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We focus on the response of mechanically stable (MS) packings of frictionless, bidisperse disks to thermal
fluctuations, with the aim of quantifying how nonlinearities affect system properties at finite temperature. In
contrast, numerous prior studies characterized the structural and mechanical properties of MS packings of
frictionless spherical particles at zero temperature. Packings of disks with purely repulsive contact interactions
possess two main types of nonlinearities, one from the form of the interaction potential (e.g., either linear
or Hertzian spring interactions) and one from the breaking (or forming) of interparticle contacts. To identify
the temperature regime at which the contact-breaking nonlinearities begin to contribute, we first calculated
the minimum temperatures Tcb required to break a single contact in the MS packing for both single- and
multiple-eigenmode perturbations of the T = 0 MS packing. We find that the temperature required to break
a single contact for equal velocity-amplitude perturbations involving all eigenmodes approaches the minimum
value obtained for a perturbation in the direction connecting disk pairs with the smallest overlap. We then studied
deviations in the constant volume specific heat CV and deviations of the average disk positions �r from their
T = 0 values in the temperature regime TCV

< T < Tr , where Tr is the temperature beyond which the system

samples the basin of a new MS packing. We find that the deviation in the specific heat per particle �C
0
V /C

0
V relative

to the zero-temperature value C
0
V can grow rapidly above Tcb; however, the deviation �C

0
V /C

0
V decreases as N−1

with increasing system size. To characterize the relative strength of contact-breaking versus form nonlinearities,
we measured the ratio of the average position deviations �rss/�rds for single- and double-sided linear and
nonlinear spring interactions. We find that �rss/�rds > 100 for linear spring interactions is independent of
system size. This result emphasizes that contact-breaking nonlinearities are dominant over form nonlinearities in
the low-temperature range Tcb < T < Tr for model jammed systems.

DOI: 10.1103/PhysRevE.96.062902

I. INTRODUCTION

Static packings of frictionless disks and spheres are in-
formative model systems for studying jamming in granular
media [1] and dense colloidal suspensions [2]. Mechanically
stable (MS) packings of frictionless disks in two spatial
dimensions (2D) are isostatic at jamming onset [3] and possess
N0

c = 2N ′ − 1 contacts (with periodic boundary conditions),
where N ′ = N − Nr is the number of disks in the force-
bearing contact network, N is the total number of disks, and Nr

is the number of “rattler” disks with fewer than three contacts
per disk [4]. [See Figs. 1(a) and 1(b).] Mechanically stable
disk packings possess a full spectrum of 2N ′ − 2 nonzero
eigenvalues of the dynamical matrix (i.e., the Hessian of
the interaction potential [5]), which represent the vibrational
frequencies of the zero-temperature packings in the harmonic
approximation. The structural and mechanical properties of
isostatic disk and sphere packings near jamming at zero
temperature have been reviewed extensively [6–8], including
the pressure scaling of the bulk and shear moduli, excess
contact number, and low-frequency plateau in the density of
vibrational modes near jamming onset. More recently, several
groups have investigated how the scaling behavior of these
quantities is affected by thermal fluctuations using computer
simulations [9–12], and mechanical vibrations in experiments
of granular media [13–15].

Several authors have used computer simulations of soft
disks that interact via purely repulsive linear spring potentials
to study how the density of vibrational modes of mechanically
stable packings at zero temperature and finite overcompression
(with potential energy per particle U > 0) changes with
increasing temperature. This work has shown that there is a
characteristic temperature T ∗ ∼ U ∼ �φ2, where �φ = φ −
φJ is the deviation in the packing fraction above jamming onset
at φJ , above which the density of vibrational modes begins to
deviate strongly from that at zero temperature [10,11,16]. In
addition, they showed that T ∗ corresponds to the temperature
above which an extensive number of the contacts in the T = 0
contact network has broken.

In prior publications [11,17], we performed computational
studies to measure the temperature at which linear response
breaks down. This question is very important, but also subtle,
since one can define linear response in a strict sense (in which
the particle positions and velocities oscillate at frequencies
given by the eigenfrequencies of the dynamical matrix) or in a
less strict sense (in which the binned density of states is similar
to that at zero temperature). It is known that both contact
breaking and nonlinearities from the form of the interparticle
potential can contribute to the breakdown of linear response.
However, the relative strengths of the nonlinearities arising
from these two effects have not been measured for packings
of purely repulsive frictionless particles. The present work
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FIG. 1. Examples of isostatic mechanically stable bidisperse disk packings at zero temperature with (a) Nc = N 0
c = 127 contacts and Nr = 0

rattler particles and (b) Nc = N 0
c = 115 contacts and Nr = 6 rattler particles. The nonrattler (rattler) disks are outlined in black (red). For both

(a) and (b), the total number of disks N = 64, the potential energy per particle U = 10−12, and the solid black lines connecting disks centers
indicate force-bearing interparticle contacts. (c) The fraction of mechanically stable packings Nm(U )/Ntot that possess m = Nc − N 0

c = 0
(circles), 2 (crosses), and 4 (plus signs) excess contacts as a function of UN4 for three system sizes N = 32 (solid lines), 128 (dashed lines),
and 256 (dotted lines). (d) The number of excess contacts m normalized by N averaged over 5000 MS packings and plotted versus U for three
system sizes N = 32 (circles), 128 (crosses), and 256 (plus signs). The dashed line has slope 0.25.

contributes to the understanding of the breakdown of linear
response by measuring the relative strength of the contact
breaking nonlinearities and nonlinearities from the form of the
interparticle potential at temperatures near and above the first
contact breaking, and below the temperature at which particle
rearrangements occur.

As mentioned above, an extensive number of broken
contacts (or more [12]) are required to significantly change
the binned density of vibrational modes. However, do any
important physical quantities change when a single contact
or subextensive number of contacts in the zero-temperature
contact network is broken by thermal fluctuations? The
answer to this question may depend on the number of
excess contacts in the T = 0 contact network m = Nc − N0

c .
For example, if a zero-temperature packing has zero excess
contacts (m = 0), the breaking of a single contact would
cause the system to become unjammed. In Fig. 1(c), we
show the fraction of MS packings with m excess contacts,
Nm(U )/Ntot, can be collapsed for each m and different system
sizes by plotting Nm(U )/Ntot as a function of UN4. We
find that the average number of excess contacts scales as
〈m〉/N ∼ U 1/4 [Fig. 1(d)], which is consistent with pre-
vious studies at zero temperature [6]. Thus, in the large-
system limit isostatic packings with m = 0 exist only at
U = 0.

In this article, we will first characterize the minimum
temperature required to break a single contact as a function
of the protocol used to add thermal fluctuations. We focus
on this quantity because it can be determined exactly in the
low-temperature limit from the eigenvalues and eigenmodes of
the dynamical matrix for the T = 0 MS packings. In particular,
we will measure the minimum temperature T1(m,m − 1) above
which a T = 0 MS packing with m excess contacts changes
to a packing with m − 1 excess contacts in response to a
perturbation along a single eigenmode. Thermal fluctuations
can also be added to the zero-temperature MS packing by
perturbing the system along a superposition of n eigenmodes
of the dynamical matrix, and we can measure the minimum
temperature, Tn(m,m − 1), required to break a single contact.
We will show that that the minimum temperature required
to break a single contact over all single-mode excitations
scales as T1(m,m − 1) ∼ U/Nα , where α ≈ 2.6 ± 0.1, which
is consistent with previous measurements [17]. For mul-
timode excitations, Tn(m,m − 1) decreases as the number
of eigenmodes n involved in the perturbation increases,
reaching a minimum for perturbations with equipartition of
all 2N ′ − 2 eigenmodes. The minimum temperature required
to break a single contact for a perturbation with equipar-
tition of all eigenmodes of the T = 0 dynamical matrix
scales as T2N ′−2(m,m − 1) ∼ N−β , where β ≈ 2.9 ± 0.1. This
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system-size dependence is stronger than that for single-mode
perturbations.

