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Direct determination of DNA twist-stretch coupling
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PACS. 87.15−v – Molecular biophysics.
PACS. 87.10+e – General, theoretical, and mathematical biophysics (including logic of biosys-

tems, quantum biology, and relevant aspects of thermodynamics, information
theory, cybernetics, and bionics).

PACS. 87.15By – Structure, bonding, conformation, configuration, and isomerism of biomole-
cules.

Abstract. – The symmetries of the DNA double helix require a new term in its linear response
to stress: the coupling between twist and stretch. Recent experiments with torsionally con-
strained single molecules give the first direct measurement of this important material parameter.
We extract its value from a recent experiment of Strick et al. (Science, 271 (1996) 1835) and
find agreement with an independent experimental estimate recently given by Marko. We also
present a very simple microscopic theory predicting a value comparable to the one observed.

Introduction. – The idea of studying the response of DNA to mechanical stress is as old
as the discovery of the double-helix structure itself [1]. While many elements of DNA function
require detailed understanding of specific chemical bonds (for example the binding of small
ligands), still others are quite nonspecific and reflect overall mechanical properties. Moreover,
since the helix repeat distance of `0 ≈ 3.4 nm involves dozens of atoms, it is reasonable to hope
that this length-scale regime would be long enough so that the cooperative response of many
atoms would justify the use of a continuum, classical theory, yet short enough that the spatial
structure of DNA matters. In this letter we will argue that this expectation is indeed fulfilled.

Early work showed that a simple model of DNA as a cylindrical elastic rod gives a reasonable
account of many features of its long-scale behavior, for example supercoiling [2]. Some authors
sought to justify this picture by invoking a shell of structured water around the DNA [2]. The
model contained two elastic constants, the resistance to bending and twisting, and a number
of elegant experiments yielded fair agreement on their values [3]. More recently, techniques
of micromanipulation via optical tweezers and magnetic beads have yielded improved values
for the bend stiffness from the phenomenon of thermally induced entropic elasticity [4], [5], as
well as the direct measurement of a third elastic constant, the stretch modulus, by exploring
the force range 10–50 pN [6], [7]. Significantly, the relation between bending stiffness, stretch
modulus, and the diameter of DNA turned out to be roughly as predicted from the classical
theory of beam elasticity [6]-[8], supporting the expectations mentioned above.

c© Les Editions de Physique



238 EUROPHYSICS LETTERS

Still missing, however, has been any direct measurement of the elastic constants reflecting
the chiral (i.e. helical) character of DNA. One such constant, a twist-bend coupling, was
investigated by Marko and Siggia [9], but no direct experimental measurement has yet been
devised. In this letter we introduce a new chiral coupling, the twist-stretch energy. We will
explain why our term is needed, extract its value from the experiment of Strick et al. [10], and
compare it to the prediction of a simple microscopic model to see that its magnitude is in line
with the expectations of classical elasticity theory. J. Marko has independently introduced the
same coupling and estimated its value from different experiments [11]; our values are in rough
agreement.

Experiment. – DNA differs from simpler polymers in that it can resist twisting, but it is
not easy to measure this effect directly due to the difficulty of applying external torques to a
single molecule. Early investigations of DNA twist were either limited to passive, fluorescence-
depolarization measurements [3], or else to studying global shape changes in circular DNA
of varying linkage [2]. The first single-molecule stretching experiments constrained only the
locations of the two ends of the DNA strand. The unique feature of the experiment of Strick
et al. was the added ability to constrain the orientation of each end of the molecule.

We will study fig. 3a of ref. [10]. In this experiment, a constant force of 8 pN was applied to
the molecule and the end-to-end length ztot monitored as the terminal end was rotated through
∆Lk turns from its relaxed state (which has Lk0 turns). In this way the helix could be over-
or undertwisted by as much as ±10%. Over this range of imposed linkage ztot was found to
be a linear function of σ:

ε = const− 0.15σ, where σ ≡ ∆Lk/Lk0 and ε ≡ (ztot/ztot,0)− 1 . (1)

Thus σ is the fractional excess link and ε is the extension relative to the relaxed state.
Equation (1) is the experimentally observed twist-stretch coupling.

The existence of a linear term in (1) is direct evidence of the chiral character of the molecule,
and its sign is as expected on geometrical grounds: untwisting the molecule tends to lengthen
it. Still geometry alone cannot explain this result [12]; we must seek an explanation of the
experimental result not in terms of a geometrical ball-and-stick model but in the context of an
elastic response theory.

