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Measurements of the yield stress in frictionless granular systems
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We perform extensive molecular dynamics simulations of two-dimensional frictionless granular materials to
determine whether these systems can be characterized by a single static yield shear stress. We consider
boundary-driven planar shear at constant volume and either constant shear force or constant shear velocity.
Under steady flow conditions, these two ensembles give similar results for the average shear stress versus shear
velocity. However, near jamming it is possible that the shear stress required to initiate shear flow can differ
substantially from the shear stress required to maintain flow. We perform several measurements of the shear
stress near the initiation and cessation of flow. At fixed shear velocity, we measure the average shear stress 2.,
in the limit of zero shear velocity. At fixed shear force, we measure the minimum shear stress X, required to
maintain steady flow at long times. We find that in finite-size systems >,,>3,,, which implies that there is a
jump discontinuity in the shear velocity from zero to a finite value when these systems begin flowing at
constant shear force. However, our simulations suggest that the difference X,,—2.,,, and thus the discontinuity
in the shear velocity, tend to zero in the infinite-system-size limit. Thus, our results imply that in the large-
system limit, frictionless granular systems can be characterized by a single static yield shear stress. We also
monitor the short-time response of these systems to applied shear and show that the packing fraction of the
system and shape of the velocity profile can strongly influence whether or not the shear stress at short times

overshoots the long-time average value.
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I. INTRODUCTION

The static yield shear stress, or similarly the static shear
modulus, is a material property that distinguishes solids from
liquids [1]. Solids possess a nonzero static yield shear stress,
while it vanishes for liquids. Solids are able to resist shear
stresses below the yield shear stress, but plastic flow occurs
when shear stresses larger than the yield shear stress are
applied. In contrast, liquids flow when any finite shear stress
is applied.

Disordered materials such as molecular and colloidal
glasses, static granular materials, and concentrated emulsions
also possess a nonzero yield shear stress. However, it is dif-
ficult to determine precisely the yield shear stress in these
amorphous systems since they often display nonlinear and
spatially nonuniform response, for example creep flow, inter-
mittent dynamics, and shear localization, when shear stress is
applied. The value of the yield stress in these amorphous
systems can also depend on how it is measured. For ex-
ample, the yield shear stress required to generate steady flow
in an originally unsheared system may differ significantly
from a measure of the yield stress obtained by approaching
the static state by slowly decreasing the shearing velocity.
The yield shear stress may also depend strongly on how the
system was prepared. For example, it has been shown that
the yield shear stress is sensitive to the age and strain history
in glassy systems [2] and the construction history [3,4] and
microstructural details [5] in granular materials.

There have been a number of recent computational inves-
tigations of the transition from static to flowing states in
granular and glassy systems. For example, measurements of
the yield shear stress or static shear modulus have been con-
ducted as a function of packing fraction in model foams [6],
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emulsions [7], and frictionless granular materials [8] and as a
function of temperature and strain rate in dense Lennard-
Jones glasses [9-11], metallic glasses [12], and polymer
glasses [13,14]. However, an important question that has not
been adequately addressed by these previous studies is
whether or not there is a unique measure of the static yield
shear stress in granular and glassy systems. Several studies
have pointed out that the shear stress required to initiate flow
can be larger than the shear stress required to prevent slow
shear flows from stopping [9,15], but does this difference in
shear stress persist in the infinite-system-size limit? If so,
what physical mechanism (for example, force chains in
granular materials [16]) is responsible for the difference? If
not, how significant are the finite-size effects?

We perform molecular dynamics simulations of friction-
less granular materials subjected to boundary-driven shear at
fixed volume to determine whether or not these simple sys-
tems can be characterized by a single static yield stress in the
large-system limit. At constant shearing velocity, we measure
the long-time average shear stress 3, in the limit of zero
shearing velocity. We also perform simulations at fixed shear
force and identify the minimum shear stress 2., required to
maintain steady shear flow at long times. We indeed find that
2_‘,f> Eyv at finite system size. However, our results suggest
that the difference tends to zero in the infinite system size
limit. Thus, we argue that large frictionless granular systems
possess a single static yield shear stress. In future studies, we
will include static friction to determine whether the gap
2, —2,, remains finite in frictional granular systems in the
large system limit.

