
Which Biomarkers Reveal Neonatal Sepsis?
Kun Wang1,2, Vineet Bhandari3, Sofya Chepustanova1, Greg Huber4, Stephen O9Hara1, Corey S. O9Hern5,

Mark D. Shattuck6, Michael Kirby*

1 Department of Mathematics, Colorado State University, Fort Collins, Colorado, United States of America, 2 Department of Mechanical Engineering and Materials Science,

Yale University, New Haven, Connecticut, United States of America, 3 Division of Perinatal Medicine, Department of Pediatrics, Yale University School of Medicine, New

Haven, Connecticut, United States of America, 4 Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California, United States of America,

5 Department of Mechanical Engineering & Materials Science, Department of Applied Physics, and Department of Physics, Yale University, New Haven, Connecticut,

United States of America, 6 Benjamin Levich Institute and Physics Department, The City College of New York, New York, New York, United States of America

Abstract

We address the identification of optimal biomarkers for the rapid diagnosis of neonatal sepsis. We employ both canonical
correlation analysis (CCA) and sparse support vector machine (SSVM) classifiers to select the best subset of biomarkers from
a large hematological data set collected from infants with suspected sepsis from Yale-New Haven Hospital’s Neonatal
Intensive Care Unit (NICU). CCA is used to select sets of biomarkers of increasing size that are most highly correlated with
infection. The effectiveness of these biomarkers is then validated by constructing a sparse support vector machine
diagnostic classifier. We find that the following set of five biomarkers capture the essential diagnostic information (in order
of importance): Bands, Platelets, neutrophil CD64, White Blood Cells, and Segs. Further, the diagnostic performance of the
optimal set of biomarkers is significantly higher than that of isolated individual biomarkers. These results suggest an
enhanced sepsis scoring system for neonatal sepsis that includes these five biomarkers. We demonstrate the robustness of
our analysis by comparing CCA with the Forward Selection method and SSVM with LASSO Logistic Regression.
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Introduction

The identification and treatment of sepsis continues to be a

major health issue. The incidence of sepsis is particularly high in

the neonatal population, where low birth weight and other

compromising factors make it a primary cause of morbidity and

death [1–3]. Early identification and treatment are critically

important to healthy patient outcomes given the inconsistent

presentation of sepsis in terms of body temperature, which may be

either above or below normal [4–6].

The most reliable diagnostic of neonatal sepsis, often referred to

as the gold standard, is a blood culture test for bacteria. While this

test is the most reliable available, it can take 48 hours to obtain the

results. As a result, treatment must often begin before the results

are known. An additional complication is the fact that the blood

culture test can be negative for one in five subjects with sepsis

[2,7]. Thus, it is of critical importance to identify new biomarkers

that will enable fast and reliable hematological scoring systems for

sepsis in its earliest stages.

The current hematological scoring system was first proposed by

Rodwell, et al. in 1988 and is based on the following seven

quantities: total leukocyte (or White Blood Cell, WBC) count,

mature neutrophil count (also named Segs, Absolute Neutrophil

Count, or ANC), immature neutrophil count (also named Bands,

Absolute Band Count, or ABC), Immature to Total neutrophil

count ratio (IT-ratio), Platelet count (Plt), and adverse changes in

the total neutrophil count [8]. Another scoring system was

proposed in Ref. [6] that characterizes a patient as septic if any

two of the following four criteria are satisfied:

N ANCv7500 or ANCw14500=mm3

N ABCw1500=mm3

N IT-ratiow0:16

N Pltv150,000=mm3.

These hematological scores are supplemented by other obser-

vational evidence and measurements collected by physicians

including body temperature, blood pressure, and clinical presen-

tation in determining the course of treatment before the blood

culture results are available.

Additional diagnostic hematological biomarkers have been

studied such as C-reactive protein (CRP) [9,10] and procalcitonin

[11,12]. While these biomarkers have shown to be correlated with

sepsis, they are considered to have limited diagnostic information

[4,13]. More recently, the blood biomarker neutrophil CD64 has

proved to be particularly promising for early detection of sepsis

[14–16]. Neutrophil surface CD64 expression is a high affinity Fc

receptor for immunoglobulin G (IgG) expressed on neutrophils

(and other white blood cells). Quantities of CD64 increase

markedly when neutrophils are activated by the human body’s

response to infection, and in particular, to sepsis.

