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We perform simulations of model proteins to study folding on rugged energy landscapes. We construct
“first-passage” networks as the system transitions from unfolded to native states. The nodes and bonds in these
networks correspond to basins and transitions between them in the energy landscape. We find power-law
relations between the folding time and the number of nodes and bonds. We show that these scalings are
determined by the fractal properties of first-passage networks. Thus, we have identified a possible
mechanism—the small fractal dimension of first passage networks—which can give rise to reliable folding in
proteins with rugged energy landscapes.
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Understanding how proteins reliably fold to their native
conformations despite frustration in the form of non-native
interactions between residues is an important, open ques-
tion. Advances in experimental techniques, such as single-
molecule fluorescence �1� and fast thermal quenching meth-
ods �2�, have enabled a quantitative characterization of the
dynamics that occur during folding of single proteins. For
example, we now know that a large number of metastable
conformations are sampled during the folding and unfolding
processes, as observed in folding stability �3� and mechanical
denaturation �4� studies.

How does a protein fold reliably to its native conforma-
tion even though a large number of metastable states exist?
For over twenty years the answer to this question has been
the principle of minimal frustration �5�. Within this frame-
work, one recognizes that metastable states are present, but
assumes that the barriers separating local energy minima are
sufficiently low that there is still a large thermodynamic
force driving folding to the native state �6�. This idea is
illustrated by the funneled energy landscape in Fig. 1�a�,
where the roughness scale �E is much smaller than depth of
the energy minimum �E that drives folding ��E��E�.
While the funneled energy landscape may explain how some
proteins fold reliably �7�, a different picture, i.e., rugged en-
ergy landscapes may describe folding and conformational
dynamics in metastable �8� and intrinsically disordered �9�
proteins, as well as misfolding �10�. Rugged energy land-
scapes, as shown in Fig. 1�b�, possess a roughness scale that
is comparable to that of the smooth funnel �E��E. In this
limit, the thermodynamic drive to fold is absent on biological
time scales, and protein conformational dynamics proceed
via activation over energy barriers with only local knowledge
of the landscape.

What physical observables differentiate proteins with fun-
neled versus rugged landscapes? Recent studies indicate that
proteins with rugged landscapes exhibit a crossover between
single exponential folding at large temperature and stretched
exponential folding at low temperature �11�, caused by meta-
stable states in the energy landscape that become increas-
ingly important at low temperature �12�. Moreover, compu-
tational studies have identified the network of states
populated by proteins during folding �13�, and it has been
postulated that the network topology might provide a basis

for understanding the heterogeneity of the transition states in
proteins with rugged energy landscapes �14�. Further, simu-
lations of diffusion �15� and return-time probabilities �16�
show that the set of all local minima in the energy landscape
of model proteins exhibit fractal properties.

Here we study the network topology of the states and
transitions sampled by a model protein during its folding
transition. This is a subset of all local minima and all pos-
sible transitions, and is dependent on temperature. The model
protein has a rugged energy landscape and explores 102–104

distinct states during its folding transition to a unique native
state. We find that a statistical ensemble of pathways to the
native state exists, with large fluctuations in folding times. In
fact, the folding time and number of distinct states sampled
during folding scale as a power law, which suggests that
reliable folding on rugged landscapes can be described as
conformational diffusion on a fractal network of basins. We
calculate the scaling relations expected for diffusion on frac-
tal networks and find excellent agreement with the measured
power laws.

I. HETEROPOLYMER MODEL

To study proteins with rugged energy landscapes, simula-
tion models should possess three key features: �1� unique
native state, �2� many metastable, local energy minima, and
�3� large energy barriers that separate local minima so that
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FIG. 1. Schematics of �a� funneled and �b� rugged energy land-
scapes. In �a�, the depth of the energy minimum that drives folding
�E��E, where �E gives the root-mean-square energy fluctuations
over the given range of the reaction coordinate. In �b�, �E��E.
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�E��E. Further, we must be able to search configuration
space in a reasonable amount of computer time, which at
present excludes all-atom simulations. In these studies, we
will focus on a model heteropolymer that exhibits features
�1�–�3�.

