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Effective Temperature in Athermal Systems Sheared at Fixed Normal Load
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We perform molecular dynamics simulations of repulsive athermal systems sheared at fixed normal
load to study the effective temperature TL defined from time-dependent fluctuation-dissipation relations
for density. We show that these systems possess two distinct regimes as a function of the ratio TS=V of the
granular temperature to the potential energy per particle. At small TS=V, these systems are pressure
controlled and TL is set by the normal load. In contrast, they behave as quasiequilibrium systems with
TL � TS that increases with the shear rate at large TS=V. These results point out several problems with
using TL in thermodynamic descriptions of slowly sheared athermal systems.
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Athermal and glassy systems driven by shear or other
external forces are by definition not in thermal equilibrium.
Fluctuations in these systems are induced by the driving
force and do not arise from random thermal motion.
However, there are obvious similarities between equilib-
rium thermal systems and driven systems that reach a
nonequilibrium steady state. In fact, there have been
many attempts to develop thermodynamic and statistical
descriptions [1] of these systems including kinetic theories
for driven granular gases [2], the Edward’s entropy formal-
ism for granular packings [3,4], and applications of equi-
librium linear response and fluctuation-dissipation (FD)
relations [5] to define effective temperatures in aging
[6,7] and sheared glasses [8,9] and compacting [10,11]
and sheared granular materials [12,13].

The approach that employs FD relations to define effec-
tive temperatures in athermal and glassy systems has
shown great promise. First, effective temperatures from
FD relations for several quantities such as density and
pressure have been shown to be the same [8,14]. Second,
FD relations can be applied to dense systems with elastic
particles in contrast to other approaches. FD relations can
also be measured experimentally in athermal systems such
as foams and granular materials [15]. However, it is still
not clear whether effective temperatures from FD relations
can be used in thermodynamic descriptions of dense shear
flows. Many important questions remain unanswered. For
example, what variables should be used to construct an
equation of state, and do effective temperature gradients
generate heat flow? We conduct molecular dynamics (MD)
simulations of sheared, athermal systems to begin to ad-
dress these questions.

Nearly all numerical simulations that have measured FD
relations in sheared athermal and glassy systems have been
performed at constant volume. We conduct our simulations
at constant normal load (or external pressure), instead, and
this has several advantages. First, it has been shown that
sheared, athermal systems behave differently in these two
ensembles. At constant normal load, these systems can
dilate in response to an applied shear stress [16,17]. We
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determine how the ability to dilate affects FD relations and
properties of effective temperatures defined from them.
Simulations at constant normal load also enable us to
determine whether the effective temperature is more sen-
sitive to changes in pressure or shear stress.

Our principal result is that the effective temperature TL
defined from FD relations for density is controlled by
pressure in slowly sheared athermal systems. We find
that for all shear rates below _�c, the effective temperature
is independent of shear rate at fixed normal load. Above _�c,
TL increases with shear rate and as _� increases further the
systems obey quasiequilibrium FD relations at all times.
The characteristic shear rate that separates the pressure-
controlled from the quasiequilibrium regime can be esti-
mated using the ratio of kinetic to potential energy [13].
When the ratio is small, a strong force network exists and
the effective temperature is set by the pressure. When
kinetic energy dominates, velocity fluctuations are large,
which causes frequent rearrangements, diffusion, and qua-
siequilibrium behavior.

We now provide the essential details of the MD simula-
tions. The systems contained N=2 large and N=2 small
particles with equal mass m and diameter ratio 1.4. The
particles interacted via one of the following pairwise,
purely repulsive potentials:

VS�rij� �

�
�1� rij=�ij�

�; (1)

VRLJ�rij� �

72

���ij=rij�
12 � 2��ij=rij�

6 � 1�; (2)

where  is the characteristic energy scale and �ij � ��i �

�j�=2 and rij are the average diameter and separation of
particles i and j. The repulsive linear (� � 2) and Hertzian
(� � 5=2) spring potentials [Eq. (1)] have been used to
model granular materials [18,19]. In contrast to Eq. (1), the
repulsive Lennard-Jones (RLJ) potential [Eq. (2)] has an
infinite repulsive core at small rij. Both interaction poten-
tials are zero for rij 	 �ij.
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FIG. 1. (a) R�t� vs C�t� (solid lines) for density  � ~k� at ~k � 9ẑ
for 3D systems with RLJ interactions and b � 0:5 sheared at
fixed normal load Pext � 0:1. The dotted (dashed) lines have
slope �1=TL ( � 1=TS). Five shear rates are shown: _� � 0:53,
0.30, 0.07, 7:7� 10�3, and 2:0� 10�4 from bottom to top. TL is
constant for _� < _�c � 0:2. (b) Volume fraction ' vs _� for the
same systems in (a). 'rcp � 0:648 for 3D bidisperse systems.
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For athermal dynamics, the position and velocity of each
particle in the bulk is obtained by solving

m
d2 ~ri
dt2

� ~Fri � b
X
j

� ~vi � ~vj�; (3)

where ~Fri � �
P
jdV�rij�=drijr̂ij is the total repulsive force

on particle i, ~vi is the velocity of particle i, b > 0 is the
damping constant, and sums over j include only particles
overlapping particle i. Shear is imposed by moving a rough
and disordered top boundary in the x direction at fixed
speed u, while a similar bottom wall a distance Ly away
remains stationary.

