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Elasticity theory of a twisted stack of plates
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Abstract. We present an elastic model of B-form DNA as a stack of thin, rigid plates or base pairs that
are not permitted to deform. The symmetry of DNA and the constraint of plate rigidity limit the number
of bulk elastic constants contributing to a macroscopic elasticity theory of DNA to four. We derive an
effective twist-stretch energy in terms of the macroscopic stretch ε along and relative excess twist σ about
the DNA molecular axis. In addition to the bulk stretch and twist moduli found previously, we obtain
a twist-stretch modulus with the following remarkable properties: 1) it vanishes when the radius of the
helical curve following the geometric center of each plate is zero, 2) it vanishes with the elastic constant
K23 that couples compression normal to the plates to a shear strain, if the plates are perpendicular to
the molecular axis, and 3) it is nonzero if the plates are tilted relative to the molecular axis. This implies
that a laminated helical structure carved out of an isotropic elastic medium will not twist in response to a
stretching force, but an isotropic material will twist if it is bent into the shape of a helix.

PACS. 87.15.-v Molecular biophysics – 87.10.+e General, theoretical, and mathematical biophysics (in-
cluding logic of biosystems, quantum biology, and relevant aspects of thermodynamics, information theory,
cybernetics, and bionics) – 87.15.By Structure, bonding, conformation, configuration, and isomerism of
biomolecules

1 Introduction

The elastic properties of DNA have become a focus of re-
cent research [1–6]. In particular, stretching experiments
on single molecules of DNA now provide a direct probe
of the bending, stretching, and twisting elasticity of DNA
[7,8,10]. Understanding the elasticity of single molecules
of DNA may be relevant in vivo; e.g., the recA protein
which is responsible for homologous recombination in bac-
terial mitosis has been observed to stretch and twist DNA
when it is bound to the DNA molecule [9].

Marko and Siggia recently modeled DNA as a thin,
uniform rod with a linear bending elasticity and calcu-
lated the extension of the rod as a function of the applied
stretching force [2]. This worm-like chain model was ap-
propriate for stretching forces f � γ, where γ ∼ AkBT/R2

≈ 200 pN is the stretch modulus, A ≈ 50 nm is the bend
persistence length, and R = 1 nm is the radius of the
molecule. Forces in this regime pull on the thermal fluctu-
ations of the molecular backbone but do not pull on the
internal structure of DNA. The worm-like chain model ac-
curately predicts the extension of the molecule to within
10% up to approximately 10 pN [7]. Above 10 pN [7,8]
there are no longer thermal effects and DNA is stretched
elastically. A strain variable ε must be introduced to de-
scribe increases in the molecular length after thermally
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induced contour length fluctuations are fully stretched
[2,11,7,8].

DNA is also characterized by the degree of twist of
its phosphate backbones about the central axis. Relative
twist excess or deficit from a state of preferred twist is
parameterized by a signed twist variable σ. The chiral
asymmetry of DNA allows for a twist-stretch coupling be-
tween σ and ε; this coupling is clearly visible in the recent
experiments of Strick et al. [10,4,5]. Theoretical work has
focused on calculating the extension of the molecule as
function of both the applied stretching force and the ap-
plied excess twist [3,6,13]. However, in this paper we in-
vestigate a more microscopic origin of the twist-stretch
coupling [14].

We introduce a simple elastic model of B-form DNA in
which the molecule is viewed as a stack of thin, rigid plates
that represent base pairs and are rotated and displaced
relative to each other. (See Sect. 3 below for a review of
the geometry of B-form DNA.) The centers of mass of
the plates define a helical path around a straight central
line, which we call the molecular axis. The perpendicu-
lar distance from the molecular axis to the helix is called
the helix axis offset. Distortion energies in this model are
controlled by an underlying continuum elastic energy with
those elastic constants allowed by the anisotropic symme-
try of DNA. Our model of DNA as a collection of thin,
rigid plates has four contributing elastic constants cou-
pling strains with spatial variation normal to the plates.
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Of particular importance is the elastic constant K23 cou-
pling compression perpendicular to the plates to a shear
displacement parallel to the plates. K23 vanishes if the
phosphate backbones point in the same direction1 and
also vanishes in the isotropic limit in which each plate
has reflection and C4 or higher symmetries.
We calculate the twist-stretch coupling in terms of

its elastic constants and the small helix axis offset. We
find that the twist-stretch coupling has terms linear and
quadratic in the helix axis offset. The coefficient of the
linear term is proportional to the elastic constant K23. In
the isotropic limit or when K23 vanishes, the twist-stretch
coupling is quadratic in the helix axis offset as we calcu-
lated earlier [5,12] in related but simpler models.
An important simplification of our model is the con-

straint that the plates comprising the DNA stack are rigid
and undeformable. This is equivalent to setting to infinity
all elastic constants coupling the strains within a plate.
We thus neglect propeller, buckle, opening, etc. deforma-
tions [16] of individual base pairs and focus instead on
inter-base pair deformations described by relative rota-
tions (roll, tilt, and twist) and translations (slide, shift,
and rise) of the base pairs [15,16]. We believe this is a rea-
sonable approximation for stretching forces in the range
1 pN < f < 10 pN and relative twist excesses |σ| < 0.03.