We model proteins as heteropolymers composed of equal-
sized spherical monomers with hydrophobic and hydrophilic
interactions �17�. The model includes hydrophilic monomers
�white� and two types of hydrophobic monomers �red and
green� as shown in Fig. 2. Green and red monomers interact
via a Lennard-Jones potential with minimum energy −Eatt,
except the green monomers on both ends of the chain that
interact with minimum energy −2Eatt. All other monomer-
monomer interactions are purely repulsive �18�. We also in-
clude a finitely extensible nonlinear elastic �FENE� potential
�19� between adjacent monomers to maintain the polymer
constraint. We simulate the 18–mer sequence ggggwwwr-
rrrwwwgggg, where g, w, and r represent green, white, and
red monomers, respectively. This model displays a complex
energy landscape with �105 distinct local energy minima.
For simplicity, local minima are defined by the list of con-
tacting green and red monomers �20�. The native conforma-
tion of this heteropolymer is given by the particular set of 14
green-red contacts shown in Fig. 2�c�. All of the results pre-
sented here are for two-dimensional �2D� systems, however,
we expect similar results in 3D.

Thermal fluctuations of the heteropolymer are studied us-
ing Brownian dynamics, where the temperature T is reported
in units of the attractive energy, e.g. T=1 /3 corresponds to
thermal energy Eatt /3. To compare results for rugged and
funneled energy landscapes, we also simulated the same het-
eropolymer with Go-interactions �21�, where attractive inter-
actions are only included between monomers that form con-
tacts in the native state. Simple measures of kinetics are the
folding and unfolding times shown in Fig. 3. The folding
time � f is calculated by preparing the heteropolymer in an
ensemble of extended states and measuring the average fold-
ing time to the native state. �u is the average unfolding time
from the native state to any extended state with zero red-
green contacts. For temperature T�T�=0.8, � f ��u, and the
extended conformation is significantly less stable than the
native state. The increase in � f as T decreases, as shown in
Fig. 3, has been observed in experimental studies of proteins
�22� and is a general feature of materials quenched below the

glass transition temperature �23� when energy barriers be-
come large compared to T. An important feature of the het-
eropolymer model is that folding only occurs for tempera-
tures where d� f /dT�0. In contrast, folding simulations of
the Go model yield d� f /dT�0 for all T, as shown in the
inset to Fig. 3.

II. FIRST-PASSAGE NETWORKS

For each heteropolymer conformation, we determine the
list of contacting green and red monomers and uniquely as-
sociate this list of contacts with a basin that surrounds the
associated local energy minimum. For rugged landscapes,
the system will sample a large number of basins as folding
proceeds from the extended to the native state. The trajectory
of the model protein as it folds can be viewed as a network
of connected nodes in configuration space. The nodes repre-
sent the basin of a local energy minimum sampled by the
system, and bonds that join two nodes represent transitions
from one basin to another. These networks are termed “first-
passage networks” since they are formed as the protein
makes its first passage from an initial to the native confor-
mation. Note that each first-passage network is a subset of
the static network of all basins and transitions, as illustrated
in Fig. 2�d�.

We compiled �106 first-passage networks originating
from the non-native conformation in Fig. 2�b� and ending at
the native state over a range of T	0.8. We map the confor-
mation of the heteropolymer to its associated basin every q
time steps to construct first-passage networks. We assume
that the features of the first-passage networks depend on T
but are independent of the initial state since the first-passage
networks are composed of a large number of nodes.

The simplest properties of first-passage networks are the
number of distinct basins sampled �nodes� Ni and bonds Nb.
Nodes and bonds are only counted once, even if multiple
transitions are made between a given set of basins. We also
measure the total number of transitions Nt
� f �Nb. Figure 4
shows raw data for the number of bonds Nb and transitions
Nt plotted versus the number of nodes Ni using q=1000.
There are 850 data points for each temperature, each taken

FIG. 2. �Color online� The heteropolymer model in its �a� ex-
tended, �b� metastable misfolded, and �c� native states. �d� Sche-
matic of a first-passage network �black dashed lines� from basin “S”
to “F,” superimposed on the complete network composed of all
basins and transitions between them �gray lines�.
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FIG. 3. Ensemble-averaged folding � f �squares� and unfolding
�u �circles� times vs temperature for the heteropolymer �main fig-
ure� and Go �inset� models. The vertical line at T�=0.8 indicates the
folding temperature.
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from a distinct first-passage network. For all T the number of
sampled basins, Ni, fluctuates between 102 and 104, which
indicates that the model protein adopts a large number of
conformations before arriving at the native state. The wide
range of Ni indicates that there is not a single folding path-
way, but rather a statistical ensemble of pathways.

