and HMG-17 occur significantly
above the line, while the folded protein lysozyme C is well
below the line. However, the synucleins and MAPT occur close

FIG. 9. (Color online) Radius of gyration Rg(Np) of seven IDPs
from experiments [27,42,56–58] (black circles) and simulations of
three CG models: (1) εa = 0 and εes = κes such that the chains behave
as extended coils (blue diamonds), (2) αCG = 0.50 and εes = κes

(green pentagons), and (3) αCG = 0.50 and εes = 0 (purple triangles).
The IDPs are ordered from shortest to longest (left to right).

to the dividing line between folded and intrinsically disordered
proteins. In fact, αS and γ S are on the folded-protein side of
the dividing line along with several other IDPs, and thus the
dividing line is somewhat “fuzzy.”

We seek to identify physical quantities that are able to
distinguish the behavior of different IDPs. In this section, we
employ the CG model to measure the radius of gyration Rg as
a function of chemical distance n along the chain

Rg(n) = 1

Np − n + 1

Np−n+1∑
i=1

〈Rg(i,i + n − 1)〉t , (10)

where 〈.〉t denotes a time average,

Rg(i,j ) =
√√√√ 1

j − i + 1

j∑
k=i

(�rk − 〈�rk〉)2
, (11)

and

〈�rk〉 = 1

j − i + 1

j∑
k=i

�rk, (12)

for proteins over a broad range of the charge-hydrophobicity
plane. In Fig. 9, we show the radius of gyration Rg(Np) for
seven IDPs (HMG-17, ATN, ProTα, the synuclein family, and
MAPT) ordered from shortest to longest. We find that the
CG model with the optimal αCG is able to recapitulate the
experimental values of the radius of gyration for these IDPs
to within approximately 10%. We also show that the predicted
Rg(Np) from the CG model without electrostatics, εes = 0,
matches the experimental values for these IDPs, except for
ProTα and MAPT. Additionally, the electrostatics-only model
(αCG = 0) is not able to recapitulate the experimental Rg(Np)
for most of these IDPs.

We show the dependence of Rg(n) on the chemical distance
n along the chain for eight IDPs in Fig. 10 (left). For large n,
Rg displays power-law scaling, Rg = R0

gn
ν , where the scaling

exponent ν varies from ≈ 0.5 to 0.7 as shown in Fig. 10 (right).
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FIG. 10. (Color online) (Left) Radius of gyration Rg(n) (thick lines) versus chemical distance n along the chain for several IDPs with
Np � 90 so that Rg(n) is in the power-law scaling regime. Power-law fits of the data to Rg = R0nν for n > 20 are shown as thin lines. The
error in Rg is comparable to the line thickness. (Right) Power-law scaling exponent ν as a function of the distance d from the dividing line
between folded and intrinsically disordered proteins (Fig. 1). The dotted line follows ν = 0.47 + 0.85d .

We find that there is a strong correlation between ν and the
distance d of the protein from the dividing line between IDPs
and folded proteins in the charge-hydrophobicity plane.

A value of ν ≈ 0.33 corresponds to a condensed polymer
(e.g., folded protein), while ν ≈ 1 gives the scaling for an
extended polymer. For an “ideal” polymer, where attractive
interactions are balanced by repulsive interactions, ν = 0.5
and Rg(n) obeys the scaling for a Gaussian random walk.
If short-range repulsions dominate, ν = νev ≈ 0.59, which
corresponds to an excluded-volume random walk. Also, long-
range, repulsive electrostatic interactions can cause ν > νev.
Thus, the value of ν gives insight into the relative strength of
the attractive and repulsive interactions for each IDP.

IV. CONCLUSIONS

We developed a coarse-grained representation of intrinsi-
cally disordered proteins (IDPs) that includes steric, attractive
hydrophobic, and screened electrostatic interactions between
spherical residues. The CG model is calibrated to recapitulate
a large set of experimental measurements of FRET efficiencies
for 5 IDPs and 36 pairs of residues. We then performed
Langevin dynamics simulations of the calibrated CG model
to calculate the scaling of the radius of gyration with the
chemical distance along the chain for a larger set of IDPs.
We find a strong correlation between the scaling exponent ν

that characterizes the scaling of the radius of gyration with the
number of residues and its distance from the line that separates
IDPs and natively folded proteins in the hydrophobicity and
charge plane. IDPs possess ideal scaling (ν ∼ 0.5) near the
dividing line, and the exponent increases linearly with distance
from the dividing line. These results suggest that increasing the
charge or decreasing hydrophobicity can have similar effects
on the swelling of IDPs. In future studies, we will employ
this simple, robust CG model to study the association and
aggregation dynamics of tens to hundreds of IDPs and address
such questions as: (1) Is the single-chain, coarse-grained model
for IDPs able to capture the aggregation of multiple IDPs,
(2) Does β-sheet order form spontaneously in clusters of IDPs,
and if so, (3) what is the critical nucleus for β-sheet order?
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