We also present results on the short-time response of fric-
tionless granular systems to applied shear. Previous studies
of sheared glassy systems [10,14,17] have found that the
shear stress in response to applied shear strains overshoots
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the long-time average value at short times. The shear stress
overshoot is often employed as a dynamic measure of the
yield shear stress. In addition, these studies have found that
the size of the overshoot increases with increasing shear rate
and decreasing temperature. Does the shear stress overshoot
at short times also occur in model granular systems? Is the
shear stress overshoot related to the difference in the mea-
sured values of the yield shear stress X 3,7 To begin
addressing these questions, we monitor the short-time re-
sponse of the shear stress to applied shear strain over a range
of packing fractions and shear velocities and in systems
where we constrain the average velocity profiles to be linear
and in systems without such a constraint. We find that the
packing fraction and shape of the velocity profile strongly
influence the short time response. In fact, in systems near
random close packing with no constraints on the velocity
profile we find a negligible shear stress overshoot in the
range of shear rate considered, while systems that are con-
strained to have linear velocity profiles on average possess a
large shear stress overshoot.

II. SIMULATION METHODS

In this section, we provide important details of the simu-
lation methods. We performed molecular dynamics simula-
tions of frictionless granular systems in two dimensions (2D)
at fixed volume in the presence of an applied shear stress.
The shear stress was applied to the system by moving a top
boundary layer of particles horizontally as a rigid body at
either fixed shearing velocity u or fixed lateral force Fj),
while the bottom boundary remained stationary. We studied
systems composed of 50-50 mixtures of large and small par-
ticles with equal mass m and diameter ratio 1.4. These bid-
isperse systems do not crystallize or segregate under shear
[18,19]. All simulations were performed at packing fraction
¢=0.85, which is above random close packing for this sys-
tem ¢,.,=0.84 [8,22].

The position 7; of each particle i in the bulk was obtained
as a function of time 7 by solving Newton’s equations of
motion

PFi o

m?=Fi=§[F[j(rij)_b(Ui_Uj)'rij]rija (1)
where the sum over j is a sum over the nearest neighbors of
particle i. The simple frictionless granular systems consid-
ered here interact via two pairwise forces that act only along
the line connecting particle centers 7;; and are nonzero only
when particles i and j overlap [20,21]. The first pairwise
interaction is the purely repulsive linear spring force

Fii(r; =i(1_ﬁL>’ (2)
(Tij (0T

where € is the characteristic energy scale of the interaction,
0;;=(0;+0;)/2 is the average diameter of particles i and j,
and r;; is their separation. The second pairwise interaction is
dissipative and proportional to velocity differences along 7;;.
We chose the damping coefficient »=0.0375, which corre-
sponds to a restitution coefficient e=0.92 typical for granular
systems.
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At constant velocity, the equation of motion for each par-
ticle in the top boundary is trivial, d°x/dt*=0, subject to
dx/dt=u. At constant shear force F|,, each particle in the top
boundary obeys an equation of motion similar to that in Eq.

(1):
2

d*x - A BN adA a
M?=F0+i2j[Fl-j(r,-j)—b(ux—vj)~rij]r[j-x, (3)

where M is the mass of the top boundary. The second term in
Eq. (3) is the total horizontal force on particles i in the top
boundary arising from interactions with particles j in the
bulk.

The starting configurations were initialized with random
initial positions, and then the system was allowed to relax at
fixed volume to the nearest local energy minimum using the
conjugate gradient method [23]. During the quench, periodic
boundary conditions were implemented in both the x and y
directions. Following the quench, particles with y coordi-
nates y>L, (y<0) were chosen to comprise the top (bot-
tom) boundary. This preparation algorithm created rough and
amorphous top and bottom boundaries, which prevents slip
between the bulk and boundary particles during shear. After
the boundaries are constructed, the simulation cell was
nearly square and contained N, bulk particles and N, par-
ticles in the top and bottom boundaries. Periodic boundary
conditions in the x direction were employed during shear.

During the simulations, we calculated the shear stress on
the top and bottom boundaries and in the bulk. Each of these
measurements gave similar values for the average shear
stress, however, the shear stress fluctuations were much
larger on the boundaries as expected. Therefore, below we
focus on measurements of the bulk shear stress calculated
using the virial expression [24]:

(S 1
E =— :l‘y(z 50.’(1'50}'1' + Eg] .xiijij) N (4)

where &0;,=v;—(v;) is the deviation of the velocity of bulk
particle i from the average velocity (v,) at height y,.