Simple model. – We will begin by neglecting bend fluctuations (see below). A straight rod
under tension and torque will stretch and twist. We can describe it by the reduced elastic free
energy

f1(σ, ε) ≡
F1(σ, ε)

kBTztot,0
=
ω2

0

2

[
C̄σ2 + B̄ε2 + 2D̄εσ

]
− τε . (2)

The twist persistence length is C̄ ≈ 75 nm [3], while the helix parameter ω0 = 2π/`0 = 1.85/nm.
We will take(1) B̄ ≈ 1100 pN/ω2

0kBT ≈ 78 nm [7]. In the experiment under study the
reduced force is τ = 8 pN/kBT ≈ 1.95/nm. For a circular beam made of isotropic material
the cross-term D̄ is absent [8], since twisting is odd under spatial inversion, while stretching is
even. For a helical beam, however, we must expect to find this term.

We now minimize f1 with respect to ε, σ at fixed tension with an imposed constraint on
the overtwist σ. Minimizing at fixed σ and τ gives ε = εσ=0 − (D̄/B̄)σ. Comparing to (1),

(1) B̄ reflects the intrinsic stretchiness of DNA, since electrostatic self-repulsion simply shifts
the equilibrium length without affecting the spring constant. Indeed experiments show little or no
dependence of B̄ on salt, unlike the situation with the effective bend persistence length [7]. We also
expect C̄ to reflect intrinsic elasticity, since twisting does not affect the average charge distribution.
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Fig. 1. – Schematic diagrams defining variables used in the text. The offset from the helix axis has
been exaggerated for clarity. a) Notation used in the fourth section. We describe the DNA by the

helix axis (dotted curve) and the axis Ê1, which is a fixed vector in each base pair. b) Notation used
in the fifth section. The helix axis (dotted line) is now supposed straight. We describe the DNA by

the dashed curve and the axis Ê1 as before.

we obtain the desired result: D̄ = 12 nm. To compare this to Marko’s analysis, we note that
his dimensionless g equals our D̄ω0, so that we get g = 22. Marko’s result was g = 35 [11];
the difference comes mainly from the more recent value of B̄ which we have used here. This
agreement indicates that the data show a real material parameter of DNA and not some artifact.

Bend fluctuations. – To arrive at (2) we listed the variables which were constrained, coupled
to external forces, and/or observed in the experiment, namely ε and σ, then wrote the most
general quadratic function allowed by symmetry. Thus (2) is a phenomenological model; its
coefficients C̄, B̄, D̄ reflect both intrinsic elasticity and the effects of thermal fluctuations.
Indeed it is well known that thermal bend fluctuations reduce the effective stretch modulus at
modest tension via the “entropic elasticity” effect [4], [5]. Our procedure may seem inconsistent,
since we arrived at our value of D̄ by using the intrinsic stretch modulus in the third section.
In this section we will justify the procedure by sketching a more elaborate model with bend
fluctuations and again comparing to (1). Details of this calculation will appear elsewhere [12].

We begin by defining local variables (fig. 1a) (see [9]). DNA is a stack of base pairs. We
neglect sequence effects and so regard all base pairs as copies of one standard slice. The
standard slice contains a reference point with the property that the locus of these is the helix
axis, a straight line of length L in the relaxed state. Through this reference point we next
draw a fixed vector; a convenient choice is the “dyad” pointing into the minor groove and
perpendicular to the helix axis.

To describe stressed states, we simply specify the locus of reference points as a parameterized
curve in space (dotted line in fig. 1a) and the dyad as a field of vectors Ê1 normal to this curve.
We let Ê3 be the unit tangent to the axis and complete to an orthonormal triad by defining
Ê2 = Ê3× Ê1. Next we introduce a parameter s to label each slice; s corresponds to arc length
along the original, unstressed helix axis and so always runs from 0 to L. The actual arc length
along the distorted axis will not be ds but rather (1 + α(s))ds; α is the axial strain.

Thus our local variables are Êi(s) and α(s). Our program consists of four steps: i) Find
the strains in terms of the local variables. ii) Write the general linear elasticity theory of
these strains with a force coupling to the extension ε and a torque coupling to the twist σ.
iii) Compute and minimize the free energy to find the end-to-end length 〈ztot〉 in terms of
the constrained σ and the applied force τ . iv) We can then relate the experimental result to
intrinsic elastic constants.