We also measured the temperature required to break
multiple contacts. In this case, we employed molecular
dynamics simulations to determine the temperature at which
a given fraction of simulation snapshots possess a specified
number of contacts. This information cannot be obtained from
the T = 0 dynamical matrix, since the eigenmodes change
after contacts begin breaking. We find a power-law scaling
relation between the temperature, number of broken contacts
Nbc = N0

c + m − Nc, system size, and potential energy per
particle U .

After investigating the temperatures at which a given
number of zero-temperature contacts break, we search for
physical quantities that may be sensitive to small changes in
the interparticle contact networks. We focus on two quantities:
(1) the deviation in the specific heat �CV /C0

V = (CV −
C0

V )/C0
V from the zero-temperature value C0

V and (2)
the deviation of the average positions of the disks xi

and yi in a packing at a given temperature, �r =√∑N
i=1[(x̄i − x0

i )2 + (ȳi − y0
i )2]/N , from the T = 0 disk posi-

tions, �R0 = {x0
1 ,y

0
1 , . . . ,x0

N ′ ,y
0
N ′ }. Calculating �r is important

for understanding how far the initial packing can move in
configuration space before transitioning to the basin of a new
MS packing. We compare �rss for systems with purely re-
pulsive (single-sided) linear and nonlinear spring interactions
to �rds obtained for systems with double-sided linear and
nonlinear spring interactions, which allows us to quantify
the additional nonlinearities that arise from contact breaking.
We find that both quantities, �CV /C0

V and �rss/�rds , are
sensitive to the breaking of a single contact. However, the
deviation �CV /C0

V decreases with increasing system size. In
contrast, �rss/�rds > 100 for purely repulsive linear springs
and does not depend strongly on system size. We also quantify
�rss/�rds for packings with Hertzian spring interactions and
show that contact breaking increases the magnitude of the
nonlinearities at finite temperature, but not as much as for
linear repulsive spring interactions.

There are several important temperature scales to consider
when studying the response of MS packings to thermal
fluctuations. In Fig. 2, we show four temperature regimes:
0 < T < Tcb, Tcb < T < Tr , Tr < T < Tg , and T > Tg . For
0 < T < Tcb, where Tcb is the minimum temperature at which
a single contact breaks, the system is weakly nonlinear with
“form” nonlinearities that arise when the interaction potential
cannot be expressed exactly as a harmonic function of the
disk positions. (We use the notation Tcb for the temperature
required to break a single contact when we do not specify
the type of initial perturbation.) In the temperature regime
Tcb < T < Tr , contacts begin breaking, both form and contact-
breaking nonlinearities occur, and the system remains in
the basin of attraction of the original MS packing. In this
regime �rss can be much larger than �rds due to contact-
breaking nonlinearities. At larger temperatures, Tr < T < Tg ,
the system rearranges and moves beyond the basin of attraction
of the original T = 0 MS packing, but the time scales are
prohibitively long to allow complete structural relaxation.
Finally for T > Tg , the system is liquid-like with a finite
structural relaxation time.

FIG. 2. Schematic of four important temperature regimes when
studying the response of MS packings to thermal fluctuations. For
T < Tcb, the T = 0 contact network remains intact. In this regime,
“form” nonlinearities occur when the interparticle potential cannot
be written exactly as a harmonic function of the disk positions. For
Tcb < T < Tr , the T = 0 contact network changes, both form and
contact-breaking nonlinearities occur, and the system remains in the
basin of attraction of the original MS packing. For Tr < T < Tg , the
system can move to the basins of attraction of other MS packings,
but the relaxation times are sufficiently long that structural relaxation
is not complete. For T > Tg , the system is liquid-like with finite
structural relaxation times. This article focuses on the (unshaded)
temperature regimes that occur for 0 < T � Tr .

We emphasize that a number of studies have characterized
the structural and mechanical properties of MS packings at
T = 0 [18–20]. Further, many studies have tracked the growth
of the dynamical heterogeneities and the structural relaxation
times as T → Tg from above [21–23]. However, few studies
have focused on the low-temperature regimes 0 < T < Tcb

and Tcb < T < Tr , where the contribution of contact breaking
to the magnitude of the nonlinearities can be quantified at finite
temperature. In future work, we will focus on the temperature
regime Tr < T < Tg to understand the connection between the
geometry of the high-dimensional energy landscape and slow
structural relaxation.

The remainder of this article will be organized as follows.
In Sec. II, we describe the methods we employ to generate
zero-temperature MS packings, the protocols used to add
thermal fluctuations to the MS packings, and the measurements
of the changes in the specific heat �C0

V /C0
V and average

particle positions �r of the packings from their T = 0 values
as a function of temperature. In Sec. III, we present our results
for �CV /C0

V and �r . We show that �CV /C0
V increases more

strongly when a single contact in the T = 0 MS packing
changes. We find that �CV /C0

V decreases with increasing
system size; however, the quantity �rss/�rds , which identifies
the distinct contribution of contact breaking to the nonlinear
response, does not depend strongly on system size. In
Sec. IV, we summarize our results and highlight promising
future research directions that stem from this work. We also
provide several Appendices that include additional details of
the methods and calculations we implement. In Appendix A,
we provide additional details concerning the method we used
to calculate the minimum temperature required to break a
single contact with perturbations that involve n eigenmodes of
the T = 0 dynamical matrix with equal velocity amplitudes.
In Appendix B, we discuss the additional nonlinearities that
arise from rattlers in MS packings and affect �r(T ) at finite
temperatures. In Appendix C, we describe the methods that
we employed to measure the rearrangement Tr and glass
transition Tg temperatures. Finally, in Appendix D, we show
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that the leading order term in the change in the average position
scales linearly with temperature, �r ∼ T , for a particle in a
one-dimensional cubic potential well.

II. METHODS

Our computational studies focus on measuring the response
of MS packings composed of N bidisperse frictionless disks
(N/2 large and N/2 small disks with diameter ratio σL/σS =
1.4) to thermal fluctuations with system sizes in the range from
N = 16 to 1024 disks using periodic boundaries in square
simulation cells. The disks (all with mass m) interact via the
pairwise, purely repulsive potential,

U (rij ) = ε

α

(
1 − rij

σij

)α

�

(
1 − rij

σij

)
, (1)

where rij is the separation between the centers of disks i and j ,
σij = (σi + σj )/2 is the average disk diameter, ε is the energy
scale of the repulsive interaction, �(x) is the Heaviside step
function, and α = 2 (5/2) corresponds to linear (Hertzian)
repulsive spring interactions. We also consider disk packings
that interact via double-sided spring potentials with a similar
form to that in Eq. (1):

Uds(rij ) = ε

α

∣∣∣∣1 − rij

σij

∣∣∣∣
α

. (2)

For studies involving interactions in Eq. (2), the interparticle
contact network is fixed to that in the T = 0 MS packing for
all temperatures [24]. Comparison of the results from single-
versus double-sided interactions allows us to determine the
strength of the nonlinearities that arise from contact breaking
alone.

We generate MS packings as function of the total potential
energy per particle U = 	i>jU (rij )/N using a protocol that
successively compresses or decompresses the system in small
packing fraction steps �φ followed by conjugate gradient
energy minimization [4]. The compression-decompression
protocol is terminated when the total potential energy per
particle satisfies |Uc − U |/U < 10−16, where Uc is the current
and U is the target potential energy per particle.

Another type of packing-generation protocol could involve
cooling to a nonzero temperature T > 0 of interest. If the
cooling rate is too slow or the final temperature of the packing
is too high, particle rearrangements can occur. We have shown
in previous studies that such protocols give rise to microphase
separation and local ordering in bidisperse systems [25]. In
contrast, here we focus on fast quenches and packings with
final temperatures T < Tr below the temperature required
to induce particle rearrangements. Thus, cooling to zero
temperature and then heating up to a finite temperature T

will yield the same results as generating a packing directly at
a nonzero temperature.