2 Description of the model

DNA is composed of base pairs connected by two oppo-
sitely-directed sugar-phosphate backbones that wrap in
two helices around the central molecular axis to produce
the major and minor grooves. A cross-section of DNA nor-
mal to the phosphate backbones is shown in Figure 1. To
construct our model for DNA, we first imagine unwinding
the helix so that the phosphate backbones describe two
straight, parallel paths. This unwound structure is an elas-
tic rod characterized by an elastic constant tensor Kijkl
with components constrained by the symmetry of the rod.
Each cross-section of the rod looks like Figure 1. Let the
z-axis be parallel to the phosphate backbones, and let the
x-axis pass through the midpoint and perpendicular to the
line connecting the backbones. The only symmetry oper-
ation of this rod is a rotation through π about the x-axis
that causes the axes to transform as x→ x, y → −y, and
z → −z. This symmetry allows for a maximum of 13 in-
dependent elastic constants. Our assumption of the rigid
shape of each cross-section in the x−y plane eliminates
from consideration all strains that require spatial deriva-
tives with respect to x or y. Thus we need only consider
the strains uzz, uzx, and uzy and the four elastic con-
stants K33 = Kzzzz, K11 = Kzxzx/4, K22 = Kzyzy/4, and
K23 = Kzyzz/2 permitted by symmetry that couple these
strains. The elastic constant K23 is allowed because the
two phosphate backbones are oppositely-directed. If they
were undirected or pointed in the same direction, the re-
flection y → −y would be a symmetry and K23 would be

1 Each phosphate backbone has a particular orientation: ei-
ther 3’-5’ or 5’-3’.
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Fig. 1. Schematic cross section of DNA taken perpendicular to
the sugar-phosphate backbones. e1 is perpendicular to the line
connecting the two phosphate backbones and points from the
geometric center of the plate toward the minor groove and e2
points from the geometric center toward the backbone running
in the positive e3 direction. Each slice has a coordinate system
(x, y, z) with e1 as the x-axis, e2 as the y-axis, and e3 as the
z-axis. Also, each slice is labeled by an integer n.

zero. If, in addition, a rotation by π/2, which transforms
x → y and y → −x, were a symmetry, there would be
only two elastic constants K33 and K = K11 = K22. We
will refer to this case with two elastic constants as the
isotropic limit. We view the cross-sectional slices as rigid
plates that are coupled elastically via the elastic constants
K33, K11, K22, and K23.
We now imagine that chiral forces inherent to DNA

distort the straight rod to a helical structure in which
the centers of mass of the rigid plates describe a helical
path about a straight helical axis. This helical structure
can be produced by displacing and rotating neighboring
plates by a constant amount as depicted in Figure 2. We
assume that chiral energies leading to a ground-state he-
lical structure are linear in strain (i.e surface terms) so
that the energies of distortions from the ground state are
determined by the elasticity of the original untwisted rod,
i.e., by the elastic constants K33, K11, K22, and K23. In
the following sections, we will derive the twist-stretch cou-
pling in terms of these constants and the helix axis offset.

3 Geometry of B-form DNA

We now consider three different ways of stacking our thin,
rigid plates to create a helical model of the straight state of
B-DNA. Three possible configurations of straight B-DNA
resulting from the rotations and translations described in
Figure 2 are shown in Figure 3. We first imagine simply
twisting the plates about the long axis passing through the
center of mass of the original rod to create shape I. In this
shape, the geometric centers of each slice lie on top of one
another, the slices are rotated about the long axis relative
to one another, and the slices remain perpendicular to
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the long axis. Shape I is shown in Figure 3a. Shape II is
obtained by first twisting the plates about the long axis
and then removing material from the side of each plate
opposite to the phosphate backbones. The line connecting
the new geometric centers of each slice follows a helix.
The slices remain perpendicular to the helix axis about
which the geometric centers of each plate rotate. (In the
discussion below we use the terms helix axis and DNA
molecular axis interchangeably.) Shape II is pictured in
Figure 3b. Shape III is obtained by bending the long axis
of the sliced rod into a helix. The curve r connecting the
geometric centers of each plate again follows a helix, but
now the plates are perpendicular to the local tangent to r
instead of the helix axis. Shape III is shown in Figure 3c.
We note that in the unstressed state of B-form DNA