The challenge of biomarker identification is reflected by the fact

that over 3000 sepsis biomarker studies have been published with
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almost 200 candidate biomarkers evaluated [4]. Nonetheless,

clinicians are unsatisfied with the diagnostic tools currently

available for making accurate and timely sepsis diagnoses that

would also support appropriate therapies. The challenge is not to

identify single biomarkers that pass a univariate test for diagnostic

efficacy, but to determine which sets of biomarkers, when

considered as a group, yield the most accurate prognosticator.

In this investigation, we integrate two tools for discovering

information in large data sets. Embedded feature selection using a

sparse support vector machine classifier [17,18] and canonical

correlation analysis [19], a tool for identifying relationships

between two sets of variables. This two-pronged analysis provides

a powerful general tool for the identification of biomarkers useful

for multivariate scoring systems.

In this manuscript, we present a systematic study of the

multivariate diagnostic capacity of a set of ten hematological

biomarkers. Our goal is to establish a general approach that can be

used effectively on potentially much larger sets of biomarkers. We

develop an approach to identify a minimum set of predictive

biomarkers with the ultimate goal of improving the early detection

of sepsis. We verify the results by conducting an exhaustive

evaluation of all possible combinations of biomarkers. We envision

that the algorithms proposed here will be helpful tools as advances

in biomedicine produce additional candidate biomarkers arising

from new proteomic and metabolomic tests [20,21].

Results

A total of 1383 sepsis evaluations were performed on 749
neonates during the study period. Blood cultures, complete blood

counts (CBC), and neutrophil CD64 data were obtained for

n~674 of the sepsis evaluations. One evaluation was excluded due

to the high neutrophil CD64 value that skewed the results.

Evaluations were partitioned into three groups: (1) blood culture

positive septic group (n1~37), (2) clinically probable septic group

(n2~290), and (3) nonseptic group (n3~347). In this study, we

combined groups 1 and 2 and labeled these subjects as having

sepsis. Our analysis is based on the comparison between this

combined septic group (ns~327) and nonseptic group (nn~347).

See Materials and Methods for details.

Data for ten hematological biomarkers were analyzed in this

study including: (1) Age, (2) WBC count, (3) Hemoglobin count

(Hgb), (4) Hematocrit percentage (Hct), (5) Plt, (6) Segs, (7) Bands,

(8) Lymphocyte (Lymph) count as a percentage of WBC, (9)

Monocyte (Mono) count as a percentage of WBC, and (10)

neutrophil CD64 expression. Following Ref. [5], P-values were

computed for the biomarker data and all ten biomarkers were

determined to have predictive capacity.

Optimal Subsets of Biomarkers
Multivariate correlation analysis is a general tool for exploring

how variables are inter-related. Canonical correlation analysis

provides a powerful tool for discovering relationships between two

sets of variables. Given two sets of variables, CCA can identify

subsets of each set, which when combined as latent variables,

produce the maximum correlation between the two sets. In this

study, we choose one set of variables to be the sepsis score, and the

second set is taken from all possible subsets of the ten biomarkers.

CCA can thus generate an ordered list of biomarkers that are most

correlated with the sepsis score. See Materials and Methods for

details.

Here we discuss the results of applying CCA to select the best

combinations of sepsis biomarkers. We first consider the single

biomarker with highest correlation to the sepsis score. As shown in

Table 1, this biomarker is Bands. If we consider all pairs of

biomarkers, Bands and Plt possess the highest correlation with

sepsis score. We note that CD64 has the second highest correlation

with sepsis score, in the univariate sense, but improves the

correlation of Bands to sepsis score less than Plt, which has a lower

univariate correlation with sepsis score. This is due to the fact that

Bands and CD64 are more correlated than Bands and Plt, and so

less information is provided by adding CD64. Hgb enters at k~3
even though it has a very weak pairwise correlation with the sepsis

score given it also has very weak pairwise correlation with Bands

and Plt. The correlation saturates at k~5 with the following

combination set of biomarkers: Bands, CD64, Segs, WBC, and Plt.

The rest of the biomarkers do not provide significant additional

information about the sepsis score. The above analysis suggests

that these five variables should be included in our sepsis scoring

system.