The initial perturbations will be applied along one or
more of the eigenmodes of the dynamical matrix of the
T = 0 MS packings. We denote the 2N ′ − 2 nonzero eigen-
frequencies of the dynamical matrix as {ω1, . . . ,ω2N ′−2}.
Each eigenfrequency ωi has an associated eigenvector Êi =
{ei

x1,e
i
y1,e

i
x2,e

i
y2, . . . ,e

i
xN ′ ,e

i
yN ′ } that satisfies (Êi)2 = 1. The

disk velocities �V 0 = {v0
x1,v

0
y1, . . . ,v

0
xN ′ ,v

0
xN ′ } corresponding

to the initial perturbation can be expressed as a linear
combination of the eigenmodes of the dynamical matrix:

�V 0 =
2N ′−2∑
i=1

Aiω
iÊi . (3)

We will use the notation that uppercase vectors, e.g., �R and
�V , include both the particle and spatial dimensions, while
lowercase vectors, e.g., �r and �v, only include the spatial
dimensions.

For sufficiently small amplitude perturbations, the time
evolution of the multiparticle velocities and positions are given
in the harmonic approximation by

�V (t) =
2N ′−2∑
i=1

Aiω
iÊi cos(ωit) (4)

and

�R(t) = �R0 +
2N ′−2∑
i=1

AiÊ
i sin(ωit), (5)

where �R0 gives the disk positions in the T = 0 MS packing.
We calculate the temperature of the system using the average
kinetic energy per particle K/N [26].

For sufficiently large temperatures, when multiple T = 0
contacts break and new contacts form, we cannot use the
T = 0 eigenmodes of the dynamical matrix to determine the
properties of the contact networks. Thus, we will characterize
the relation between the temperature, number of contacts,
system size, and potential energy per particle using molecular
dynamics simulations at constant number of disks, area, and
total energy E. For the MD simulations, we use the velocity
Verlet integration scheme with a time step �t ∼ tcol/40,
where tcol = σS

√
ε/m is a typical interparticle collision time

scale, which provides total energy conservation with relative
standard deviation δE/E < 10−13.

To investigate the effects of contact breaking, we will
measure two physical quantities as a function of the amplitude
(or temperature) of the thermal fluctuations. We will first study
the change in the constant volume specific heat �CV from its
zero-temperature value C0

V = 2N ′kb:

�CV (T )

C0
V

= CV (T ) − C0
V

C0
V

, (6)

where CV = dE/dT and kb is the Boltzmann constant. In the
low-temperature limit, Eqs. (4) and (5) can be used to calculate
the total energy:

E = K(t) + U(t) = U0 + m

2

2N∑
i=1

A2
i ω

2
i = U0 + 2N ′kbT ,

(7)

where U0 is the initial total potential energy. We will measure
the specific heat per particle CV in the molecular dynamics
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simulations by taking the temperature derivative numerically,

CV (T ) = 1

N ′
E(T + dT ) − E(T )

dT

= kb

E(T + dT ) − E(T )

K(T + dT ) − K(T )
. (8)

From Eq. (8), the deviation in the specific heat per particle can
be written as

�CV (T )/C
0
V = 1

2

E(T + dT ) − E(T )

K(T + dT ) − K(T )
− 1. (9)

We will also quantify the changes in the average positions
of the disks, �r , as a function of temperature. We define �r

as

�r(T ) =
√√√√ 1

N ′

N ′∑
i=1

{[
x̄i(T ) − x0

i

]2 + [
ȳi(T ) − y0

i

]2}
, (10)

where (x0
i ,y

0
i ) are the x and y coordinates of the ith disk in the

T = 0 MS packing and (x̄i(T ),ȳi(T )) are the time-averaged
x and y coordinates of disk i at temperature T . �r(T ) can
be interpreted as the average distance in the 2N ′-dimensional
configuration space between the T = 0 MS packing and the
packing at finite T . Note that rattler disks are not included in
the calculations of �r .

III. RESULTS

We organize our results into two main sections. In Sec. III A,
we discuss the results for the minimum temperatures required
to break one or more contacts for single- and multimode pertur-
bations. In Sec. III B, we show our results for the temperature
dependence of the deviation in the specific heat per particle
�CV and deviation in the average disk positions �r from
those in the T = 0 MS packing as a function of temperature.
For T < Tcb, form nonlinearities give rise to nonzero values of
�CV and �r . For T > Tcb, both form and contact-breaking
nonlinearities are present. By comparing �CV and �r for
single- and double-sided spring interactions, we can isolate
the effects of the contact-breaking nonlinearities. We find that
for Tcb < T < Tr the specific heat deviation �CV scales as
N−1, whereas �r is roughly independent of system size.

A. Temperatures required to break single and multiple contacts

In this section, we study the minimum temperature required
to break a given number of contacts in the T = 0 MS packing.
We first focus on the breaking of a single contact and then
study the breaking of multiple contacts. We will show that
the temperature required to break the first contact depends
strongly on the form of the initial perturbation. For example,
the minimum temperature is smaller for perturbations along
multiple eigenmodes compared to the minimum temperature
for perturbations along a single eigenmode.

At sufficiently low temperatures, we can use the harmonic
approximation for the disk positions given in Eq. (5) to
calculate exactly the minimum temperature required to break
a single contact. If we introduce a perturbation along a single
eigenmode k, the minimum temperature required to break a
single contact T k

1 (m,m − 1) can be calculated by first solving

N
101 101.5 102 102.5 103

〈T
1(

m
,m

−
1)
〉/

U

10-10

10-8

10-6

10-4

10-2

FIG. 3. The minimum temperature T1(m,m − 1) required to
break a single contact when perturbing an MS packing along one
of the eigenmodes of the dynamical matrix averaged over 5000 MS
packings, normalized by the potential energy per particle U , and
plotted as a function of system size N . T1(m,m − 1) was obtained by
minimizing over all single-mode perturbations. We include results for
U = 10−12 (circles), 10−8 (crosses), and 10−4 (pluses). The slope of
the dashed line is −2.6. Rattler disks are removed from the packings
prior to performing these calculations.

r2
ij = σ 2

ij for all contacting disk pairs i and j and then finding
the minimum perturbation amplitude (or temperature) over all
disk pairs:

T k
1 (m,m − 1)

= min
i>j

⎧⎪⎨
⎪⎩

⎡
⎣

∣∣�δk
ij · �r0

ij

∣∣∣∣�δij

k

∣∣2

⎛
⎝

√√√√1 +
(
σ 2

ij − ∣∣�r0
ij

∣∣2)∣∣�δij

k

∣∣2

∣∣�δij

k · �r0
ij

∣∣2 − 1

⎞
⎠

⎤
⎦

2
⎫⎪⎬
⎪⎭,

(11)

where �δk
ij = �ek

ij sin(ωkt)/ωk and �ek
ij = (ek

xi − ek
xj ,e

k
yi − ek

yj ).
To calculate the minimum T k

1 (m,m − 1) over all eigen-
modes, we set |sin(ωkt)| = 1 and find T1(m,m − 1) =
mink T k

1 (m,m − 1). (See additional details in Appendix A.)
In Fig. 3, we show 〈T1(m,m − 1)〉/U averaged over 5000

MS packings as a function of system size N for three values
of U . We find that 〈T1(m,m − 1)〉 normalized by U collapses
the data and 〈T1(m,m − 1)〉/U displays power-law scaling
with system size, 〈T1(m,m − 1)〉/U ∼ N−α , where α ≈ 2.6 ±
0.1. Thus, 〈T1(m,m − 1)〉 tends to zero in the large-system
limit [17], which stems from the increasing probability for MS
packings to possess anomalously small overlaps as N → ∞.