the plates are roughly perpendicular to the molecular axis,
and their geometric centers nearly coincide with the molec-
ular axis [17]. Thus to study small deformations of B-
DNA, it suffices to restrict our attention to the case where
shapes II and III are small perturbations of shape I. In
shape II, the amount of material removed from each slice
and hence the radius of the helix is small and in shape III
the bend of the rod axis away from the molecular axis is
also small. Shapes II and III can be described as twisted
stacks of plates with small helix axis offsets. If the col-
lection of plates has a helix axis offset, the plates are not
stacked with one directly on top of the other; instead, the
shift vector (which locates the center of mass of the next
plate) has a component perpendicular to the molecular
axis. We will see that in our model the helix axis offset is
the origin of the twist-stretch coupling.

4 Elasticity theory

In what follows we will develop a long-wavelength elas-
ticity theory for a collection of stacked, rigid plates in
terms of small deviations of the shifts and rotations away
from their unstressed values. We will then eliminate the
shift and rotation variables in favor of the stretch along
the molecular axis ε and the relative excess twist about
the molecular axis σ. The stretch ε and relative excess
twist σ are the strain variables which have been measured
in recent experiments [10,11]. This will allow us to find
the bulk twist and stretch moduli in terms of four elas-
tic constants and geometric properties of the molecule.
More importantly, it will also enable us to calculate the
twist-stretch coupling and determine how it scales with
the small helix axis offset.
As shown in Figure 1 we inscribe on each plate a right-

handed, orthonormal triad eα(n) where α = 1, 2, 3 and n is
a unitless parameter which labels the plate. In the follow-
ing, Roman indices run over Cartesian space coordinates
(x, y, z) and Greek indices label the plate-fixed coordinate
system (1,2,3). e1 and e2 lie in the plane of the plate, and
e3 is perpendicular to the plate. The coordinates on each
plate are labeled by the pair (η1, η2) which corresponds to
the point on the plate η1e1(n) + η2e2(n). We must also
specify the origin on each plate. We choose the origin to
be the geometric center (i.e., center of mass) of the plate,

e3(n)e2(n)

e1(n)
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e3(n)
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Fig. 2. The orientation and location of a given plate n is
generated from the orientation and location of plate n − 1 by
specifying the vector of rotation rates ω = (0, ω2, ω3) and the
vector of shifts δ = (0, δ2, δ3). To obtain the orientation and
location of plate n we must apply four operations (two rota-
tions and two shifts) to plate n−1. The dashed rectangle shows
the outline of plate n− 1. Note that the rotations ωi are coun-
terclockwise about ei(n − 1). (a) We first rotate by ω2 about
e2(n− 1) and generate a new triad e

′
i. (b) We next rotate the

triad e′i by ω3 about e3(n − 1) and obtain a new triad ei(n),
the triad at plate n. In (c) we shift the center of plate n− 1 by
δ2 along e2(n−1) and in (d) shift it by δ3 along e3(n−1). This
final picture gives the location of the center of plate n and the
orientation of its triad.

but this choice is arbitrary and does not affect the elastic-
ity theory, as we will discuss in the Appendix. We can now
describe the trajectory in space of the plates and the asso-
ciated plate-fixed triads. We allow two sets of parameters:
a vector of rotation rates ω and shifts δ. We decompose ω
and δ in the plate-fixed basis eα(n) and assume that the
components ωα and δα are constants independent of n.

ω = ωαeα(n)
δ = δαeα(n),

where α = 1, 2, 3. (1)

The vector of rotation rates ω describes the rate of change
of the orientation of neighboring plates, and thus

deα(n)

dn
= ω × eα(n) = −εαβγωβeγ(n), (2)

where εαβγ is the antisymmetric tensor. The second set
of parameters δ describes the relative displacement of two
neighboring plates. We choose δ to be the relative dis-
placement of the origin r(n) of the (η1, η2) coordinate sys-
tem. We have

dr(n)

dn
= δ = δαeα(n). (3)
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Fig. 3. Three helical shapes obtained from three different
stacking rules. The radius and pitch of the helical curves con-
necting the centers of the plates are given by r and p. (a)
Shape I has δ = (0, 0, δ3) and ω = (0, 0, ω3). The plate nor-
mal e3 is always parallel to the space-fixed z-axis. (b) Shape
II has δ = (0, δ2, δ3) and ω = (0, 0, ω3). Again, e3 is parallel
to the z-axis. These vectors generate a helical stack with all of
the plates parallel to one another and the centers of the plates
offset from the central helix axis by rII. (c) Shape III is gener-
ated by δ = (0, 0, δ3) and ω = (0, ω2, ω3). The e3 axis is now
tangent to the helical curve of radius rIII defined by the plate
centers. The first plate is aligned so that the helix axis is in
the vertical direction.