Comparison with Forward Selection Method. Forward

Selection (FS) is a well known data-driven selection method, where

additional variables are added in one-by-one to improve the model

[22]. The FS method selects the single variable out of the

remaining set that gives the highest absolute correlation with the

residual vector [23]. The results from FS on the sepsis data set are

compared with those from CCA in Table 1. Both methods involve

linear correlations, but FS is a greedy algorithm, which only

produces a locally optimal solution. However, we find that up to

k~4, CCA and FS select the same subset of biomarkers. At k~5,

CCA and FS differ. Since FS can only select one feature at a time,

at k~5, FS selects Segs, while CCA selects Segs and WBC and

replaces Hgb. The manner in which we implemented CCA

ensures a globally optimal solution for each k.

In the next section, we validate this result using a classifier to

predict the sepsis score in terms of these biomarkers.

Table 1. Comparison of the Canonical Correlation Analysis
and Forward Selection of the biomarkers.

k-combination Correlation Enter Leave
Forward
Selection

1 0.563 Bands Bands

2 0.615 Plt Plt

3 0.633 Hgb Hgb

4 0.643 CD64 CD64

5 0.653 Segs, WBC Hgb Segs

6 0.660 Hgb WBC

7 0.663 Age Age

8 0.664 Lymph Hct

9 0.666 Mono Lymph

10 0.668 Hct Mono

By applying CCA for all possible k-combinations (k~1, . . . ,10), the subset of k

biomarkers with the highest correlation with the sepsis score is determined. The
‘Enter’ column indicates which biomarker is added to achieve the highest
correlation at each k. The ‘Leave’ column indicates which biomarker is
eliminated from the combination at that particular k. A biomarker will stay in
the combination until it occurs in ‘Leave’ column. For instance, for the 5-
combination, the most correlated biomarkers include Bands, Plt, CD64, Segs,
and WBC. Hgb, which was present in the 4-combination, is replaced by Segs
and WBC at level 5. The ‘Forward Selection’ column is the biomarker selected by
the forward selection method when applied one biomarker at a time.
doi:10.1371/journal.pone.0082700.t001
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The Diagnostic Classifier
We seek to construct a decision function from the biomarker

data that serves as a hematological scoring system, i.e. a function

that maps a sample vector of biomarkers to a positive or negative

sepsis diagnosis. Using the biomarkers identified by CCA above,

WBC, Plt, Segs, Bands, and CD64, we propose the linear decision

function:

d(x)~w1 WBCzw2 Pltzw3 Segszw4 Bandszw5 CD64zb:

From the sparse support vector machine approach described in

Materials and Methods, we determined the optimal decision

function to be

Score~0:37WBC {0:88Plt{0:7Segsz2:7Bands

z0:45CD64{0:66:
ð1Þ

See Table 2 for the weights, wi, and their errors, and means and

standard deviations of the biomarkers. With this decision function,

if the Score is greater than or equal to zero the diagnosis is positive

for sepsis, whereas if the Score is less than zero, the diagnosis is

healthy or aseptic disease. We note that since the range of values of

the biomarkers varies widely, all values of the biomarkers are

normalized by subtracting the mean over all cases and then

dividing by the standard deviation.

The results of applying the classifier in Equation (1) to the full

sepsis dataset are shown in Table 3. We calculated the true positive

rate (TPR), true negative rate (TNR), positive predictive value

(PPV), negative predictive value (NPV), and accuracy (ACC)

(defined in Materials and Methods) for these five biomarkers. We

emphasize that there are two remaining questions of interest. How

good is the classifier? Did we identify the most predictive

biomarkers from the original set of ten? We focus on the validation

of these biomarkers in the next section.

Biomarker Validation
In this section, we have two goals. First, we will verify that the

number of biomarkers suggested by CCA, k~5, is optimal.

Secondly, we seek to provide evidence that the CCA-selected

biomarkers are optimal. To do this, we will perform an exhaustive

analysis of all possible scoring systems for the ten biomarkers.

Clearly this approach is not feasible for large sets of biomarkers,

but we exploit the fact that we only have ten to illustrate the power

of CCA biomarker selection by constructing all possible SSVM

classifiers. We used the accuracy of the resulting decision functions

for our validation.

Validation of the k~5 Classifier. For each k, we select the

k-combination set of biomarkers as identified by CCA and shown

in Table 1. We construct a decision function for each k from 1 to

10 and evaluate several measures of the quality of the scoring

system in Fig. 1. We find that each measure begins to saturate near

k~5, although one could argue that some slight improvement

could be obtained by adding one or two more biomarkers for the

given model. (We note that this particular model was not

optimized over variations in the parameter b.)