In several recent publications [27–30], researchers have
investigated the stability of zero-temperature packings by
measuring the distribution of small interparticle forces using
replica symmetry breaking theoretical studies and numerical
simulations of frictionless bidisperse disk and sphere packings.
The results show that the distribution of force magnitudes
P (F ) at small forces displays power-law scaling: P (F ) ∼ Fθ ,
with an exponent that varies from θ ≈ 0.2 to 0.4, depending
on the nature of the rearrangement (either local or extended)
that results when removing a given small force. (The exponent
θ ≈ 0.2 is obtained when all small forces are considered.)
We measured the minimum interparticle force magnitude,
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FIG. 4. (a) The minimum temperature 〈Tn(m,m − 1)〉 (normalized by U and averaged over 5000 MS packings) required to break a single
contact in response to perturbations that include n = 1,2, . . . ,6 eigenmodes of the dynamical matrix. 〈Tn(m,m − 1)〉 is obtained by minimizing
over all possible n-mode combinations of the 2N ′ − 2 eigenmodes for each MS packing at U = 10−12 (dashed line), 10−8 (solid line), and 10−4

(dotted line). The horizontal lines give the minimum temperature 〈Tmin/U〉 required to remove the smallest overlap between a pair of contacting
disks at each U (averaged over 500 MS packings). The inset shows the scaling of 〈Tmin/U〉 with system size N for the same values of U as in
the main panel. The slope of the dashed line is −2.9. (b) Difference in the potential energy per particle between MS packings before (U ) and
after (U ′) separating the pair of disks with the smallest interparticle overlap as a function of the angle θ between the old and new separation
vectors between the two disks. (c) and (d) Schematic of the process to measure Tmin/U . In panel (c), the disk pairs with the smallest overlap
are shaded in blue. In panel (d), this pair of disks is shifted so that rij = σij . The original positions are indicated by the dashed circles. The
new separation vector makes an angle θ with the old separation vector (as indicated by the dotted lines). After shifting disks i and j , potential
energy minimization is performed allowing all disks to move except i and j . In both panels, the contact networks of the blue-shaded disks are
indicated by solid lines.

Fmin, from P (F ) as a function of system size N (averaged
over an ensemble of 103 packings) for repulsive linear spring
interactions. We find that the average minimum interparticle
force magnitude scales as a power-law with system size,
Fmin ∼ N−κ , where κ ∼ 0.8. For repulsive linear springs, the
power-law scaling of the minimum overlap with system size
is similar: (1 − rij /σij )min ∼ N−1.

We now consider multimode perturbations and measure
the minimum temperature required to break a single contact
in T = 0 MS packings. If we include n eigenmodes in the
perturbation, in the low-temperature limit, the disk positions
and velocities are given by

�V (t) =
n∑

k=1

Akω
kÊk cos(ωkt) (12)

and

�R(t) = �R0 +
n∑

k=1

AkÊ
k sin(ωkt). (13)

As for the single-eigenmode perturbations, we can use
the harmonic expression for �R(t) [Eq. (13)] to determine

the minimum temperature required to break a single contact
for multimode perturbations. Setting r2

ij = σ 2
ij for each pair

of disks in the force-bearing backbone yields an expression
similar to that in Eq. (11), except that �δij

k is replaced
by �δij = ∑n

k=1 �ek
ij sin(ωkt)/ωk . The minimum temperature

required to break a single contact is obtained by evaluating
the extrema of the sine functions, |sin(ω1t)| = |sin(ω2t)| =
· · · = |sin(ωnt)| = 1, where we must check all combinations
of sin(ωkt) = ±1, and by minimizing over all contacting
disk pairs. For small n, we discretize all of the possible
eigenmode amplitude ratios between 10−2 and 102 and identify
the amplitude ratio combination that yields the minimum
temperature Tn(m,m − 1) to break a single contact. For n = 2
and 3, we explicitly showed that Tn(m,m − 1) is minimized
(over all possible perturbations) for equal velocity-amplitude
perturbations. For n > 3, we assumed that A1ω

1 = A2ω
2 =

· · · = Akω
k perturbations give the minimum Tn(m,m − 1).

(Additional details concerning these calculations are included
in Appendix A.)

In Fig. 4(a), we plot Tn(m,m − 1)/U for single MS
packings using multimode perturbations as a function of the
number of eigenmodes n = 1,2, . . . ,6 for three values of U ,
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10−12, 10−8, and 10−4. For all U , we find that Tn(m,m − 1)/U

decreases with increasing n and then begins to saturate for
n � 6. In general, the minimum temperature required to break
a single contact decreases with an increasing number of
eigenmodes in the perturbation because the perturbation is
more likely to have a significant projection onto the separation
vector corresponding to the smallest overlap between disks.
Saturation of Tn(m,m − 1) with increasing n is interesting
because it implies that the probability to obtain a pair of disks
in the force-bearing backbone with vanishing overlap is zero
in any finite-sized system with U > 0.

We also developed a method to estimate Tn(m,m − 1) in
the large-n limit, which is illustrated in Figs. 4(c) and 4(d).
We first identify the pair of disks i and j in the force-bearing
backbone with the smallest overlap. We separate disks i and j

so that rij = σij , while maintaining the center of mass of the
two disks and fixing all of the positions of the other disks in
the MS packing. We then minimize the total potential energy,
allowing all disks to move except disks i and j , as a function of
the angle θ between the old and new separation vectors before
minimization. In Fig. 4(b), we plot the difference U ′ − U in the
potential energy per particle before (U ) and after (U ′) shifting
disks i and j and minimizing the potential energy as a function
of θ . We find that the θ = 0 direction gives rise to the smallest
energy barrier, and thus we define the temperature scale Tmin =
U ′(θ = 0) − U . Tmin/U provides an accurate estimate of the
large-n plateau value of Tn(m,m − 1)/U . [See Fig. 4(a).] In
the inset of Fig. 4(a), we show 〈Tmin〉/U averaged over 500 MS
packings as a function of system size. 〈Tmin〉/U ∼ 〈Tn(m,m −
1)〉/U ∼ N−β , where β ≈ 2.95 ± 0.05, and displays stronger
system-size dependence than 〈T1(m,m − 1)〉/U .

Thus far, we have focused on the minimum temperature
Tcb required to break a single contact in T = 0 MS packings
for different forms of the initial perturbations. For these cal-
culations, we used the harmonic approximation to determine
the time-dependent disk positions following the perturbation.
We now consider temperatures beyond which multiple T = 0
contacts can break and new contacts can form. As discussed
previously in Refs. [11,17], the eigenmodes and associated
eigenvectors can change significantly from those at T = 0 for
T > Tcb, where new contacts can form and contacts at T = 0
can break. Thus, for multiple contact breaking, we use constant
energy molecular dynamics simulations to directly measure
the number of contacts as a function of time following equal
velocity-amplitude perturbations. For these studies, we remove
rattler disks prior to starting the simulations and focus on the
temperature range T < Tr .

During long trajectories, we measure the fraction of time
f (T ,Nbc) at each temperature T that the system possesses a
given number of broken contacts Nbc = N0

c + m − Nc. We
show f (T ,Nbc) for a system with N = 64 and U = 10−4 in
Fig. 5(a). At low temperatures T < 10−9, f is large only
for Nbc = 0. As T increases, more configurations possess
an increasing number of broken contacts. We can define
a characteristic temperature T ∗(Nbc) for multiple contact
breaking by setting f (T ,Nbc) = 0.1.

In Fig. 5(b), we show the characteristic temperature
T ∗(Nbc) for three system sizes N and three values of the
initial potential energy per particle, U , for each N . We find
that T ∗ obeys the following scaling form: T ∗ ∼ N

γ

bcN
δUζ ,

(a)

Nbc
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FIG. 5. (a) The fraction of time f (T ,Nbc) that the system (with
N = 64 and U = 10−4) possesses a given number of broken contacts
Nbc = N 0

c + m − Nc at temperature T . The color scale from yellow
to blue represents decreasing f on a log10 scale. The horizontal
line indicates the rearrangement temperature Tr . The solid curve
with crosses gives the characteristic temperature T ∗(Nbc) < Tr for
multiple contact breaking for which the fraction f = 0.1. (b) The
characteristic temperature T ∗(Nbc) for three system sizes, N = 32
(solid lines), 64 (dashed lines), and 128 (dotted lines), and three values
of U , 10−5 (circles), 10−4 (crosses), and 10−3 (pluses), for each N .
The inset shows the same data as in the main panel, but T ∗ is plotted
as a function of N

γ

bcN
δUζ , where γ ≈ 2.2 ± 0.3, δ ≈ −2.2 ± 0.2,

and ζ ≈ 1.0 ± 0.1. The slope of the dashed line is 1.

where the exponents γ ≈ 2.2 ± 0.3, δ ≈ −2.2 ± 0.2, and
ζ ≈ 1.0 ± 0.1. (Other thresholds 0 < f < 0.1 give similar
values for the exponents γ , δ, and ζ .) The scaling form suggests
that T ∗/U ∼ N2

bc/N
2 ∼ (�m/N )2, where �m is difference

in the excess number of contacts at T = 0 and finite T ∗. This
result shows that the temperature required to break an extensive
number of contacts scales quadratically with the change in the
number of contacts per particle in the range 0 < T < Tr , which
is consistent with prior results [10,11,16].