Note that according to our definitions ω is unitless and δ
has units of length. Finally, the position in space of the
point (η1, η2) on plate n is simply x(η1, η2, n) = r(n) +
η1e1(n)+η2e2(n). For constant ωα and δα, these equations
will, in general, describe a helical structure. We may solve
(2) and (3) to find:

r(n) = eβ(0)

{
n
ωβ(δ · ω)

ω2
+

(
δβ − ωβ

(δ · ω)

ω2

)

×
sin(|ω|n)

|ω|
+
εβαγδαωγ

ω2
cos(|ω|n)

}
, (4)

with ω2 = ωαωα. Examination of (4) shows that the geo-
metric center moves on average in the direction
eβ(0)ωβ/|ω| and traces out a helix with helix axis offset
r = |ω×δ|/ω2 and pitch p = 2πδ ·ω/ω2. The shift vector,
rotation vector, helix axis offset, and pitch are listed in
Table 1 for each of the three shapes of B-form DNA we
are considering. In Figure 2 we apply the rotation vector
ω = (0, ω2, ω3) and shift vector δ = (0, δ2, δ3) to plate
n − 1 and obtain the location and orientation of plate n.
Successive plates in Figure 2 are constructed by rotating
about and shifting along the axes of plates n, n+1, n+2,
etc. The three helical stacks discussed in Table 1 are pic-
tured in Figure 3.
In a deformed state, the displacement and rotation

rates change to δ′ = δ+∆(n) and ω′ = ω+Ω(n) and de-
fine new positions x′(η1, η2, n) for points on plate n. Our
goal is to calculate the energy of this deformed state rela-
tive to the equilibrium helical state to second order in the
small parameters ∆ and Ω, which can in general depend

Table 1. Geometric properties of several helices.

Shape δ ω Helix axis offset Pitch/2π
I (0, 0, δ3) (0, 0, ω3) 0 δ3/ω3
II (0, δ2, δ3) (0, 0, ω3) δ2/ω3 δ3/ω3
III (0, 0, δ3) (0, ω2, ω3) ω2δ3/(ω

2
2 + ω

2
3) δ3ω3/(ω

2
2 + ω

2
3)

on n. We consider plates of thickness δn and calculate the
energy in the deformed state of each plate to order δn,
ignoring terms of order (δn)2 or higher. We then sum over
all plates to obtain the total energy of the rod. Since the
energy of each plate is proportional to δn, the sum over
all plates can be converted into an integral over n.
The energy of the nth plate will depend on the values

of∆ andΩ at n and, to the order we consider, not on their
derivatives with respect to n. The energy of each plate will
be the same function of ∆ and Ω for every n, so we need
only calculate the energy of a single reference plate. Our
elastic theory provides us with distortion energies of the
reference plate as a function of the strains uij =

1
2 (∂iuj +

∂jui) (i, j = x, y, z), where u = x
′−x is the displacement

variable and x,y, and z are the Cartesian coordinates of
the reference plate. By a suitable choice of orientation we
may take e1 = x̂, e2 = ŷ, and e3 = ẑ for the plate of
interest. The free energy for a single plate with thickness
δz is (in units of kBT ):

Fplate

kBT
=
1

2

∫ z+δz
z

∫
dxdydz Kijkluijukl. (5)

Our goal is to express this energy as a function of ∆
and Ω and change integration variables from x, y, and z
to η1, η2, and n. The Jacobian relating the two coordi-
nate systems is found by taking ηα and n derivatives of
x(η1, η2, n) and remembering that eα · eβ = δαβ .

dxdydz = |δ3 + ε3βγωβηγ |dη1dη2dn. (6)

To calculate the strain tensor uij we must take the deriva-
tives of u(η1, η2, n) with respect to ηα and n and then re-
late these coordinates to Cartesian coordinates x, y, and
z fixed on the plate. Since the derivatives of ui with re-
spect to ηα only include terms proportional to δn, the only
derivatives in the strain tensor contributing to the total
free energy in (5) are those in the n-direction. We there-
fore only need to calculate du/dn. Using the equations of
motion, (2, 3), and the expression for x(η1, η2, n), we have
to linear order in Ωα and ∆α

du(η1, η2, n)

dn
=eα

[
∆α + εαβγΩβηγ

]
+ (δα + εαβγωβηγ)

[
e′α − eα

]
. (7)