Receiver operating characteristic (ROC) curves for true positive

versus false positive rate provide additional insight into the

determination of the minimal number of biomarkers that provide

predictive information about sepsis infection. In Figure 2, we show

that the ROC curves become independent of k for k§5, and thus

k~5 is indeed the appropriate number of biomarkers. In the inset

to Figure 2, we show the ROC curve for k~5 averaged over 100
SSVM models.

Validation of the CCA Selected Biomarkers. We provide

further evidence that our CCA biomarker selection was in fact the

optimal one by applying SSVM to all possible combinations of

biomarkers for each k. We show the TPR, TNR, PPV, NPV, and

ACC for the top 20 of all possible combinations in Figure 3. It is

clear that the CCA-selected biomarkers possess the best statistical

measures for each k.

Comparison with Logistic Regression. Logistic Regres-

sion (LR) is widely used for classification problems. A LR model

can predict the outcome variable, such as the disease state ( i.e. sick

or healthy) [24], by the new predictor inputs. The LASSO (Least

Absolute Shrinkage and Selection Operator) algorithm [25] is a 1-

norm regularized logistic regression, which is extensively used for

feature selection. By the 1-norm penalty, LASSO Logistic

Regression (LLR) can achieve a sparse solution and exhibit a

significantly high tolerance to the presence of many irrelevant

features [26].

Here we also construct a LLR based classifier for each k from 1
to 10 and plot the same statistical measures of the performance of

the diagnostic system in Figure 1 as for SSVM. The sets of

Table 2. Parameters for the classifier at k = 5.

m Biomarker Mean x Standard Deviation s Weight w Standard Error of Weight e

1 WBC 14.04 8.70 0.373 0.009

2 Plt 231.37 103.38 20.876 0.012

3 Segs 39.64 17.25 20.699 0.008

4 Bands 7.92 9.61 2.691 0.018

5 CD64 2.96 2.42 0.446 0.012

The parameters of the classifier for the sepsis score given in Equation (1), including the standard errors e(m) for each biomarker weight w(m).
doi:10.1371/journal.pone.0082700.t002

Table 3. Performance of the classifier at k = 5 for SSVM and
LLR.

Method TPR TNR PPV NPV ACC

SSVM 0.838 0.905 0.893 0.856 0.875

LLR 0.740 0.960 0.945 0.797 0.853

Prediction measures for the classifier at k = 5 built by SSVM and LLR: true
positive rate (TPR), true negative rate (TNR), positive predictive value (PPV),
negative predictive value (NPV), and accuracy (ACC).
doi:10.1371/journal.pone.0082700.t003

Which Biomarkers Reveal Neonatal Sepsis?
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biomarkers determined by CCA are used for each k-combination.

We observe a similar saturation for all of the measures near k~5.

On our test data set we observe that LLR has a superior true

negative rate while its true positive rate is inferior. The variability

of the measures is substantially wider for LLR than SSVM (see

Table 3 for the LLR and SSVM performance of the classifier at

k = 5). In practice physicians may be concerned with a specific

measure, e.g., negative predictive value. In this case, either of these

methods could be used to optimize the negative predictive value.

Please see Supporting Information Text S1 for more details.

Materials and Methods

The data sets were obtained from a prospective study conducted

in the Neonatal Intensive Care Unit at Yale-New Haven Hospital

[27].This study was approved by the Yale University School of

Medicine Human Investigation Committee. Consecutive patients,

who underwent a sepsis work-up as deemed necessary by the

attending neonatologist during the time period 1/2008-6/2009,

were enrolled in the study [27].