B. Measurement of the deviation of the specific
heat and average positions

In this section, we investigate the effects of form and
contact-breaking nonlinearities on two physical quantities:
(1) the deviation in the specific heat per particle at constant
volume, �CV , from the value at T = 0 and (2) the deviation in
the average disk positions �r from their positions at T = 0. We
will measure both quantities using constant energy MD simu-
lations with equal velocity-amplitude perturbations involving
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FIG. 6. (a) The normalized deviation in the specific heat per

particle at constant volume from the value at T = 0, �CV /C
0
V , at

U = 10−5 for purely repulsive linear spring interactions as a function
of temperature T normalized by Tcb, where the first contact breaks.
The data are obtained from MD simulations at constant energy
following equal velocity-amplitude perturbations applied to 50 T =
0 MS packings with N = 16 (circles), 32 (crosses), 64 (pluses), and

128 (stars). The inset shows �CV /C
0
V versus system size N for 10

values of T/Tcb from 1 to 102 (from bottom to top). The dotted line

has slope −1. (b) �CV /C
0
V as a function of T/Tcb for MS packings

with N = 32 disks that interact via purely repulsive linear (circles)
and Hertzian spring interactions (crosses) at U = 10−5.

all eigenmodes (i.e., A1ω
1 = A2ω

2 = · · · = A2N ′−2ω
2N ′−2).

In general, nonlinearities will cause �CV > 0 and �r > 0
for temperatures T > 0. Form nonlinearities can occur for
T < Tcb, while both form and contact-breaking nonlinearities
occur for T > Tcb.

We show �CV /C
0
V [defined in Eq. (9)] as a function

of temperature T/Tcb (normalized by the temperature Tcb

required to break a single contact) for several system sizes for
purely repulsive linear springs [α = 2 in Eq. (1)] in Fig. 6(a).

For purely repulsive linear springs, the deviation �CV /C
0
V

is set by the noise floor for T < Tcb, and thus deviations
in the specific heat per particle from form nonlinearities for
T < Tcb are below the noise floor. In Fig. 6(b), we compare

�CV /C
0
V for purely repulsive linear and Hertzian springs

[α = 5/2 in Eq. (1)] as a function of T/Tcb. As expected,
the form nonlinearities are larger for Hertzian interactions. In

particular, the deviation in �CV /C
0
V is above the noise floor

for T < Tcb.

For purely repulsive linear springs, �CV /C
0
V increases

strongly above the noise floor for temperatures near Tcb.

�CV /C
0
V for purely repulsive Hertzian springs also increases

rapidly, but the onset of the rapid increase is not as sharp and

occurs for T < Tcb. However, the rate of increase of �C
0
V /C

0
V

slows for increasing system sizes. In the inset to Fig. 6(a), we

plot �CV /C
0
V for 10 values of T/Tcb in the range from 1 to

102 as a function of system size for purely repulsive linear

springs. We find that the deviation scales as �CV /C
0
V ∼ N−1

for a wide range of T/Tcb, which implies that the effect of both
form and contact-breaking nonlinearities on the specific heat
vanishes in the large-system limit in this temperature range.

We also study the change in the average disk positions �r

[defined in Eq. (10)] as a function of temperature using con-
stant energy MD simulations with equal velocity-amplitude
initial perturbations involving all eigenmodes. We consider
both purely repulsive (single-sided) and double-sided linear
and nonlinear spring interactions. In Figs. 7(a) and 8, we show
�rds(T ) (double-sided) and �rss(T ) (single-sided) for disk
packings with N = 64, U = 10−5, and linear and Hertzian
spring interactions. For double-sided linear and Hertzian
spring interactions, with no contact breaking, �rds ∼ T over
a wide range of T .

This scaling behavior for �rds(T ) stems from form nonlin-
earities in the total potential energy U , which when expanded
gives

U = U0 −
∑

i

F 0
i �Ri + 1

2!

∑
i,j

D0
ij�Ri�Rj

+ 1

3!

∑
i,j,k

G0
ijk�Ri�Rj�Rk + · · · , (14)

where � �R = �R − �R0, F 0
i = −∂V/∂Ri |� �R=0, D0

ij = ∂2V/

(∂Ri∂Rj )|� �R=0, and G0
ijk = ∂3V/(∂Ri∂Rj∂Rk)|� �R=0. For

T < Tcb, when the contact network does not change, the
third-order term in the expansion of U gives rise to the
scaling �r = CT , where C is set by G0. (See Appendix D
for the calculation of �r for a potential with a cubic term
in 1D.) Rattler disks are excluded from the measurement of
�r because collisions between backbone and rattler disks will
introduce additional nonlinearities. (�rss for an MS packing
with rattlers is shown in Appendix B.)

As expected, for T < Tcb, �rss = �rds ∼ T , before con-
tact breaking occurs for both linear and Hertzian spring
interactions. The disk displacements in this regime are small
and randomly oriented [Fig. 7(b)]. For purely repulsive linear
spring interactions in the temperature regime T > Tcb, �rss

begins to grow rapidly, reaching values that are several
orders of magnitude above �rds . In the temperature regime
Tcb < T < Tr , some collective motion occurs and disks can
disconnect from the force-bearing backbone and become
rattlers [Fig. 7(c)]. At T = Tr , �rss jumps discontinuously
when the system switches to the basin of a new MS packing.
(See Appendix C for a discussion of the method that we
used to measure Tr .) In the temperature regime Tr < T < Tg ,
strong collective motion can occur and all of the disks can
disconnect from the force-bearing backbone when rattler disks
are identified recursively [Fig. 7(d)]. Similar behavior occurs
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FIG. 7. (a) The deviation �r in the disk positions from their T = 0 values as a function of temperature T for a MS packing with N = 64
and U = 10−5. The data are obtained from constant energy MD simulations with equal velocity-amplitude initial perturbations involving all
eigenmodes. We consider both purely repulsive linear spring interactions [circles; α = 2 in Eq. (1)] and double-sided linear spring interactions
[crosses; α = 2 in Eq. (2)]. The dashed line has slope 1. The three dotted vertical lines indicate (1) the measured temperature Tcb at which the
first contact breaks, (2) the temperature Tr at which the system transitions to the basin of a new MS packing, and (3) the temperature Tg at which
the structural relaxation time (from the self-part of the intermediate scattering function) appears to diverge. (b) The average disk positions
at a temperature T < Tcb (gray-shaded disks). White solid lines indicate contacts between disks in the backbone. The arrows represent the
displacement of the disks relative to their positions at T = 0, where the length of each arrow is proportional to the logarithm of the displacement
of the disk. (c) Same as in (b) except for the average disk positions at a temperature Tcb < T < Tr . Gray-shaded disks without edges are rattlers,
circular outlines with dashed edges indicate the initial positions of rattler disks, and white-dotted lines show contacts that include rattlers.
(d) Same as (c) except for the average disk positions at a temperature Tr < T < Tg .

for the deviations in the average positions for purely repulsive
Hertzian spring interactions (Fig. 8); i.e., �rss increases
above �rds in the temperature regime Tcb < T < Tr , but the
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FIG. 8. The deviation �r in the disk positions from their T = 0
values as a function of temperature T for a MS packing with N = 32,
U = 10−5, and single- (circles) and double-sided (crosses) Hertzian
spring interactions. The three dotted vertical lines indicate Tcb, Tr ,
and Tg (from left to right).

increase is more modest than that for repulsive linear springs.
Comparing the disk positions at temperatures T > Tg and zero
is not meaningful.