We performed several measurements of the shear stress
near the initiation and cessation of flow. First, at fixed shear-
ing velocity, we measured the long-time average shear stress
Eyv in the u—0 limit. Second, at fixed lateral force, we
measured the minimum shear stress %=F,/L, required to
maintain steady shear flow at long times. For all measure-
ments, we averaged over at least 100 different initial realiza-
tions. We did not find large differences in the shear stress
response among different starting configurations. Also, to as-
sess finite-size effects, we varied the number of particles in
the bulk N, over nearly three orders of magnitude from N,
=32 to 20 000. In the subsequent discussion of results, the
small particle diameter o, characteristic energy e, and
o\m/ e were chosen as the units of length, energy, and time,
and all quantities are normalized by these below.

The error bars for the shear stress were calculated from
the standard deviation of the shear stress fluctuations divided
by the square root of the number of uncorrelated stress mea-
surements over long runs of shear strain y=100 in the fixed
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FIG. 1. Deviation in the shear stress % from the shear stress 2.,
in the u—0 limit versus shear rate u/L, for a system with N
=1024 bulk particles sheared at constant . The solid line has slope
0.65. We obtained X, ~2.10X 107* for this system size.

shear velocity ensemble. In the fixed lateral force ensemble,
we used a similar procedure except we averaged over an
ensemble of 100 distinct mechanically stable initial condi-
tions. (For large systems Ny>2000, we used fewer initial
conditions because the run-to-run fluctuations were much
smaller.) In both ensembles, the error bars were the size of
the data points or smaller and were therefore dropped for
clarity.

III. RESULTS

In this section, we present a number of results from our
simulations of frictionless granular materials subjected to
boundary-driven planar shear.

A. Constant shearing velocity

We have measured the average shear stress % as a func-
tion of shear rate u/L, in systems sheared at fixed velocity u
of the top boundary. At each u, we began with an unsheared
initial configuration, the system was sheared for a strain of at
least 10, and then the shear stress was averaged over an
additional strain of 100. We have shown in previous studies
[19] that at such large strains these systems are spatially
uniform and possess linear velocity profiles. We find that the
flow curve ( versus u/Ly) for the system obeys the com-
monly used phenomenological form [9,10]

2 -2, =A,W/L)", (5)

where 3, is the shear stress in the u—0 limit. When fitting
the numerical data to Eq. (5), we allow the prefactor A, and
power-law exponent « to vary with Ny. However, their de-
pendence on N, is weak, and they reach their large-system
limits A, ~0.05 and @=0.65 [25] in systems with only sev-
eral hundred particles. The flow curve for a system with N,
=1024 bulk particles is shown in Fig. 1; X,,=2.10X 10~ for
this system size. Systems sheared at constant velocity flow at
any nonzero u, however, by extrapolating the flow curve to
u— 0, we can obtain a measure of the yield shear stress Eyv.
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FIG. 2. Shear strain y versus time ¢ for a system with N,
=1024 bulk particles sheared at constant lateral force Fo=3/L,.
Two shear stresses 2 =3.7 X 10~* (solid line) and 9.7 X 10~ (dashed
line) are shown. The smaller value is below and the larger is above
the minimum yield stress X,,=4.4 X 10 required to maintain
steady flow at long times. The inset shows a magnified view of the
shear strain versus time for 3=3.7 X 107 near the maximum strain
v,~31.01 obtained at this stress.

B. Constant shearing force

We also studied frictionless granular systems sheared at
fixed lateral force Fy. In this ensemble, granular systems do
not flow on long time scales unless the applied shear stress
3=F,/L, exceeds a shear stress threshold Eyf. Force ramp-
ing over time was not used in our studies. Instead, shear
forces F of varying strength were applied instantaneously to
the same initial configuration, which was an originally un-
sheared mechanically stable packing at zero temperature.

For all values of the shear stress studied, the system ini-
tially flows as the system attempts to set up a network of
force chains to oppose the flow. However, when F/L, is less
than 2., the system is able to find a configuration that can
support the applied shear stress, and the system stops flowing
at a maximum shear strain y,. When 2, > Eyf, the shear strain
diverges and the system flows at long times at an average
shear rate that is consistent with the flow curve for the fixed
shearing velocity ensemble.