In Fig. 4, Nb, Nt, and Ni show strong fluctuations from one
realization to the next; however, the fluctuations obey power-
law scaling

Nb 
 Ni
� and Nt 
 Ni

. �1�

This correlation is nontrivial and depends on global proper-
ties of first-passage networks. We find that distributions of
local features of the network, such as single-jump activation
times and distances, and the number of bonds per node, are
exponential. �See Fig. 7.� Thus, local properties of first-
passage networks cannot be responsible for the power-law
scaling.

In Fig. 5, we plot the scaling exponents  and � at dif-
ferent temperatures T. While � reaches a plateau at �1.4 at
small T,  continues to increase with decreasing T. The in-
crease of  is a signature of temperature-dependent explora-
tion of configuration space in systems with rugged land-
scapes. A system with a rugged energy landscape at energy E
only samples a small temperature-dependent fraction of con-
formations at that energy due to large activation barriers. In
contrast, �1.5 at all T for the same heteropolymer model
with Go interactions. In systems with funneled energy land-
scapes �i.e., the Go model�, a protein with energy E samples
conformations with that energy more uniformly.

The data shown in Fig. 4 are obtained by identifying ba-
sins every q=1000 time steps. We have also performed simu-
lations in the range 1�q�104 and observe that the expo-
nents  and � are independent of q. These results further
indicate that first-passage networks are self-similar and frac-
tal.

III. ORIGIN OF POWER LAWS

If we assume that first-passage networks are fractal, we
can predict the exponent  from the fractal scaling exponents
of the network. This assumption will be verified a posteriori.

On any network we can define the chemical distance �c
given by the shortest path between two nodes of the network.
This distance is useful because it depends only on network
connectivity and is independent of the embedding space �24�.
For a fractal network, we expect �25�

�c 
 t�, �2�

N��c� 
 �cdf , �3�

where N��c� is the number of distinct basins sampled within
chemical distance �c and time interval t, df is the chemical
fractal dimension, and the exponent � characterizes the scal-
ing of �c with time.

Given these relations, the correlation between Ni and Nt
can be explained as follows. A single first-passage network
is formed over folding time � f 
Nt, during which the system
explores average chemical distance �c
Nt

� �Eq. �2��. More-
over, for a given chemical distance �c, the number of
sampled basins on the first passage network scales as Ni

N��c�
�cdf �Eq. �3��. Thus, both Ni and Nt are related to
�c, and we find Nt
Ni

1/�df, or

 =
1

�df
. �4�

The prediction for  relies on the first-passage networks be-
ing fractal. In Fig. 6�a�, we test Eq. �2� and observe that �c
grows as a power law at large t for all temperatures studied.
We average �c over 1 500 first-passage networks and only
include t�� f for each realization. The exponent � decreases
with T, which implies that colder systems explore chemical
distance more slowly.

0.3 0.4 0.5 0.6 0.7 0.8
1

1.4

1.8

2.2

2.6

3

T

Γ
Λ

FIG. 5. �Color online� The scaling exponents  and � and the
prediction 1 /�df for  from Eq. �4�. Error bars for  and � are
smaller than the symbol sizes.
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FIG. 4. �Color online� Number of �a� bonds Nb and �b� transi-
tions Nt in first-passage networks vs the number of nodes Ni over a
range of temperature T. For each T, Nb, and Nt have been multiplied
by constant factors �shifted vertically� for clarity.
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In Fig. 6�b� we test Eq. �3� and find that, over the limited
range of chemical distance accessible to our small het-
eropolymer, the chemical fractal dimension df is well-defined
and depends linearly on temperature. N��c� is computed by
including all sampled basins in 850 different first-passage
networks at each T. While power-law scaling of N��c� only
holds for �c�8, the average chemical distance explored on
a first-passage network is always smaller than 8. Therefore,
the prediction for  based on power-law scaling should hold
during the folding process. In Fig. 5, we find excellent agree-
ment between the folding-time exponent  and our predic-
tion 1 /�df.