In Fig. 9(a), we plot the displacement ratio �rss/�rds

for single- and double-sided linear spring interactions as a
function of T/Tcb below Tr for three values of U [10−5

(circles), 10−4 (crosses), and 10−3 (pluses)] and N = 128.
We find that the ratio begins growing for T > Tcb reaching
an approximate plateau value ≈100 that increases weakly
with decreasing U . Thus, contact-breaking nonlinearities are
much larger than form nonlinearities in the temperature range
Tcb < T < Tr for linear spring interactions. In Fig. 9(b), we
compare the ratio �rss/�rds for linear and Hertzian springs
for Tcb < T < Tr . The contact-breaking nonlinearities have a
much stronger effect on �r for linear compared to Hertzian
spring interactions. This result likely stems from the fact
that form nonlinearities are much weaker for linear spring
interactions compared to Hertzian spring interactions. In
Fig. 9(c), we plot 〈�rss/�rds〉 averaged over the temperature
range Tcb < T < Tr for linear spring interactions as a function
of system size N for each U . We find that 〈�rss/�rds〉 shows
no sign of decreasing with system size. In Fig. 10, we also show
that both �rss and �rds individually do not depend strongly

062902-9



WU, BERTRAND, SHATTUCK, AND O’HERN PHYSICAL REVIEW E 96, 062902 (2017)

T/Tcb

100 101 102 103 104 105

Δ
rs

s
/
Δ

rd
s

100

101

102

103

(a)

T/Tcb

100 101 102 103 104 105

Δ
rs

s
/Δ

rd
s

100

101

102

103

(b)

N
101 101.5 102 102.5

〈Δ
rs

s
/
Δ

rd
s
〉

101

102

103

(c)

FIG. 9. (a) The ratio �rss/�rds between the deviations in positions for single- and double-sided linear spring interactions as a function
of temperature normalized by contact-breaking temperature T/Tcb for packings with N = 128 and three values of U [10−5 (circles), 10−4

(crosses), and 10−3 (pluses)]. Each curve is averaged over 50 packings in the temperature range 1 < T/Tcb < 104. The three vertical lines
indicate 〈Tr〉 for these packings, U = 10−5 (solid line), 10−4 (dashed line), and 10−3 (dotted line). (b) The ratio of position deviations �rss/�rds

from single- and double-sided linear (circles) and Hertzian (crosses) spring interactions as a function of T/Tcb for MS packings with N = 32
and U = 10−5. Each curve is averaged over 50 packings in the temperature range 1 < T/Tcb < 104. The two vertical lines indicate 〈Tr〉 for MS
packings with purely repulsive linear (solid line) and Hertzian spring interactions (dotted line). (c) 〈�rss/�rds〉 averaged over the temperature
range 1 < T/Tcb < 104 for linear spring interactions as a function of system size N for U = 10−5 (circles), 10−4 (crosses), and 10−3 (pluses).

on system size N (for systems with linear spring interactions).
These results emphasize that contact-breaking nonlinearities
are dominant for MS packings with purely repulsive linear
spring interactions in the temperature regime Tcb < T < Tr .

For many experimental systems of interest (such as granular
materials, foams, and dense colloidal suspensions), in which
all of the particles can be visualized and tracked, �rss can
be measured directly in the experiments. Then, �rds can be
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FIG. 10. (a) 〈�rss〉 and (b) 〈�rds〉 averaged over the temperature
range 1 < T/Tcb < 104 for linear spring interactions as a function
of system size N for U = 10−5 (circles), 10−4 (crosses), and 10−3

(pluses). Each point is averaged over 50 packings with the same N

and U .

calculated from numerical simulations using the initial particle
positions from experiments. Thus, the ratio 〈�rss/�rds〉 can
be measured directly in many experimental systems.

Mechanically stable packings of disks can be represented
as local minima in the potential energy landscape (which
is a function of all of the positional degrees of freedom in
the system). The ratio 〈�rss/�rds〉 tracks the position of
the local minimum in the energy landscape as a function of
temperature. Thus, by measuring this ratio, we gain insight
into the properties of the minima in the energy landscape,
which control the thermodynamic properties of granular
packings. A number of studies have characterized changes
in the local minima in the energy landscape in response to
applied shear strain. Here, we show that contact breaking and
nonlinearities in the form of the interparticle potential arising
from thermal fluctuations can change the position of local
minima continuously in the energy landscape.

IV. CONCLUSIONS AND FUTURE DIRECTIONS

In this article, we studied the effects of thermal fluctuations
on MS packings composed of bidisperse, frictionless disks
generated at different values of the potential energy per
particle U or excess number of contacts m/N in two spatial
dimensions. We consider disks that interact via single- and
double-sided linear and nonlinear spring interactions to disen-
tangle the effects of form and contact-breaking nonlinearities.
To identify the temperature range where contact-breaking non-
linearities occur, we first focused on calculating the minimum
temperature required to break a single contact in T = 0 MS
packings for both single- and multimode perturbations. Before
contact breaking and for weak form nonlinearities (e.g., purely
repulsive linear springs), the minimum temperature required
to break a single contact can be calculated exactly using the
eigenmodes of the dynamical matrix at T = 0. Above the
contact-breaking temperature or for interactions that possess
strong form nonlinearities, the eigenvalues and eigenmodes
change significantly from those at T = 0, and thus the T = 0
eigenvalues and eigenmodes cannot be used to calculate the
contact-breaking temperature accurately.

For single-eigenmode perturbations, we find that the mini-
mum temperature (over all single-mode excitations) required
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to break the first contact T1(m,m − 1) ∼ U/Nα , where α ≈
2.6. This strong system-size dependence emphasizes that weak
overlaps between disks in MS packings near jamming onset
can break at any finite temperature in the large-system limit.
We also showed that the form of the initial perturbation
affects the minimum temperature required to break a single
contact. The temperature required to break a single contact is
minimal for equal velocity-amplitude perturbations involving
all eigenmodes of the T = 0 dynamical matrix and scales as
Tn(m,m − 1) ∼ U/Nβ , where β ∼ 2.9. Tn(m,m − 1) can be
estimated by identifying the smallest pair of overlapping disks
i and j at a given U , shifting them so that their separation
satisfies rij = σij , and then minimizing the potential energy
with i and j held fixed, allowing the other disks to move. The
difference in the potential energy per particle before (U ) and
after (U ′) minimization U ′ − U ∼ Tn(m,m − 1) determines
the minimum temperature required for breaking a single
contact for equal-velocity amplitude perturbations involving
all eigenmodes.

Several groups have studied contact breaking in jammed
disk and sphere packings undergoing athermal, quasistatic
simple shear using computer simulations [31–34]. These
studies find that the minimum strain required to break a contact
scales as γmin ∼ N−λ, where λ = 1. The system-size scaling
exponent λ is smaller than that observed for the minimum
temperature required to break a single contact (which is
≈2.6–2.95 depending on the form of the initial perturbation).
There are several reasons for this difference. First, the previous
studies focused on the critical strain amplitude; however, we
measured a critical temperature (or energy) scale. Energy and
strain are related via kbT ∼ γ 2, and thus a naive prediction
from Refs. [31–34] would be that T1(m,m − 1) ∼ N−2.
However, there is another crucial difference between the two
measurements. Contact breaking is determined by the smallest
interparticle overlap between a pair of particles, and removing
this overlap requires separating these two particles along the
line connecting their particle centers. However, the application
of athermal, quasistatic simple shear is a perturbation along
a single direction in configuration space and there is not
necessarily a large overlap between this direction and the
direction that separates the smallest interparticle overlap. In
contrast, thermal fluctuations (which involve all eigenmodes
of the dynamical matrix) sample all directions in configuration
space. This difference in sampling means that athermal,
quasistatic shear perturbations are coupled to the average strain
required to break a contact (e.g., where the average is over
all eigenmodes). In contrast, thermal perturbations probe the
average minimum strain (where the minimum is calculated over
all eigenmodes for a single packing and then the minimum is
averaged over an ensemble of packings). The average minimum
strain possesses stronger system-size dependence than the
average strain.