Steps i), ii): In the relaxed state each slice bears a constant relation to its predecessor. Thus
while Ê10, Ê20, and Ê30 all vary in space, the derivatives with respect to s are of the form
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dÊi0/ds = −εijkΩj0Êk0, where Ωj0 are the constants (0, 0, ω0). For the deformed state, the
same formula defines the functions Ωi(s). Our strain variables are then Ω1(s), Ω2(s), Ω3(s)−
ω0, and α(s). The end-for-end symmetry of DNA implies that the elastic matrix is unchanged
upon changing the sign of Ω1 [9]. Thus we generalize the model of [9] to

f2 =
1

2L

∫ L

0

ds
[
A′Ω2

1 +AΩ2
2 + C(Ω3 − ω0)2 +Bω2

0α
2 + 2Dω0(Ω3 − ω0)α+

+ 2G(Ω3 − ω0)Ω2 + 2Kω0Ω2α
]
. (3)

Here G is the twist-bend coupling of [9], while K is an allowed coupling between stretch and
bend [12]. K reflects the possibility that under extension the helix axis can move away from
the chosen reference point, so that the latter no longer follows a straight line.

We may apply a perturbative treatment to (3). Such an approximation is valid since in the
experiment we are analyzing the applied force is large enough to keep the end-to-end distance
over 90% the full relaxed contour length, but not large enough to create large intrinsic stretch
α. In addition, the applied overtwist σ is at most ±10% [10]; indeed the slope reported in (1)
can be found from an even smaller range of σ than this.

Steps iii, iv: It proves useful to refer the frame {Ê1, Ê2, Ê3} to a standard frame {ê1, ê2, ẑ}
rotating at spatial frequency ω0. We then write the deformed frame in terms of three small
quantities: two deviations of the tangent vector t1,2(s) and an angle ϕ(s). To first order in these

we have Ê1 = ê1 +ϕê2− t1ẑ, Ê2 = −ϕê1 + ê2− t2ẑ, Ê3 = t1ê1 + t2ê2 + ẑ. Substituting into (3)
and adding external tension τ and torque Λ then gives a linear elastic theory. The measured
twist-stretch coupling D̄ can then be read off as the combination D̄ = D−GK

A
of intrinsic elastic

parameters. (Parenthetically we note that C̄ = C − G2

A
is nearly equal to C because we expect

G to be small, and similarly for B̄ = B− K2

A . The corrections are small because they reflect the
small deviation of DNA from a straight circular rod.) Thus we have found the interpretation
of the experimentally determined twist-stretch coupling found in the second section: in terms
of the intrinsic elasticity of DNA the slope in (1) fixes the combination (DA−GK)/AB in (3)
to be 0.15. The low-force stretching experiments give bend stiffness(2) A = 40 nm [7]. Other
experiments fix B, C to the approximate values quoted earlier. The remaining combinations
of the couplings in (3) do not appear to be relevant for existing experiments.

We can now address the concern mentioned at the start of this section. The entropic elasticity
phenomenon is a breakdown of linear elasticity when the applied force τ → 0; it arises because
some Fourier modes of ti get large fluctuations in this limit. Inspecting our elastic theory shows
that these dangerous modes have spatial frequency near ω0; they decouple completely from σ,
which couples linearly to the modes of wave number 0. Thus the entropic contribution to 〈ztot〉
can simply be absorbed into the constant term of (1), and does not affect the slope used in our
calculation.

Microscopic model. – The elastic theory in the previous section was very general, but it gave
no indication of the expected magnitudes of the various couplings. To gain further confidence
in our result, we will now see how to estimate the expected twist-stretch coupling based on the
measured values of the other elastic constants and geometrical information about DNA. We will
use a simple, intuitive microscopic picture of DNA as a helical rod to show how twist-stretch
coupling can arise and get its general scaling with the geometric parameters. While the model

(2) This value for A is slightly smaller than the traditional one. The authors of ref. [7] eliminated
the electrostatic contribution to A by extrapolating to high concentration of high-valence added salt.
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is unrealistic, it captures the underlying symmetries and shows that the value of D̄ calculated
above is reasonable.