Sepsis Evaluations
The clinical and historical features used to identify patients at

risk for sepsis include one or more of the following, as determined

by the attending neonatologist [6,28,29]: (1) respiratory compro-

mise (e.g. tachypnea, increase in frequency or severity of apnea, or

increased ventilator support); (2) cardiovascular compromise (e.g.

increased frequency or severity of bradycardic episodes, pallor,

decreased perfusion, or hypotension); (3) metabolic changes (e.g.

temperature instability, feeding intolerance, glucose instability, or

metabolic acidosis); (4) neurological changes (e.g. lethargy, hypo-

tonia, or irritability); and (5) antenatal risk factors (e.g. maternal

Group B Streptococcus (GBS) colonization without adequate

intrapartum prophylaxis, unknown maternal GBS status, maternal

temperature, chorioamnionitis, preterm labor, or prolonged

rupture of membranes). After the sepsis evaluation was performed,

we utilized the following values derived from CBC to assign a

sepsis score [8,14]: (1) Absolute Neutrophil Count (ANC) v7500

or w14500=mm3; (2) Absolute Band Count (ABC) w1500=mm3;

(3) Immature to Total neutrophil ratio (IT-ratio) w0:16; and (4)

Platelet (Plt) count v150,000=mm3. Infants who met 2 or more of

these laboratory criteria were categorized as having a positive

sepsis score. Hemoglobin was measured in the clinical hematology

laboratory using a calorimetric method. The hematocrit was

calculated after measuring the total red blood cell count (RBC)

and the mean corpuscular volume (MCV) of the RBCs. All blood

cultures were collected using standard sterile techniques. As per

unit protocol, we attempt to obtain 2 blood cultures with a

minimum of 0:5 ml. The BACTEC (Becton Dickinson and Co.,

Sparks, MD) microbial detection system was used to detect positive

blood cultures.

Neutrophil CD64 expression was measured using 50 ml of whole

blood incubated for 10 minutes at room temperature with a

saturating amount of fluorescein isothiocyanate (FITC)-conjugated

anti-CD64 monoclonal antibody or isotype control (Leuko64 kit,

Trillium Diagnostics, Scarborough, ME), followed by ammonium

chloride-based red cell lysis. Samples were washed once and re-

suspended in 0:5 ml of phosphate-buffered saline with 0.1%

bovine serum albumin. Flow cytometric analysis was accomplished

using a Becton-Dickinson FACScan (Mountainview, CA) to collect

log FITC fluorescence, log right-angle side scatter and forward

scatter on a minimum of 50,000 leukocytes. Interassay standard-

ization and neutrophil CD64 quantification were performed using

FITC calibration beads (Leuko64 kit). Data analysis was

performed using light scatter gating to define the neutrophil

population, and the neutrophil CD64 Index was quantified as

mean equivalent soluble fluorescence units using QuickCal for

Winlist (Verity Software House, Topsham, ME) with a correction

for nonspecific antibody binding by subtracting values for the

isotype control [14]. This was expressed as an absolute value.

Investigators checking and confirming the neutrophil CD64 results

were blinded to the clinical data, including the blood culture

results. Clinicians did not have access to the neutrophil CD64

values and these were not used to decide initiation or duration of

antibiotic therapy.

Evaluation Studied
Evaluations were obtained by accessing the electronic medical

record from January 2008 through June 2009. Each evaluation

typically included a CBC, two peripheral blood cultures, and other

optional cultures. A patient could undergo multiple sepsis

evaluations during admission. Since a single evaluation represent-

Figure 1. Prediction measures obtained from the (A) Sparse
Support Vector Machine and (B) LASSO Logistic Regression
methods. True positive rate (TPR), true negative rate (TNR), positive
predictive value (PPV), negative predictive value (NPV), and accuracy
(ACC) are shown for each k-combination of biomarkers selected.
doi:10.1371/journal.pone.0082700.g001

Figure 2. Receiver operating characteristic (ROC) curves. ROC
curves of TPR versus FPR for optimal sets of k biomarkers where
k~1, . . . ,10 averaged over 100 SSVM models. The shaded region in the
inset shows the standard deviation for k~5.
doi:10.1371/journal.pone.0082700.g002
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ed a separate episode of suspected sepsis and could be treated

independently, we therefore treated all evaluations equivalently in

this manuscript. Evaluations were excluded if the CBC, neutrophil

CD64, or blood culture tests were not provided in the patient

record. A total of 674 sepsis evaluations with complete hemato-

logic, neutrophil CD64, and blood culture data were used for

the analyses. (One evaluation, which was positive for

Candidanalbicans was excluded due to the high neutrophil

CD64 value that skewed the results.) Information about each

sepsis evaluation included (1) sepsis diagnosis type, (2) day of life

that the evaluation was performed, and (3) CBC data and

neutrophil CD64 expression. Ten biomarkers were included in the

analysis: Age, WBC, Hgb, Hct, Plt, Segs, Bands, Lymph, Mono,

and CD64. Additional details about the laboratory and clinical

data were recently published [27,30].