To study multiple contact breaking, we employed constant
energy MD simulations for initial packings at U (and excess
number of contacts m) over a range of temperatures T < Tr .
We measure the fraction of time during the simulations at
a given temperature T and system size N that the system
possesses Nbc = N0

c + m − Nc broken contacts. We identify
a characteristic temperature T ∗(Nbc) at which a finite fraction
f of the time (i.e., f = 0.1) the system possesses a given

number of broken contacts Nbc. By studying a range of U

and N , we obtain the following power-law scaling relation:
T ∗ ∼ N

γ

bcN
δUζ , where γ ≈ 2.2 ± 0.3, δ = −2.2 ± 0.2, and

ζ ≈ 1.0 ± 0.1. The scaling relation involving integer expo-
nents, T ∗/U ∼ (Nbc/N )2, is within error of the numerical
data. These results support prior studies that find that the
temperature required to break an extensive number of contacts
scales quadratically with the number of contact changes per
particle.

We also investigated the effects of form and contact-
breaking nonlinearities on the specific heat (at constant
volume) and the average disk positions as a function of
temperature. We employed both single- and double-sided
linear and nonlinear spring interactions, which allowed us
to compare the strength of the form and contact-breaking
nonlinearities. For the specific heat per particle, we find that

the deviation �CV from the zero-temperature value, C
0
V , is

below the noise threshold for T < Tcb for purely repulsive
linear spring interactions, and begins to increase rapidly for
T > Tcb. For Hertzian interactions, the form nonlinearities
give rise to measurable deviations C

0
V /C0

V for T < Tcb, and the

strong increase in C
0
V /C0

V with increasing temperature occurs

over a larger range. However, we find that �CV /C
0
V ∼ N−1

decreases with increasing system size (for purely repulsive
spring interactions) in the temperature range Tcb < T < Tr .
Thus, we expect that form and contact-breaking nonlinearities
do not have strong effects on the specific heat for T < Tr .

We also characterized the change in the average disk
positions �r from their T = 0 values arising from form and
contact-breaking nonlinearities as a function of temperature.
�r is more sensitive to form and contact-breaking nonlinear-
ities than �CV . We first showed that �rds ∼ T for double-
sided linear and Hertzian spring interactions over the full range
of temperature 0 < T < Tr due to form nonlinearities. The
linear scaling with temperature arises from third-order terms
in the expansion of the total potential energy in terms of the
disk positions. As expected, �rss = �rds ∼ T for T < Tcb

since there is no contact breaking. Near T = Tcb, �rss begins
increasing rapidly above �rds for linear springs due to contact-
breaking nonlinearities. We show that the ratio �rss/�rds

can increase by a factor of 100 for Tcb < T < Tr . In con-
trast, �rss/�rds < 10 for Hertzian interactions, presumably
because the form nonlinearities are much stronger. We show
that �rss/�rds , �rss , and �rds (for linear springs) display
very weak system size dependence. This result emphasizes
that contact-breaking nonlinearities are much stronger than
form nonlinearities (for linear spring interactions) in this
low-temperature regime.

Topics of future studies will include rattler disks, system
rearrangements, and nonlinearities induced by nonspherical
particle shapes. In most of the current work, we excluded rattler
disks by removing them from the MS packing before adding
thermal fluctuations. As shown in Appendix B, additional
nonlinearities (e.g., collisions between disks in the T = 0
force-bearing backbone and rattlers at T > 0) are present when
rattlers are included in the system. Second, in the current study,
we focused on the low-temperature regime T < Tr , below
which the system remains in the basin of the original T = 0 MS
packing. In future studies, we will characterize changes in key
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physical quantities (such as the shear modulus) as the system
moves among a series of related basins for T < Tg , where
the system is prevented from undergoing complete structural
relaxation [35]. The current work was important in this context,
since we characterized the magnitude of changes in the disk
positions that arise from nonlinearities before rearrangements.

At low temperatures T < Tcb and for systems with weak
nonlinearities, the eigenvalues and associated eigenmodes
from the dynamical matrix at T = 0 agree with those from
S = VC−1, where Vij = 〈vivj 〉 is the time-averaged velocity
correlation matrix and

Cij = 〈(
Ri − R0

i

)(
Rj − R0

j

)〉
(15)

is the time-averaged position correlation matrix [11,36,37].
An important future direction is to characterize how the eigen-
modes of S change as a function of increasing temperature;
e.g., do the modes become more or less localized at a given
frequency?

Another interesting research direction is to characterize the
nonlinearities that arise at finite temperature in MS pack-
ings composed of nonspherical particles such as ellipsoids,
spherocylinders, or other elongated particles. Several studies
have shown that packings of ellipsoids possess quartic modes
near jamming onset [38–40], i.e., directions along which the
potential energy increases as the fourth power of the pertur-
bation amplitude in that direction. These results point out that
MS packings of nonspherical particles possess form, contact-
breaking, and shape nonlinearities at finite temperature.
Determining the relative strength of these nonlinearities and
how they affect the structural and mechanical properties of MS
packings at finite temperature is an important, open question.

ACKNOWLEDGMENTS

The authors acknowledge financial support from NSF
Grants No. CMMI-1462439 (C.O. and Q.W.), No. CMMI-
1463455 (M.S.), and No. CBET-1605178 (C.O. and Q.W.).
This work was also supported by the high-performance
computing facilities and staff of the Yale Center for Research
Computing.

APPENDIX A: CALCULATION OF MINIMUM
TEMPERATURE REQUIRED TO BREAK A SINGLE
CONTACT FOR EQUAL VELOCITY-AMPLITUDE

PERTURBATIONS

In this Appendix, we provide additional details concerning
the calculation of the minimum temperature required to break
a single contact for perturbations involving multiple T = 0
eigenmodes with equal velocity-amplitude excitations. (See
Sec. III A.) In Eq. (11), we derived the expression for the
minimum temperature required to break a single contact (for
T < Tcb and systems with weak nonlinearities) by setting r2

ij =
σ 2

ij and using Eq. (13) for the time-dependent disk positions.
Here, we will justify why the the maximum of r2

ij is obtained
when |sin(ω1t)| = |sin(ω2t)| = · · · = |sin(ωnt)| = 1, where n

is the number of eigenmodes in the initial perturbation. The
pair separations satisfy r2

ij = x2
ij + y2

ij , where

T
10-10 10-8 10-6 10-4 10-2 100

Δ
r

10-10

10-8

10-6

10-4

10-2

100

T
r

T
cb

FIG. 11. �r versus temperature T for an initial MS packing with
purely repulsive linear spring interactions, N = 64, and U = 10−5

with the two rattlers kept in the system (triangles) and the two rattlers
removed (circles).

xij = �0
x +

n∑
p=1

�p
x sin(ωpt), (A1)

yij = �0
y +

n∑
p=1

�p
y sin(ωpt); (A2)

the parameters �0
x , �1

x , . . . , �n
x and �0

y , �1
y , . . . , �n

y are
constants determined by the initial perturbation and positions
of disks i and j . We define Im

ij = (xm
ij )2 + (ym

ij )2, where xm
ij =

�0
x + ∑m

p=1 �
p
x sin(ωpt) and ym

ij = �0
y + ∑m

p=1 �
p
y sin(ωpt).

When m = 0, Im = (�0
x)2 + (�0

y)2 and when m = n, Im = r2
ij .

Suppose that when m = q, I
q

ij = (xq

ij )2 + (yq

ij )2 is maximal.
For m = q + 1,

I
q+1
ij = [

x
q

ij + �q+1
x sin(ωq+1t)

]2

+ [
y

q

ij + �q+1
y sin(ωq+1t)

]2
. (A3)

The maximum of I
q+1
ij is obtained when dI

q+1
ij /dt = 0,

which is satisfied when cos(ωq+1t) = 0 and |sin(ωq+1t)| =
1. When the proof by induction is repeated, the maximum
r2
ij is obtained if and only if |sin(ω1t)| = |sin(ω2t)| = · · · =

|sin(ωnt)| = 1. We then study all possible combinations of ±1
for each of the sine terms and and disk pairs i and j and choose
those that give the smallest perturbation temperature.