In Fig. 2, we show the shear strain y=x/L, versus time,
where x is the horizontal displacement of the boundary, for
values of the shear stress above and below the yield shear
stress 2 ~4.4X 107* measured for a system with N,
=1024. For ¥=9.7X10>3 /. the system flows indefi-
nitely. For £=3.7X 107 <3 . the system stops flowing at
¥,~31. A magnification of the shear strain near 7, in the
inset to Fig. 2 shows that these systems undergo damped
oscillations about y,. We stop the simulations when the rela-
tive error in the shear strain drops below a small cutoff of
10 above the noise threshold. Since we are studying
damped granular systems and not highly thermal systems, we
have not observed the phenomenon where systems spontane-
ously jump out of a local potential energy minimum due to
thermal fluctuations, and subsequently experience an in-
crease in shear strain [26]. Thus, v, is a well-defined quantity
in the long-time limit.

We find that the maximum shear strain v, increases as a
power law with the applied shear stress 2, and diverges as
2 — 2, from below:
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FIG. 3. The difference between the applied shear stress 3 and
the minimum shear stress Eyf required to maintain shear flow at
long times versus the maximum shear strain 7y, for a system with
Ny=1024. The solid line has slope —0.20.

A

2yp-2= ;%’ (6)
where Eyf is the minimum shear stress at which y;— . We
allowed the prefactor A, and power-law exponent S to vary
with Ny; B increased from 0.1 to 0.5 as we increased the
system size from Ny=100 to 20 000. The difference between
3, and X is shown in Fig. 3 for Ny=1024; X ,~4.4
X 10_4>2yu was obtained for this system size.

C. System-size dependence

In the previous section, we showed that E),f> Eyv for sys-
tems with Ny=1024 bulk particles. How does the difference
in these two measurements of the yield shear stress depend
on system size? Does the difference tend to zero for friction-
less granular systems? To answer these questions, we per-
formed measurements of %, and 2., for systems with N, in
the range 32 to 20 000. For all system sizes, the shear stress
obeyed Eq. (5) in the constant shear velocity ensemble and
Eq. (6) in the constant shear force ensemble. We found that
Eyf>2yv for all system sizes studied; however, the differ-
ence between these two measures of the yield shear stress
decreased as N, increased. Both measures decreased with
increasing system size and appear to converge to the same
value in the infinite-system-size limit, ny% 1.7X107* In
Fig. 4 we show the system-size dependence of 3 and 3,
on both linear and logarithmic scales. This figure shows that
3,2 and X, -3 . scale as power laws with N, over
several orders of magnitude in system size with no obvious
trend toward a plateau. For example, in the constant force
ensemble, X, ,—3, . obeys

B
_ i
2y 2= NI (7)
over the entire range of system sizes with B,>0 and 7,
~0.75. %, has a similar power-law dependence for small
systems, but a more rapid power-law decay with 7,~1.0
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FIG. 4. The yield shear stress in the constant shear velocity 2.,
(circles) and force X, (squares) ensembles as a function of the
number of bulk particles N,. The inset shows on a logarithmic scale
the relative deviation of the yield shear stress from the value Eym in
the infinite-system-size limit as a function of N,.

occurs for Ny>300. A simple interpretation of %,,— 2, is
that >, measures the average shear stress, while 2., is re-
lated to the maximum shear stress in the ¥ — 0 limit. Since
the distribution of shear stresses becomes a o function and
the shear fluctuations vanish, the difference between X, and
2,; can vanish in the large-system limit for frictionless
granular systems.

D. Discontinuity in the shear rate

In Fig. 5, we show a comparison of the flow curves, i.e.,
shear stress X versus shear rate u/L,, for systems in the
constant shearing velocity and force ensembles. For large
shear stresses >3 . there is a correspondence between
shear rate and shear stress in the two ensembles. However,
since Eyf is larger than the average shear stress Eyv in the
u— 0 limit at finite system size, there is a jump discontinuity
in the shear rate when the applied shear stress is increased
above Eyf. In fact, several recent experimental studies have