Defining Sepsis Outcome
Individual sepsis evaluations with positive blood cultures were

diagnosed as culture-proven sepsis according to the current

National Healthcare Safety Network definitions for laboratory-

confirmed bloodstream infections [31]. Individual sepsis evalua-

tions with positive sepsis scores were categorized as clinical sepsis

[8,14]. This might include infants with other infectious diagnoses

that were not accompanied by a positive blood culture, such as

pneumonia, urinary tract infection, and necrotizing enterocolitis.

Three groups of evaluations were defined, and each evaluation

was assigned to only one of the three groups. Group 1 consisted of

37 evaluations with a positive blood culture. Group 2 with

‘‘suspected sepsis’’ consisted of 290 evaluations, where the patients

lacked a definitive positive blood culture, but the clinical diagnosis

was unable to rule out bacterial infection. Group 3 consisted of

347 evaluations, for which either the blood culture or clinical

diagnosis showed no evidence of infection.

Data Preprocessing
First, each evaluation i~1, . . . ,n, with data xi, is categorized as

septic (groups 1 and 2 above) and nonseptic (group 3), where xi is a

real-valued vector with p~10 components (biomarkers) and

n~674 is the total number of evaluations. For convenience, we

labeled each evaluation using the variable yi, where yi~z1 is the

label for the septic group and yi~{1 is given to each in the

nonseptic group. To standardize the range of independent

biomarkers, we normalized the real-valued data x, a n|p matrix,

to have zero mean and unit standard deviation for each biomarker

[32]:

xnorm~
x{x

s(x)
, ð2Þ

where x and xnorm are n|p matrices, x and s(x) are the mean

value and standard deviation of x for each biomarker.

Canonical Correlation Analysis
CCA is a multivariate statistical tool that facilitates the study of

interrelationships among multiple variables [19,33]. A linear

combination of variables can be chosen by CCA such that the

correlation between two sets of data is maximized [34]. In our

studies, the two sets of data are the sepsis score y and each distinct

k-combination of the p~10 biomarkers in the data matrix x. In

this investigation, CCA is used to identify the set of k-biomarkers

most correlated as a group to the sepsis score. Please see

Supplementary Text S1 for more details.

To explore the redundancy among the biomarkers, we

calculated the correlations between each possible k-combination

of x and y using CCA. By varying k from 1 (single biomarker) to p
(all biomarkers), we selected the specific set of biomarkers that

possessed the highest correlation with y for each k. The sets of

biomarkers that had the largest correlation with the sepsis score

Figure 3. Exhaustive evaluation of statistical measures. The 20 highest TPR, TNR, PPV, NPV, ACC values when SSVM was applied for all possible
combinations of k biomarkers (blue circles) from k~1, . . . ,10. The solid red circles are the values for models built using the best k biomarkers
selected by CCA.
doi:10.1371/journal.pone.0082700.g003
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and their corresponding correlation coefficients are shown in

Table 1.

Sparse Support Vector Machines (SSVM)
We applied the SSVM ensemble method to build a classifier for

each of the CCA-selected k-combination of biomarkers selected by

CCA. A linear support vector machine (SVM) is a widely used

classifier, which finds the hyperplane that separates high-dimen-

sional data with maximum margin by categories. The search of

this hyperplane can be translated into the following optimization

problem:

Minimize EwE1zCz

P

i:yi~z1

jizC{

P

j:yj~{1

jj

subject to

wT xizbzji§1,yi~z1,

wT xjzb{jjƒ{1,yj~{1,and

j§0,

ð3Þ

where EwE1~
P

i jwij is the 1-norm of a vector, which induces the

sparsity in the weight vector w [17]. We refer to the solution of

Equation (3) as a sparse support vector machine (SSVM) following

Ref. [18]. Note that splitting the classes in the objective function

allows for unbalanced sample sizes.

Due to the limited size and noise of our data, a bootstrap

aggregation method was applied to build an ensemble of SSVM

classifiers using the following procedure [35,36]:

1. The data set x(k) is randomly divided into a learning set L and

a test set T . T is one third of the data.