To sustain a fixed normal load Pext in the y direction, the
top boundary was moved rigidly according to

M
d2Ly
dt2

� Fwy � Fext � b
X
j

�dLy
dt

� vyj

�
; (4)

where M is the mass of the top wall, Fwy is the total
repulsive force acting on the top wall from interactions
with particles in the bulk, and Fext � PextLxLz (PextLx) is
the external normal force applied to the top wall in 3D
(2D). After an initial transient at each u and Pext, forces in
the y direction balance on average, the system fluctuates
about hLyi, and a linear shear flow is established with shear
rate _� � u=hLyi. Relatively small system sizes N � 1024
were studied to inhibit the formation of nonlinear velocity
profiles [20]. Periodic boundary conditions were imple-
mented in the x (z) direction. We use �, , and �

����������
m=

p
,

where � is the small particle diameter, as the units of
length, energy, and time, respectively. All quantities are
expressed in reduced units below.

In equilibrium systems, the fluctuation-dissipation theo-
rem requires that the autocorrelation function of a physical
quantity is proportional at all times t to that quantity’s
response to a small conjugate perturbation, and the pro-
portionality constant gives the temperature. Response and
correlation are not proportional at all times in sheared
glassy and athermal systems [5]. However, several recent
studies of FD relations for density in these systems have
shown that they can still be used to define an effective
temperature that characterizes shear-induced fluctuations
at long-time scales [8,9]. Similar measurements in 3D
sheared athermal systems, but at fixed normal load, are
displayed in Fig. 1(a). We plot the integrated response
R�t� � h � ~k; t� �  � ~k; 0�i"=" of the density of the large
particles at wave vector ~k � k0ẑ,

 � ~k; t� �
1

NL

XNL

j�1

ei ~k�~rj�t� (5)

in the presence of perturbing forces ~rj�" � ~k; t�� applied to
the jth large particle for times t 	 0 versus the density
autocorrelation function C�t� � h � ~k; t� �� ~k; 0�i"�0 [21].
Figure 1 shows that R�t� versus C�t� for  � ~k� can be non-
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linear at short times in sheared athermal systems. In con-
trast, the slope of R�C� is constant at long times, which
allows the long-time effective temperature TL to be defined
as

�1=TL �
dR
dC

��������C!0
: (6)

Previous studies have shown that TL does not depend
strongly on the magnitude [8] or direction of ~k [9]. The
slope of R�C� for  � ~k� at ~k � k0ẑ in the t! 0 limit is
�1=TS, where TS � mhv2zi is the granular temperature that
measures fluctuations in the z component of the velocity.

In Fig. 1(a), we show R�C� for several shear rates at fixed
normal load Pext � 0:1. At low shear rates, the long-time
slope of R�C� is independent of _�. However, when _�
increases above a characteristic shear rate _�c, the long-
time slope of R�C� begins to decrease with increasing _�.
Thus, at constant normal load, TL is constant for _� < _�c
but increases for _� > _�c. Figure 1(b) shows the variation of
the volume fraction ' with _� for the systems in Fig. 1(a).
To compensate for increases in normal force from in-
creases in _�, the systems expand in the y direction.
Figure 1(b) emphasizes that effective temperatures depend
1-2
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on the time scale over which they are measured even in
systems that are 20% below random close packing.

The results for R�C� for  � ~k� at constant normal load
presented in Fig. 1(a) are intriguing; they suggest that TL is
fixed by the pressure in slowly sheared systems. To inves-
tigate this question further, we compare TS and TL in
systems sheared at constant normal (CN) load and constant
volume (CV) fraction in Fig. 2. We find that TS is insensi-
tive to the choice of the ensemble; TS scales as a power law
in _� over 3 decades in both ensembles. However, the _�
dependence of TL at CN and CV differs significantly. TL in
the two ensembles were initially matched at _� � 10�4 and
Pext � 0:02 by setting ' in the CV simulation equal to h'i
from the simulation at fixed Pext � 0:02. At fixed ', TL
increases by more than a factor of 3 over the range of _�
studied. The inset to Fig. 2(b) suggests that the steady rise
in TL is due to the shear-induced increase in the internal
pressure P at CV. In contrast, TL at fixed Pext � 0:02
remains constant over the same range of _�. TL only begins
to increase when _� > _�c, which in this case is at least
3 decades above the quasistatic _� regime at CV.