0.002

0.0015

W 0.001

0.0005

FIG. 5. Comparison of the flow curves at constant shear velocity
(asterisks) and constant shear force (circles) for Ny=1024. The solid
line is a fit to Eq. (5). u./L, is the jump discontinuity in the bound-
ary shear rate that occurs when the system begins flowing at con-
stant shear force. The inset shows the jump discontinuity u./L, as a
function of N,. The solid line has slope =-1.15.
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found that foams, emulsions, and granular materials also dis-
play a rate of strain discontinuity when they begin flowing in
response to applied shear stress [27-29]. However, we find
that in frictionless granular systems, the jump discontinuity
in shear rate upon initiation of shear flow is a finite-size
effect—u, tends to zero in the infinite-system-size limit. To
obtain the jump discontinuity in shear velocity at startup, we
set the constant force yield stress equal to the flow curve at
constant shear velocity, ,{Ny)=2(u.,Ny), and use Eq. (5)
to solve for u,. Using the scaling relations in Egs. (5) and (7),
we find that u,~Ny”*~N,"'°, which is confirmed in the
inset to Fig. 5. In light of these results, we advocate further
experimental studies of the rate of strain discontinuities in
soft glassy materials, especially in planar shear cells, to de-
termine whether there are strong finite-size effects in the
strain discontinuity.

IV. FUTURE DIRECTIONS

A frequently used measure of the dynamic yield shear
stress is the shear stress overshoot above the long-time aver-
age value in systems sheared at finite shear rate. In fact,
several recent computational studies of dense Lennard-Jones
glasses have measured the dependence of the shear stress
overshoot on the bath temperature and imposed shear rate
[9,10,14,17]. In this final section on future research direc-
tions, we present an initial set of results from simulations of
frictionless granular systems undergoing planar shear to de-
termine whether a significant shear stress overshoot occurs
on short time scales in the slowly sheared regime in these
systems.

There are several key differences between our current
study and most previous investigations of the shear stress
overshoot in sheared glassy systems: (1) we study systems
with no constraints on the velocity profile [i.e., the equation
of motion in Eq. (1)] as well as systems with constraints that
enforce a linear velocity profile (v,)=uy/L, at all times as
used in simulations of glasses [30], (2) we study a wide
range of packing fractions from near random close packing
at $»=0.85 to overcompressed systems at ¢=1.1, and (3) we
focus on dissipative, granular systems, not conservative,
thermal systems. We fixed the dissipation in this study; how-
ever, the influence of dissipation will be investigated in a
future study [32]. In the results below, we show that the
packing fraction and shape of the velocity profile strongly
influence the short-time response of sheared granular sys-
tems.

There are a number of important reasons for performing
these simulations. First, in computer simulations of liquids
and glasses, shear flow is often implemented by enforcing an
average linear velocity profile [24,31]. This is often done
because the simulation results can then be easily compared to
predictions from linear response theory. In addition, systems
with linear velocity profiles are spatially homogeneous, and
this simplifies the analysis. However, in most experimental
systems, especially granular systems, the velocity profiles are
highly nonlinear. It is therefore desirable to compare the
shear stress response in systems with linear velocity profiles
and in systems with unconstrained profiles that in principle
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FIG. 6. Shear stress 3 versus shear strain 7y for systems with
Ny=4096 at ¢=(a) 0.85and (b) 1.10 and u/L,=0.001. The solid
and dotted lines show results for systems with and without a con-
straint that enforces linear velocity profiles.

can be highly nonlinear. Second, we believe that there is a
close connection between the difference in the two measures
of the yield shear stress and the shear stress overshoot. For
example, if there is no significant shear stress overshoot, we
would not expect there to be a large difference in the static
and dynamic definitions of the yield shear stress. Without an
overshoot, the same limit of the shear stress can be obtained
by approaching the yield point from low or high strain.

To study the shear stress overshoot, we measured the
shear stress response of the system at small strains to a slow
applied shear rate u/L,=107*. The shear stress as a function
of shear strain averaged over 100 independent realizations is
shown in Fig. 6 for a system with N,=4096. Note that in Fig.
6 the shear stress is measured only over small shear strains
up to y=1. In contrast, the shear stress was averaged over
large shear strains up to y=100 in previous figures.