We can neglect the last terms in (7) since they also are
proportional to δn. (We note that deformations of the base
pairs can be included if we retain these δn contributions.)
We choose the slab at n to have its internal triad

point along a Cartesian coordinate system (x, y, z) fixed
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on the plate with the z-direction aligned with e3 and the
x- and y-directions aligned with e1 and e2 respectively. To
leading order in Ωα and ∆α, the only relevant components
of the strain tensor come from the derivatives

∂zui =
∂ui

∂n

∂n

∂z
= (∆i + εijkΩjηk)/δ3, (8)

where ∂n/∂z = 1/δ3 for the three shapes we are consider-
ing. In (8) the sums over α, β, and γ have been replaced by
sums over i, j, and k because we chose the body-fixed co-
ordinates to be along (x, y, z). We have now reduced the
number of effective elastic constants from 13 to 4 since
only z derivatives contribute to the free energy. The free
energy of a single plate in terms of the strains ∆ and Ω
and the coordinates η1, η2, and n is:

Fplate

kBT
=

∫ n+δn
n

dn

∫
d2η
|δ3 + ε3βγωβηγ |

2δ23

×
{
Kij(∆i + εilmΩlηm)(∆j + εjknΩkηn)

}
, (9)

where Kij is related to Kijkl by

Kij =




1

4
Kzizj i = j = x or i = j = y

1

2
Kzizj i = y, j = z

Kzizj i = j = z.

(10)

We see that our elasticity theory of DNA as a stack of thin,
rigid plates has four contributing elastic constants, Kxx,
Kyy, Kyz, and Kzz. Below we will refer to these elastic
constants as K11, K22, K23, and K33, respectively, since
the plate-fixed axes rotate in space as we move along the
helical stack. We note that an isotropic theory has only
two contributing constants,K = K11/2 = K22/2 andK33.
The total free energy for the collection of plates is obtained
by adding up the contributions to the free energy from
each plate. The total free energy will have the same form
as (9) with the Cartesian indices on the strains (x, y, z)
replaced by the plate-fixed indices (1, 2, 3).

5 DNA effective free energy

We now sum up the contributions from all slices and do
the integrals over η1 and η2 in (9) to get an effective the-
ory for the DNA molecule. Before we actually do this,
we will make some further simplifications and approxima-
tions. We first exploit the symmetry of each slice of the
DNA molecule. In Figure 1 we see that rotating each slice
by π about e1 is a symmetry. Under this symmetry op-
eration η2 switches sign and hence all moments odd in
η2 are zero: 〈η2〉 = 〈ηm1 η2〉 = 0 (m = 1, 2, 3, ...) where
〈·〉 ≡ A−1

∫
d2η (·) and A is the cross sectional area in

the η1 − η2 plane. We also locate the origin of each plate
at its geometric center so that 〈η1〉 = 0.

In the unstressed configuration of B-form DNA the
base pairs make an angle of close to π/2 with the molec-
ular axis [17]. We therefore take ω1,2 p � δ3 where p ≈
34 Å is the pitch of the DNA helix and δ3 ≈ 3.4 Å is
the axial rise of the base pairs. In addition, the geometric
centers of the plates are roughly located on the molecu-
lar axis [17]; we therefore also assume δ1,2/δ3 � 1. We
will characterize the unstressed straight state of B-DNA
by two known macroscopic parameters (the axial rise δ3
and the twist rate of the plates about the molecular axis
ω3 = 2πδ3/p ≈ 0.63 rad) and two unknown microscopic
parameters (δ2 and ω2). In what follows we will assume
that δ2/δ3 and ω2/ω3 are small and work to quadratic
order in these quantities.
The effective free energy is given below in units of kBT .

We neglect the ω2 contribution arising from the Jacobian
in (9) since we are only interested in the lowest order terms
in ω2/ω3. Including this term does not alter our findings
below for the twist-stretch coupling:

FDNA

kBT
= (A/2δ3)

∫
dn

{
K11∆

2
1 +K22∆

2
2 +K33∆

2
3

+K33〈η
2
2〉Ω

2
1 +K33〈η

2
1〉Ω

2
2 +

(
K11〈η

2
2〉+K22〈η

2
1〉

)
Ω23

− 2K23〈η
2
1〉Ω2Ω3 + 2K23∆2∆3

}
. (11)

The diagonal terms in (11) give the energy costs for
deviations in δ and ω from their unstressed values. For
example, K33 controls the energy cost of changing the
translation and rotation of plate n relative to plate n− 1
(as depicted in Fig. 2) from δ3 to δ

′
3 = δ3 +∆3 and from

ω2 to ω
′
2 = ω2 + Ω2 respectively. These deviations in the

rotations and shifts will change the overall shape of the he-
lical stack. For example, adding a nonzero Ω2 to shape I
causes the plates to become tilted relative to the helix axis
and the helical curve connecting the centers of the plates
to have a nonzero radius. The off-diagonal terms in (11)
control the coupling between excess shifts and rotations.
To lowest order in ω2/ω3, K23 only couples excess shifts
along e2 to those along e3 and excess rotations about e2
to those about e3.