Our picture will be a beam of isotropic elastic material of circular cross-section, initially
bent into a helix of pitch `0, with the beam center slightly displaced from the helix axis
by d0 � `0 [13]. Figure 1b defines our notation. In this section we will consider only
uniform deformations of the helix; in particular the helix axis will always be straight. It
proves convenient to define slightly different variables from the previous section: instead of
following the helix axis, now our curve follows the centerline of the beam. We again call the
tangent to this curve Ê30(s), where the arc length s runs from 0 to L̃, but now L̃ is slightly
longer than the end-to-end length of the relaxed beam. Next we draw a second curve, the locus
of points farthest from the helix axis. Let Ê10(s) be the field of vectors perpendicular to the
tangent Ê30(s) and pointing from the first to the second curve. Finally complete Ê30, Ê10 to
an orthonormal triad by defining Ê20 = Ê30 × Ê10.

The distorted beam will then have its modified frame {Ê1(s), Ê2(s), Ê3(s)}, where now s
is the arc length rescaled by (1 + α)−1 to again run from 0 to L̃ and α is the axial strain as
before. We also define strain variables Ωi as before; for the uniform deformations considered
these are constants independent of s. For a nearly-straight, circular rod the elastic energy
is then [8] f3 = 1

2

[
A(Ω2 −Ω20)2 + C(Ω3 −Ω30)2 +Bω2

0α
2
]
. We have rotated our reference

frames about the tangent vector to eliminate Ω1. The constants A, C, and B can in turn be
expressed in terms of the effective Young modulus, shear modulus, and diameter of the rod,
but we instead use the measured values quoted earlier.

To use f3 we need to find Ω2 and Ω3 in terms of the helix parameters: helix axis offset d,
end-to-end length ztot, and total rotation of the cross-section. The latter quantity plays the role
of linking number for open DNA, and so we will call it Lk. To get the required relations it is
helpful to use the physical image of a gyroscope rotating at “angular frequency” | ~Ω| about an

axis parallel to ~Ω while moving at constant “speed” along an axis Ê3 fixed in the body. We
take “time” to run from 0 to L̃, the original relaxed arc length; to allow for intrinsic stretching
we then take the “speed” to be 1 + α. One then finds that

d = Ω2(1 + α)/| ~Ω|2 , ztot = L̃Ω3(1 + α)/| ~Ω| , Lk = L̃| ~Ω|/2π . (4)

To fix ~Ω0 we impose the values α0 = 0, ω0 = 2πLk0/ztot,0 = 1.85/nm, and a helix offset d0.
We will choose d0 to get the observed value of D̄ and see that it is reasonable. Working to
second order in d0 eq. (4) gives Ω30 = ω0(1− d2

0ω
2
0), Ω20 = d0ω

2
0.

We must now minimize f3 with the constraint of fixed ztot and Lk. Let ztot ≡ (1 + ε)ztot,0,
so that ε again measures changes in end-to-end distance, and Lk = (1 +σ)Lk0 as usual. Again
using (4), one finds Ω2−Ω20 = βω0, Ω3−Ω30 = ω0σ−ω2

0d0β, and α = ε+ω0d0β− (ω0d0)2σ,
where β is free. Substituting into f3 and minimizing over β reveals a σε coupling corresponding
to D̄ = (ω0d0)2(C − A)B/A. This formula fits our measured value of D̄ if we choose
d0 = 0.2 nm.

The value of d0 is not known a priori, since of course DNA is not really an elastic continuum
with circular cross-section. Nevertheless, inspection of the known molecular structure indeed
suggests an elastic center offset from the helix axis by a couple of Ångstroms [14]. In any case
we have shown that the measured value of D̄ is of the order of magnitude expected from simple
elasticity theory(3).

(3) Actually a helical beam can have a twist-stretch coupling even if its axis is on center, d0 = 0,
provided its cross-section is not circular [13]. To explain the observed coupling in this way would
require a rather large eccentricity of 70%. However for molecules such as actin, for which d0 = 0, this
second mechanism may be important.
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Conclusion. – We have pointed out a strong twist-stretch coupling in torsionally-constrained
DNA stretching experiments, evaluated it, argued that it reflects intrinsic elasticity of the DNA
duplex, and shown that the value we obtained is consistent with elementary considerations from
classical elasticity theory. A greater challenge remains to predict this coupling from the wealth
of available crystallographic information on the conformation of short oligomers.
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