The assumption that first-passage networks are fractal
has been empirically justified a posteriori by comparing the
measured exponent  with the prediction 1 /�df. Another
possible cause of anomalous diffusion is kinetic in origin. It
is well-known �26� that if the waiting-time distribution be-
tween transitions is power law distributed ����
�−� with
exponent 1���2, anomalous diffusion will occur with
2�=�−1. We test the importance of kinetic effects in this
model protein by calculating the waiting �or residence� time
distributions ���� in Fig. 7�a� as a function of temperature,
where � is the waiting time normalized by the average value.
� is obtained by measuring the time elapsed while the system
resides in a given local minimum. As shown in inset to Fig.
7�a�, ���� shows approximate power-law scaling with expo-
nent two at small �, and a much faster decay at large �. Even
if the waiting distribution possessed power-law scaling with

�=2 over the full range of �, this would yield weak anoma-
lous diffusion with �=0.5. Since we observe ��0.2 for all
T, it is clear that broad waiting time distributions are not the
origin of the fractal scaling behavior of the folding dynamics
for our model protein. To further test this hypothesis, we
measured the dependence of the average chemical distance
�c on Nt in Fig. 7�b� and find that �c
Nt

�
 t� with � iden-
tical to that in Fig. 6�a�. This is further evidence that the
fractal ‘first-passage’ networks, not kinetics from one local
minimum to another, give rise to anomalous diffusion in our
model protein. While kinetic effects often play an important
role in folding �27�, we find that they are not relevant to the
properties of the model protein studied here.

IV. CONCLUSIONS

We have studied first-passage networks formed by the
folding trajectories of a heteropolymer and observed power-
law scaling between the folding time �
Nt� and number of
nodes Ni and bonds Nb in first-passage networks. We have
also demonstrated that the folding-time exponent  can be
obtained by measuring the fractal exponents that characterize
the structure of first-passage networks in configuration space.

The configuration space of our model protein contains
only 105 minima, which is small compared to what might be
expected for real proteins. Therefore, it is possible for the
model protein to fold via an exhaustive search of configura-
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FIG. 6. �Color online� �a� The chemical distance �c sampled in
the time interval t by the heteropolymer and �b� the mean number of
basins N��c� within �c at different temperatures. In �a� and �b�, the
symbols are the same as in Fig. 4, and the insets display the scaling
exponents used to fit the data �dotted lines� for different
temperatures.
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Waiting-time distributions ���� at different temperatures. The inset
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tion space, whereas real proteins cannot �Levinthal’s paradox
�28��. However, we observe that the model protein studied
here does not search all of its configuration space. Instead, it
saves time by searching a fractal network of the possible
states. Since this search mechanism is utilized in our simple
model protein, it is possible that it also occurs in heteropoly-
mers with varied sequences and more complex proteins.

Our results do not describe properties of the complete
static network of basins in the energy landscape �which is
also fractal �15,16��. Instead, our results suggest that it is not
necessary to characterize the complete static network if ki-
netic effects �such as waiting-time distributions� do not
strongly affect dynamics on the network. Just as normal dif-
fusion will trace out a two-dimensional fractal network of
sampled nodes, no matter what the dimension of the under-
lying space is, proteins with rugged energy landscapes can
trace out fractal networks that are independent of the com-
plete network. This behavior is not peculiar to proteins with

rugged energy landscapes, but can also occur in glass-
forming materials at low temperature �29�. Moreover, df

decreases with temperature, and is always much smaller than
the dimension of configuration space D, which implies that
Ni���c�df � ��c�D. This provides a mechanism by which
systems with rugged energy landscapes can fold reliably
without kinetic pathways and offers a potential resolution to
Levinthal’s paradox.
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