To test the generality of these results, we performed
measurements of R�C� for  � ~k� at two values of the damp-
ing constant (b � 0:5 and 0.04), over a range of normal
loads from Pext � 0:02 to 10, and over 4 decades in shear
rate [22]. The results are summarized in Fig. 3. Figure 3(a)
shows that for each Pext, there is a wide range of _� over
which TL � T0

L is constant. TL begins to increase above a
characteristic shear rate _�c, which decreases with normal
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FIG. 2. (a) TS and (b) TL vs _� for 3D systems with RLJ
interactions and b � 0:5 sheared at fixed Pext � 0:02 (downward
triangles) or fixed volume fraction ' � 0:68 (leftward triangles).
The dotted line in (a) has slope 1.4. The inset to (b) shows the
internal pressure P vs _� at fixed ' � 0:68.
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load. Figure 3(b) shows that TL begins to deviate from T0
L

as TS increases. In this regime, large velocity fluctuations
give rise to frequent rearrangement events and particle
diffusion. At each Pext, there is a TS (or _�) regime where
sheared athermal systems behave as quasiequilibrium sys-
tems with response proportional to correlation at all times
and a single effective temperature TS � TL that increases
with shear rate. This nontrivial result is not found in
sheared glasses because they are thermostated with TS
below the glass transition temperature and remain arbi-
trarily far from equilibrium as the shear rate is tuned.

We seek a general criterion to determine whether
sheared athermal systems exist in the pressure-controlled
or quasiequilibrium regime. As a first step, we consider the
ratio ) of the granular temperature TS to the total potential
energy per particle V. For each value of the damping
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FIG. 3. TL plotted vs (a) _� and (b) TS. Panel (c) shows TL=T0
L

vs the ratio of TS to the total potential energy per particle V. The
results were obtained from 3D systems with RLJ interactions at
fixed Pext. Five loads [Pext � 0:02 (downward triangles), 0.05
(upward triangles), 0.1 (diamonds), 0.5 (squares), and 1.0
(circles)] and three loads [Pext � 2 (rightward triangles), 5 (left-
ward triangles), and 10 (small circles)] were studied at b � 0:5
(open symbols) and 0.04 (filled symbols), respectively. In (a), the
dotted line defines the low shear rate value T0

L of the long-time
effective temperature at Pext � 0:5. In (b), TL � TS is indicated
by the dotted line. In (c), the dotted line identifies the ratio TS=V
above which TL=T0

L begins to increase for these systems.
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FIG. 4. T0
L vs Pext for several sheared systems at b � 0:5: 3D

RLJ (triangles), 2D RLJ (pluses), 3D linear spring (circles), and
3D Hertzian spring (squares). The dashed line has slope 0.85.
Pext > 10�1 (10�2) were not considered for linear (Hertzian)
springs because they caused unphysical overlaps.
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constant b, we find that there is a range of normal loads
Pext >Pcext, where TL=T0

L versus TS=V is independent of
Pext, with Pcext increasing inversely with b. Figure 3(c)
shows that there is a characteristic ratio )c � 0:1 indepen-
dent of b that separates the two regimes. These results also
imply that the effective temperature TL measured in
sheared glasses is controlled by pressure since TS=V � 1
in these systems [8]. The collapse of TL=T0

L at large TS=V
occurs only in highly damped and compressed athermal
systems; this surprising result will be discussed in greater
detail elsewhere [23].

In Fig. 4 we plot the long-time effective temperature T0
L

in the pressure-controlled regime vs Pext for sheared athe-
rmal systems in 2D and 3D with repulsive linear and
Hertzian spring and Lennard-Jones interactions. All of
the data collapse onto a power law with exponent 0:85�
0:02. If both the normal load [24] and T0

L scaled linearly
with the yield stress of the material, the exponent in Fig. 4
would be 1. Our preliminary results indicate that the yield
stress and pressure are proportional in these athermal
systems [23], which implies that T0

L scales sublinearly
with the yield stress.

We used MD simulations to study properties of the
effective temperature TL defined from FD relations for
density in athermal systems sheared at fixed normal load.
These systems possess two distinct regimes as a function of
the ratio TS=V of kinetic to potential energy. At small
ratios, these systems are pressure controlled and TL is set
by the normal load. At large TS=V, they behave as quasie-
quilibrium systems with TL � TS that increases with shear
rate. These results point out several difficulties in using TL
in thermodynamic descriptions of slowly sheared athermal
systems. First, the variables TL, pressure, and density alone
do not provide a complete description of these systems
since TL and pressure can remain constant while density
can vary substantially. Also, these results suggest that when
two slowly sheared, athermal systems are placed in contact
but maintained at different pressures, TL in the two systems
does not equilibrate. Thus, in this regime TL does not
05570
behave as a true temperature variable. We are currently
attempting to identify a set of variables that can be used in
a thermodynamic description of dense granular shear
flows.
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