Two striking results are presented in Fig. 6. First, when
the velocity profile is unconstrained, the shear stress does not
overshoot the long-time average shear stress at this shear
rate. The shear stress increases monotonically to the long-
time average value. The shear strain required to reach the
long-time average shear stress decreases with increasing ¢,
but is much less than the shear strain required for the system
to possess a linear velocity profile. See Ref. [19] for an ex-
tensive discussion of the evolution of the velocity profiles in
sheared granular systems. In contrast, when we constrain the
system to possess a linear velocity profile, a large shear
stress overshoot develops. In addition, the shear strain re-
quired to reach the long-time average shear stress is less than
0.2 and roughly independent of packing fraction. These re-
sults suggest that the shear stress overshoot at short times at
least at densities near random close packing in granular sys-
tems may be an artifact of the fact that the velocity field is
constrained to be linear. However, we note that large shear
stress overshoots have been found in dense sheared Lennard-
Jones systems without constraints on the velocity profile
[9-11]. Thus, it would be incorrect to conclude that the con-
straint that enforces an average linear velocity profile is the
only cause of the shear stress overshoot. At the very least, the
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constraint significantly amplifies and speeds up the response
of the system to applied shear.

Second, the packing fraction strongly influences the
height of the shear stress overshoot. The overshoot for ¢
=0.85 in Fig. 6(a) (with the constraint) is nearly a factor of
10 smaller than that for ¢=1.1 in Fig. 6(b). Moreover, if we
define A=(Z,,-%,)/%, as the relative height of the shear
stress overshoot with maximum shear stress 2, and shear
stress plateau at long times %, A=0.09 at ¢=0.85 com-
pared to A=0.15 at ¢»=1.10. Both of these findings demon-
strate that the shear stress overshoot is less pronounced in
frictionless granular systems near random close packing with
the local dissipation model in Eq. (1) than in dense Lennard-
Jones glasses.

V. CONCLUSION

In this paper, we studied model frictionless granular sys-
tems near the initiation and cessation of shear flow using
molecular dynamics simulations of boundary-driven shear
flow at constant volume in 2D. These simulations were per-
formed to address several open questions concerning the
jamming (or unjamming) transition in frictionless granular
systems. First, we wanted to determine whether these model
systems can be characterized by a single yield shear stress in
the large system limit. We compared two measures of yield
shear stress: (1) the average shear stress X, in the limit
where the velocity of the shearing boundary tends to zero
and (2) the minimum shear stress X, required for steady
shear flow at long times when a constant force is applied to
the shearing boundary. As found in previous studies of glassy
and granular systems, Eyf> Eyv in finite-size systems. How-
ever, these two measures tend to the same value Eyf=2yu in
the infinite-system-size limit in frictionless granular systems.
An important direction for future research is to determine
how the inclusion of static frictional forces affects these re-
sults. Does the difference X.,,—X.,, remain finite in the large
system limit in frictional granular systems? Recent studies
have argued that a large yield stress difference X3, is
responsible for shear banding—spatially localized velocity
profiles—in dense Lennard-Jones glasses [15]. However, our
results suggest that another mechanism is responsible for
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shear banding in frictionless granular systems [18,19]. Fur-
ther studies are required to determine whether a possible gap
2, —2,,>0 contributes to shear banding in large frictional
systems.

Another question raised in this paper is whether friction-
less granular systems possess a strain rate discontinuity when
they begin flowing at constant force as has been found in
several recent experimental studies on similar systems
[27-29]. We indeed found a discontinuity in the shear rate
upon the initiation of flow, but the discontinuity is propor-
tional to Eyf— Eyv and appears to scale to zero in the infinite
system size limit. We recommend further experimental stud-
ies in planar shear cells to assess the finite-size effects on the
strain rate discontinuity.

We have begun investigations of the short-time response
of the shear stress of the system when the shearing boundary
is driven at fixed velocity. It is well known for glassy sys-
tems that the shear stress at short times can overshoot the
long-time average value when these systems are sheared at
finite shear rate, and the height of the overshoot is often used
as a measure of the dynamic yield shear stress. We found
several unexpected results for the short-time response. First,
the shape of the velocity profile strongly influences the shear
stress at short times. When our systems did not have a con-
straint imposed on the velocity profile, we did not observe an
overshoot in the shear stress. In contrast, when a linear ve-
locity profile was enforced, a strong shear stress overshoot
occurred. Second, the height of the overshoot (at least in
systems with linear velocity profiles) decreases with decreas-
ing packing fraction. For example, the height of the peak in
shear stress is a factor of ten smaller near random close pack-
ing than in an overcompressed system at ¢=1.1. These re-
sults point out that there is not a significant shear stress over-
shoot in frictionless granular systems—in contrast to dense
Lennard-Jones glasses.
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