6 Twist-stretch coupling

Motivated by recent stretching experiments on torsionally
constrained single molecules of DNA [10], we rewrite (11)
in terms of the relative overtwist σ about the molecular
axis and the relative stretch ε along the molecular axis.
To accomplish this we must first find ε and σ in terms of
the rotation and shift variables Ωi and ∆i. After we incor-
porate ε and σ into (11), we minimize over the remaining
unconstrained variables. This gives us the twist-stretch
energy in terms of the elastic constants Kij and the geo-
metric parameters of the DNA helix. We can then iden-
tify the stretch modulus B, the twist modulus C, and the
twist-stretch modulus D. We note that this twist-stretch
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energy neglects the effects of thermal fluctuations; these
effects have been studied recently [6,13].
We now derive the twist-stretch coupling for the three

shapes described in Table 1 by considering the general
case ω2, δ2 6= 0 and then neglecting ω2δ2 cross terms. The
unstressed configuration is therefore ω = (0, ω2, ω3) and
δ = (0, δ2, δ3). Each of the three equilibrium shapes men-
tioned previously can be obtained from this parameteriza-
tion, for instance, shape II is generated by taking δ2 6= 0
and ω2 = 0. We define the stretch along the molecular
axis as the relative deviation in the extension L along the
molecular axis from its unstressed value L0,

ε =
L

L0
− 1. (12)

To find ε in terms of ∆i and Ωi we must determine the
extension L from (4). We see that each base pair step
increases the extension by an amount δ · ω/|ω| in the
direction ω/|ω|. The total extension for N steps in the
distorted configuration is therefore

L = Nδ′ ·
ω′

|ω′|
(13)

where the primes refer to the distorted state, i.e. δ′ =
(∆1, δ2 +∆2, δ3 +∆3). We can now expand (12) to linear
order in the Ωi and ∆i and to quadratic order in the small
parameters δ2/δ3 and ω2/ω3:

ε =
∆3

δ3
+
(δ2
δ3
−
ω2

ω3

)Ω2
ω3
+
ω2

ω3

∆2

δ3
+
ω22
ω23

Ω3

ω3
· (14)

Note that when the helix axis offset of the helical stack
is zero (δ2 = ω2 = 0), the stretch reduces to ε = ∆3/δ3.
We also note that when ω2 = 0, ∆3 and Ω2 are the only
distortions contributing to the stretch.
We must express the relative excess link σ=(Lk/Lk0)−

1 in terms of the Ωi, where the linking number Lk is the
number of times the plates rotate about the molecular axis
over the length of the stack. In its unstressed state, DNA
has linking number Lk0 = L0/p. (We are working in the
force regime where the molecular axis is nearly straight,
and hence link and twist about the molecular axis are syn-
onymous.) We see from (4) that it takes 2π/|ω| steps to
complete one revolution about the molecular axis. There-
fore in N steps the top plate has rotated by N |ω|/2π rel-
ative to the bottom plate. The relative excess twist about
the molecular axis is therefore

σ =
|ω′|

|ω|
− 1, (15)

where ω′ = (Ω1, ω2 + Ω2, ω3 + Ω3). Expanding (15) to
linear order in the Ωi and to quadratic order in ω2/ω3, we
find

σ =
ω2

ω3

Ω2

ω3
+
(
1−
ω22
ω23

)Ω3
ω3
· (16)

Note that when ω2 = 0, the base pairs are perpendicular
to the molecular axis and the relative excess twist is simply
Ω3/ω3.

Solving (14) for ∆3 and (16) for Ω3, we substitute into
(11) and minimize over ∆1,2 and Ω1,2. This gives the ef-
fective twist-stretch energy per length along the molecular
axis:

FTS(ε, σ)

Nδ3kBT
=
A

2

(
Bε2 + Cσ2 + 2Dεσ

)
, (17)

where N is the total number of plates, B is the stretch
modulus, C is the twist modulus, and D is the twist-
stretch modulus. To zeroth order in the small parameters
δ2/δ3 and ω2/ω3 the stretch and twist moduli are:

B = K33 −K
2
23/K22

C = (ω23/δ
2
3)
(
K11〈η

2
2〉+ 〈η

2
1〉(K22 −K

2
23/K33)

)
. (18)

B, C, and D have dimension L−3 and therefore the coeffi-
cients of the quadratic dimensionless strains in (17) scale
as a persistence length divided by the square of the helical
pitch as found previously [5]. We can estimate the values
of the elastic constants K33 and K11 = K22 = K/2 in
the isotropic limit using the known values of the stretch
and twist persistence lengths and geometric properties of
the DNA helix [5]. In this limit K33 = (2π)