2. Based on the bootstrap aggregation method, a bootstrap

training set LB is randomly selected from the original learning

set L with replacement. That is, LB has the same number of

samples as the original training set L, but with several training

samples appearing multiple times. Each bootstrap set LB

contains 63:2% unique samples of the original training set L.

By repeating this process 50 times, an ensemble of classifiers

fi(x), with i~1, . . . ,50, is built by the SSVM. To have the

same total cost for both false positives and false negatives, the

parameters Cz and C{ of the SSVM are chosen according

t o
Cz

C{

~
number of nonseptic training evaluations

number of septic training evaluations
w i t h

C{~1:0 since the results are not sensitive to the overall scale

of C+.

3. The final classification is obtained by calculating the mean of

the ensemble of 50 classifiers.

4. The random division of the data into L and T is repeated 100
times, after which we calculate the mean and standard

deviation. We used the same 100 random divisions of the

training and test sets for each k.

Calculation of Statistical Measures
The statistical measures of the performance of a classifier are

measured using ACC, TPR, TNR, NPV, and PPV. For the sake of

completeness, we include their definitions:

ACC~
number of True Positivesznumber of True Negatives

total number of samples
, ð4aÞ

TPR~
number of True Positives

number of True Positivesznumber of False Negatives
, ð4bÞ

TNR~
number of True Negatives

number of True Negativesznumber of False Positives
, ð4cÞ

NPV~
number of True Negatives

number of True Negativesznumber of False Negatives
, ð4dÞ

PPV~
number of True Positives

number of True Positivesznumber of False Positives
: ð4eÞ

Here, these statistical measures are calculated for each one of

the 100 random divisions of test sets T by the classifier built on the

bootstrap aggregation method. Their mean and standard devia-

tion are calculated from the groups obtained from the 100 random

divisions.

Discussion

Clinical Issues in Sepsis Diagnosis
The problems associated with confirming sepsis with positive

blood cultures, as mentioned earlier, has led clinicians to

investigate alternate approaches for confirmation of diagnosis of

blood-cluster negative or clinical sepsis and prevention of missed

or under treatment of neonates with antibiotics. Clinical param-

eters are notorious for their non-specific nature in detecting

infection, especially in premature neonates; however, a scoring

system based on a 7-item weighted clinical score has been

suggested [37]. In real world settings, most clinicians rely on

clinical judgment, in concert with specific hematological criteria,

to identify infants with sepsis. The hematological criteria have

usually included ANC, ABC, IT-ratio, and platelet counts, as was

done in the present study [6,14,38–43]. Unfortunately, this

approach has not proven very reliable due to the inherent

subjective nature of the clinical assessment and the variability of

the hematological parameters secondary to physiological derange-

ments and non-infectious medical conditions, and has led to over-

treatment of neonates.

It has been suggested that the addition of specific molecular

markers might improve diagnostic accuracy of neonatal sepsis.

Among the acute-phase reactants, CRP is probably the most well

studied, but its value for diagnostic accuracy has had mixed results

[7,44]. Among the newer ones, procalcitonin [45–49] and

neutrophil CD64 [14,15] have shown promise. Neutrophil

CD64 values have been reported to be sustained for at least

24 hours in neonates with sepsis [50].

Several studies have investigated the usefulness of the CD64

Index in the NICU population, albeit in much smaller cohorts, but

with promising results in both the preterm and term populations,

as well as in cases of both early-onset sepsis and late-onset sepsis

[14,51–56]. Recently, studies have suggested that the diagnostic

accuracy of neutrophil CD64 is superior to the IT-ratio [57] and

CRP [58] for the early detection of neonatal sepsis. Secondly,

testing can be done on the same sample sent for a CBC evaluation

as it requires only 50 ml of blood. Thirdly, the CD64 results can be

made available within hours of the CBC, since most clinical

laboratories in the developed and some developing countries have

flow cytometry technology. Furthermore, standard cell counters
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which use flow cytometry have the potential to incorporate anti-

CD64 antibodies and software to provide an even more rapid

enumeration of CD64 indices nearly simultaneous with CBC

results. Hence, we believe that a scoring system that can

incorporate the common CBC parameters with the neutrophil

CD64, as was done with our analyses, would provide objective

criteria for recognizing neonatal sepsis and guidance for initiation

and/or early termination of antibiotic therapy. Additional

independent validation of our results is needed before incorpora-

tion of our diagnostic sepsis score can be recommended for routine

clinical use.