APPENDIX B: MEASUREMENT OF �r IN MS PACKINGS
WITH RATTLERS

In Fig. 7, we showed results for �r (the deviation of the
average positions of the disks from their T = 0 values) using
constant energy MD simulations as a function of temperature
for MS packings with rattlers removed from the system before
the perturbations were applied. In this Appendix, we show
that rattlers can have a strong effect on �r by introducing new
nonlinearities into the system. In Fig. 11, we compare �r(T )
for an MS disk packing with the same force-bearing backbone
at T = 0 (with purely repulsive linear spring interactions)
with and without rattlers removed. (Note that the rattlers do
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T
10-10 10-8 10-6 10-4

f i

0

0.2

0.4

0.6

0.8

1

T
r

FIG. 12. The fraction fi of time that three particular MS packings
occur in the temperature range 10−10 < T < 10−4 for systems with
N = 64 and U = 10−5. The dashed vertical line indicates the
rearrangement temperature Tr for the T = 0 MS packing. At the
lowest temperatures, the system only populates the T = 0 MS pack-
ing (circles). At intermediate temperatures a different MS packing
(crosses) becomes most frequent. At the highest temperatures, the
system spends all of the time in a third MS packing (pluses).

not directly receive thermal excitations.) For sufficiently low
temperatures when the rattlers are not excited by fluctuations
in the force-bearing backbone, �r(T ) is the same for both
systems with and without rattlers. For the MS packing studied
in Fig. 11, the force-bearing backbone comes into contact
with the rattlers at a temperature slightly above Tcb (defined
using the force-bearing backbone at T = 0) and �r jumps
discontinuously for the system with rattlers. (Note that the
jump in �r can occur over a range of temperatures depending
on the placement of the rattlers.) Above this temperature, the
evolution of �r is different for the systems with and without
rattlers, until the system without rattlers switches to the basin
of a new MS packing. Since this article focused on quantifying
form and contact-breaking nonlinearities in the temperature
regime Tcb < T < Tr , we mainly performed MD simulations
of MS packings with rattlers removed.

APPENDIX C: MEASUREMENT OF THE
REARRANGEMENT AND GLASS TRANSITION

TEMPERATURES, Tr AND Tg

Our constant energy MD simulations mainly focused
on the temperature regime Tcb < T < Tr , where Tcb is the
temperature at which the first contact breaks during the
simulations and Tr is the temperature below which the system
remains in the basin of the T = 0 MS packing. To calculate
Tr , we first simulate a long trajectory at a temperature T for a
given initial perturbation and total time ttot. For each time step
of the simulation, we use the current configuration as the initial
condition for finding the nearest MS packing (at a given U )
using the packing-generation protocol described in Sec. II. We
then calculate the fraction fi of time that the system spends in
the basin of MS packing i. The MS packings are distinguished
using the eigenvalues of the dynamical matrix.

In Fig. 12, we plot fi as a function of temperature T after
perturbing a given T = 0 MS packing with equal velocity-
amplitude excitations involving all eigenmodes at each T . We

T 10-4
2 4 6 8 10 12

τ

100

101

102

103

104

t
10-4 10-2 100 102 104

F
s
(�q

,t
)

0
0.2
0.4
0.6
0.8
1

FIG. 13. Structural relaxation time τ (from the decay of the
self-part of the intermediate scattering function) as a function of
temperature T for a system with N = 64 and U = 10−5. The dashed
line gives τ (T ) = C exp[ATg/(T − Tg)], where C = 1.1, A = 15,
and Tg = 1.3 × 10−4. The inset shows the self-part of the intermediate
scattering function at qσS = 2π , Fs(q,t), for several temperatures
from T = 10−4 to 10−3 from top to bottom. The horizontal line
indicates Fs(q,τ ) = e−1.

find that three particular MS packings occur most frequently
over this range of T and for this initial condition. At the
lowest T , only the T = 0 MS packing (circles) occurs. At
Tr , the fraction of time that the system spends in the T = 0
MS packing tends to zero, and the fraction of time that the
system spends in a new MS packing (crosses) increases to 1.
At T ≈ 10−6, the system begins spending time in several MS
packings, and at T ≈ 10−5, the system spends all of its time in a
third MS packing (pluses). In most cases, the behavior of fi(T )
mimics that shown in Fig. 12 for the first rearrangement; i.e.,
there is a rapid drop in occupancy of the T = 0 MS packing and
a rapid increase in the occupancy of another MS packing at a
well-defined temperature. Thus, Tr can be measured accurately
for each T = 0 MS packing. We also find strong agreement
when we measure Tr using fi and when we define Tr as the
temperature at which the first discontinuous jump in �r occurs
for systems where rattlers have been removed. [See Fig. 7(a).]

To emphasize that our measurements focus on the extremely
low temperature regime, we also calculated the structural
relaxation time from the self-part of the intermediate scattering
function (ISF) versus temperature [41]:

Fs(�q,t) = 1

N

N∑
j=1

〈exp{−i �q · [�rj (t) − �rj (0)]}〉, (C1)

where �q is the wave number and 〈·〉 indicates an average
over time origins and directions of the wave vector. Near
the glass transition temperature, the ISF develops a plateau,
whose length increases dramatically with decreasing T . At
the longest time scales and for T > Tg , the ISF decays as a
stretched exponential with stretching exponents that depend on
q and T [42]. (See the inset to Fig. 13.) We define a structural
relaxation time τ as Fs(q,τ ) = e−1 for qσS = 2π .

For fragile glasses, the structural relaxation time obeys
super-Arrhenius scaling with temperature [43]. As a rough
estimate of the glass transition temperature Tg , we use the
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Vogel-Fulcher-Tammann form [44] for τ (T ):

τ ∼ exp[ATg/(T − Tg)], (C2)

where A is a constant and Tg is glass transition temperature
at which the structural relaxation time appears to diverge. In
Fig. 13, we show that for N = 64 and U = 10−5, Tg ≈ 10−4,
which is several orders of magnitude larger than Tcb and Tr for
this system.

APPENDIX D: THE TEMPERATURE DEPENDENCE
OF �r IN MODEL 1D SYSTEMS

To better understand the temperature scaling of the average
position deviation, �r ∼ T , for MS packings at nonzero tem-
peratures, we studied a model system consisting of a particle
in a one-dimensional (1D) potential well. We considered two
forms for the potential: a quadratic potential, Uq(r) = Ar2/2,
and a cubic potential, Uc(r) = Ar2/2 + Br3/6, as shown in
Fig. 14(a).

The average position 〈r〉 as a function of temperature can
be calculated using

〈r〉 =
∫ ∞

0 rf (r)dr∫ ∞
0 f (r)dr

, (D1)

where the position distribution function in 1D is

f (r) = 1√
2[2T − U (r)]

. (D2)

For the quadratic potential, the average particle position
〈r〉 = 0 for all T . In contrast, for the cubic potential, |〈r〉| =
BT/A2 increases linearly with T with a slope that scales with
the coefficient of the cubic term. A similar analysis can be
applied to MS packings of disks. Before contact breaking, the
system lies in a high-dimensional potential energy well. All
of the potentials that we studied [i.e., Eqs. (1) and (2) with
α = 2 and 5/2] possess “form” nonlinearities with nonzero
values for the third derivatives of the total potential energy
with respect to the disk positions [Eq. (14)]. Thus, similarly

r
-0.5 0 0.5

V
(r

)

0

0.05

0.1

0.15

(a)

T
0.01 0.02 0.03 0.04 0.05

|〈r
〉|

0

0.02

0.04

0.06

0.08
(b)

FIG. 14. (a) The potential energy U (r) as a function of position
r for a quadratic form, Uq (r) = Ar2/2 (solid line), and a cubic
form, V c(r) = Ar2/2 + Br3/6 (dashed line). The vertical dotted
line indicates r = 0. Note that the cubic potential is asymmetric
about r = 0. (b) The absolute value of the average position |〈r〉|
versus temperature T for the quadratic (circles) and cubic (crosses)
potentials.

to the model 1D system, �r in MS packings before contact
breaking is proportional to the temperature T with a slope that
is determined by the third derivative of the potential energy
with respect to the particle coordinates in the direction of the
initial perturbation.
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