2B̄/(p2A) ≈
85 nm−3 and K = C̄/A2 ≈ 10 nm−3 where B̄ ≈ 80 nm
is the stretch persistence length and C̄ ≈ 100 nm is the
twist persistence length [13].
The twist-stretch couplings Di for the three shapes

given in Table 1 are shown below to lowest order in the
helix axis offsets ri:

DI = 0

DII ≈
K23

K33

(
K33 −

K223
K22

)ω3rII
δ3

DIII ≈
K23

K33

(
K33 −

K223
K22

)ω3rIII
δ3

+
(
K11
〈η22〉

〈η21〉
+K22 −K33

)(ω3rIII
δ3

)2
, (19)

where the helix axis offsets for each shape are rI = 0,
rII = δ2/ω3, and rIII ≈ ω2δ3/ω23 . (The twist-stretch mod-
ulus D ≈ 10 nm−3 measured in the recent experiment of
Strick et al. [10] provides an estimate of K23r.) In per-
forming the calculation of the twist-stretch moduli we
have made two simplifications: 1) we have dropped the
quadratic terms in the helix axis offset that are propor-
tional to K23 and 2) we have not included the ω2 contribu-
tions arising from the Jacobian in (9). This last simplifica-
tion does not affect our conclusions concerning the twist-
stretch coupling (TS) shown in Table 2 since ω2 contribu-
tions can only affect the twist-stretch coupling of shape III
and shape III already has twist-stretch couplings in both
the isotropic and anisotropic models.
We see from (19) that the twist-stretch coupling in

our rigid plate model vanishes when the helix axis offset
r vanishes. However, calculations for a pretwisted rod of
material with a three-dimensional isotropic elasticity yield
a twist-stretch coupling for zero helix axis offset provided
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Table 2. Determination of the twist-stretch coupling for each
shape of B-form DNA is shown below. The symbol TS signifies
that there is a nonzero twist-stretch coupling.

Helix Axis Isotropic Model Anisotropic Model
Shape Offset (K23 = 0) (K23 6= 0)
I 0 0 0
II δ2/ω3 0 TS
III ω2δ3/ω

2
3 TS TS

the rod cross-section is not circular [18]. To achieve consis-
tency with our results, it seems likely that the magnitude
of this coupling decreases as the elastic constants coupling
in-plane strains (i.e., uxx, uxy, uyy) increase. We can thus
view our calculation as the limit when these elastic con-
stants diverge.
We also see that in the isotropic limit (K23 = 0) the

twist-stretch coupling for shape III scales quadratically
with the small helix axis offset as found previously in
references [5,12]. However, when the K23 anisotropy is
nonzero, the twist-stretch coupling scales linearly with the
small helix axis offset. We note that the twist-stretch cou-
pling in the isotropic limit vanishes for shape II since it
has ω2 = 0. However, shape III yields a twist-stretch cou-
pling in both the isotropic and anisotropic cases since it
has ω2 6= 0. This may be explained by considering the
manner in which the plates are stacked in the two dif-
ferent geometries (see Fig. 3). In shape II the plates are
stacked perpendicular to the molecular axis. In this case,
the plates can move along the molecular axis without ro-
tating in response to the stretching force. In shape III the
plates are not perpendicular to the molecular axis, but
are instead perpendicular to the local tangent dr/dn. In
order to align the plates perpendicular to the molecular
axis, they must twist. This implies that an isotropic rod
bent into the shape of a helix will have a twist-stretch cou-
pling, but carving a helical shape out of isotropic material
will not produce a twist-stretch coupling.

7 Comparison to the ribbon model of DNA

We compare our plate model to a ribbon model of DNA re-
cently discussed in reference [12]. There we modeled DNA
as a thin helical ribbon that is only allowed to stretch
along the ribbon axis. Changes in extension along the
molecular axis arose from changes in the angle the ribbon
tangent makes with the molecular axis and from stretching
the ribbon axis. We showed that the twist-stretch coupling
scaled quadratically with the helix axis offset if the twist-
bend, twist-stretch, and bend-stretch couplings for twists
and bends about and stretches along the ribbon axis were
set to zero.
To make a direct comparison between the two mod-

els we consider the unstressed configuration δ = (0, 0, δ3)
and ω = (0, ω2, ω3) and do not allow stretch along the 1
and 2 axes of each plate by setting ∆1 = ∆2 = 0. This

corresponds to a helical stack of plates with the planes
of the plates perpendicular to the tangent to the curve r
connecting the geometric centers of the plates and stretch-
ing only allowed along the tangent dr/dn. When we set
∆1 = ∆2 = 0 in (11), we find a free energy identical to the
one studied previously [12]. We see below that our expres-
sion for the free energy admits all of the couplings found
in the ribbon model, namely the bend-stretch (Ω2∆3),
twist-bend (Ω2Ω3), and twist-stretch (Ω3∆3) couplings.
(We have included the ω2 contributions from the Jaco-
bian and kept each coupling to lowest order in ω2/ω3.)