Identification of the Optimal Subset of Biomarkers
We have proposed a new approach for biomarker identification

based on the integrated use of CCA and SSVM on a labeled data

set. We found that for the neonatal sepsis data our approach

produced the optimal set of k hematological biomarkers for all

possible k[f1,2, . . . ,9,10g. We validated our results by conducting

an exhaustive search of all combinations of biomarkers and

ranking them based on their classification accuracy. These results

showed that our approach produced either the absolute top

combination, or a combination of biomarkers with statistically

indistinguishable performance. Although this study explored a

relatively small set of biomarkers, the CCA approach can be

applied to potentially much larger sets by exploiting the relative

weighting of the features (see Equations S1 and S2) and selecting

only the most important features. From Equation S3, CCA

requires finding the pseudo-inverse of a k|k matrix, where k is

the number of biomarkers. Even without invoking sparse methods,

one can easily investigate systems with k of order 10,0000.

Our approach identifies Bands as the most significant biomarker

in our set for detecting neonatal sepsis. The next four most

sigificant hematological biomarkers, in order of importance,

appear to be Plt, neutrophil CD64, WBC, and Segs. We note

that, as illustrated in Figure S1, the reason for the significance of

Bands may be attributed to the fact that it is highly correlated with

subjects with a negative diagnosis while much less correlated with

subjects with a positive diagnosis. This could be related to the

significant variation in Bands for sick individuals as evidenced by

Table S1.

We explore LLR in addition to SSVM to corroborate our

results. In each case we see that an exhaustive combinatorial

evaluation of the classifiers determines that the CCA selected

biomarkers were indeed optimal. See Figures S2 and S3 for a

graphical summary of these numerical experiments. Additionally

we found that the Forward Selection results were very similar to

the biomarkers identified by CCA on this data set, i.e., Bands, Plt,

Hgb, CD64 and Segs. CCA selected WBC and not Hgb for the

best 5-combination. The classifiers using these two sets of

biomarkers perform very similarly with a very slight edge to the

CCA biomarkers. However, in general, forward selection is a

greedy algorithm and it is possible that the sets of biomarkers

identified by CCA and FS could be quite different. Classification

algorithms such as SSVM or LLR can then assist in comparing

and evaluating the selected biomarkers.

We propose that the results found in this investigation, in

particular, the new sepsis scoring system, sets the stage for

independent investigators to clinically validate these results using

alternative sepsis databases. In particular, it will be interesting to

ascertain whether this scoring system is also relevant for adults. It

is also possible to envision modifying the scoring system based on

new data related to alternative scenarios, e.g., septic adults infected

by Gram negative microorganisms. Although we propose CCA in

conjunction with SSVM as an approach for biomarker identifi-

cation, the strength of the methodology lies in the exploitation of

multivariate relationships within the data and other methods that

do this also merit further exploration.

Supporting Information

Figure S1 Heatmaps of pairwise correlations magni-
tude. The pairwise correlations were calculated for any pair of all

10 biomarkers in septic group (A) and nonseptic group (B). The

biomarkers in both x-axis and y-axis for all heatmaps are sorted

ascending by the corrlation magnitude with sepsis score. The

intensity of the color indicates the correlation magnitude in the

pair associated with the corresponding labels of x-axis and y-axis.

A high magnitude implies a strong association between two

variables.

(TIF)

Figure S2 Exhaustive evaluation of statistical measures.
The 20 highest TPR, TNR, PPV, NPV, ACC values when LLR

was applied for all possible combinations of k biomarkers (blue

circles) from k~1, . . . ,10. The solid red circles are the values for

models built using the best k biomarkers selected by CCA.

(TIF)

Figure S3 Receiver operating characteristic (ROC)
curves. ROC curves of TPR versus FPR for optimal sets of k
biomarkers where k~1, . . . ,10 averaged over 100 LLR models.

The shaded region in the inset shows the standard deviation for

k~5.

(TIF)

Table S1 Characteristics of individual biomarkers by
group. Statistical analysis of individual biomarker based on the

evaluation distributions of septic group and nonseptic group.

Results are presented as mean (standard deviation). P values are

comparisons between septic group and nonseptic group. Any

significance level of P less than 0.05 was associated with the

diagnosis.

(PDF)

Text S1 Supplementary Methods.

(PDF)
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