Fribbon

kBT
= (A/2δ3)

∫
dn

{
K33〈η

2
2〉Ω

2
1 +K33〈η

2
1〉Ω

2
2

+

(
K11〈η

2
2〉+K22〈η

2
1〉

)
Ω23 +K33∆

2
3

+ 2K33
ω2

δ3
〈η21〉Ω2∆3 − 2K23〈η

2
1〉Ω2Ω3

− 2K23
ω2

δ3
〈η21〉Ω3∆3

}
. (20)

We find that the presence of the the last two terms leads
to twist-stretch couplings that scale linearly with the helix
axis offset D ∼ (K23/K33)ω3rIII/δ3. If we set K23 = 0,
the lowest order contribution is quadratic in the helix axis
offset and we obtain the result D ∼ K33(ω3rIII/δ3)2 found
previously [5,12].

8 Conclusion

We have presented an elasticity theory for B-form DNA
modeled as a stack of thin, rigid plates. The symmetry of
the DNA molecule and the assumption of plate rigidity en-
abled us to reduce the number of contributing elastic con-
stants to four. We then derived an effective twist-stretch
energy for DNA in terms of the relative excess twist σ
about the molecular axis and the stretch ε along the molec-
ular axis. We found an effective twist-stretch coupling with
terms that scale linearly and quadratically with the small
helix axis offset. We have argued that deformations of the
base pairs are more costly than deviations in the shifts
and rotations of the base pairs from their unstressed val-
ues. We therefore conclude that in the force regime where
deformations of the plates are negligible, the twist-stretch
coupling is due to a nonzero helix axis offset. We have also
found that shape II, in which the normals to the base pairs
parallel to the molecular axis, does not have a twist-stretch
coupling in the limit K23 = 0. Since recent experiments
show that there is a large twist response to stretch, this
implies that either the coupling K23 is relevant for an elas-
tic description of B-DNA or that the unstressed straight
state of B-DNA is composed of base pairs that tilt relative
to the molecular axis.
An important next step is to estimate the elastic con-

stant K23 to determine the relative magnitudes of the
isotropic and anisotropic terms in the twist-stretch cou-
pling. One might also calculate the twist-stretch coupling
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for DNA plasmids where the unstressed state of the molec-
ular backbone is circular rather than linear. This calcu-
lation could provide a theoretical estimate of the twist-
stretch coupling found in experiments on complexes of
Rec-A protein with DNA plasmid [9].
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Appendix: Translational invariance of the plate
origin

We comment here on the invariance of our model un-
der the choice of the plate origin. This is an important
feature since a twisted stack of plates can be described
by an infinite number of one-dimensional curves depend-
ing on the choice of the reference point on each plate.
We proceed by considering a change in the origin, or, in
particular a change in the coordinate system such that
x = (η1, η2, s) → x̃ = (η1, η2, s) + R where R is an ar-
bitrary vector. While this translation does not affect the
relative rotation of two consecutive plates ω, it does affect
the relative translation. Consider the action of g = (ω, δ)
on x:

x
g
−→x+ δ − ω × x. (21)

We now consider the transformation in (21) shifted by R

and compare it to the transformation g̃ = (ω̃, δ̃) written
in terms of the new coordinate system x̃.

x+R = x̃+ δ̃ − ω̃ × x̃

≡

[(
x̃−R

)
+ δ − ω ×

(
x̃−R

)]
+R. (22)

In order for g and g̃ to act the same way, we must choose
ω̃ = ω and δ̃ = δ − ω ×R. We note that not only does
(ω, δ) transform as above, but in addition, due to the lin-
earity of the transformation, (Ω,∆) transforms the same
way. As a result, we see that the derivatives of interest in
(8) transform as

∂zui =
[
∆i − εijkΩjηk

]
/δ3

−→

[
∆i + εijkΩj

(
ηk −Rk

)
+ εijkΩjR

tr
k

]
/δ3, (23)

where Rtrk is the projection of R onto the η1 − η2 plane.
Since changing the base point on each slab only requires

components of R in that plane, we see that the last two
terms in (23) cancel and the relevant derivatives are invari-
ant with respect to the choice of the origin on the plate.
Thus we are free to choose the most convenient origin for
any calculation of interest.
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